Investigating the Correlation of Tectonic and Morphometric Characteristics with the Hydrological Response in a Greek River Catchment Using Earth Observation and Geospatial Analysis Techniques
<p>(<b>a</b>) The location of Sperchios river catchment in Central Greece (red lines and numbers 1, 2 and 3 showing the three areas of tectonic dipole’s theory), (<b>b</b>) The morphology of the catchment and the distribution of the four main sub-catchments of its south part (Roustianitis, Inachos, Gorgopotamos and Assopos) and the corresponding sub-catchments of the north part (Vitoliotis, Archanorema, Drimarorema and Xirias). The red ellipse line shows the intense meandering part of River Sperchios.</p> "> Figure 2
<p>The tectonic activity of the area based on the tectonic dipole’s theory (Mariolakos, 1976), red numbers 1, 2 and 3 showing the three parts of the tectonic dipole’s theory (also appearing in <a href="#geosciences-10-00377-f001" class="html-fig">Figure 1</a>a and <a href="#geosciences-10-00377-f003" class="html-fig">Figure 3</a>).</p> "> Figure 3
<p>Simplified lithological map of the Sperchios river catchment, including faults and fracture systems derived from geological maps and satellite image interpretation (red numbers 1 and 2 showing the two areas of tectonic dipole’s theory (also appearing in <a href="#geosciences-10-00377-f001" class="html-fig">Figure 1</a>a and <a href="#geosciences-10-00377-f002" class="html-fig">Figure 2</a>)).</p> "> Figure 4
<p>Methodology flowchart.</p> "> Figure 5
<p>(<b>a</b>) Principal Component Analysis (Principal Component 1), (<b>b</b>) False Color Composite image (7,5,3 RGB), of Landsat 7 ETM+ for the validation and completion of the lineament map of the area (red lines presenting lineaments recognized and digitized through the visual interpretation of the images) and (<b>c</b>) an image showing the location of (<b>a</b>,<b>b</b>) zoomed areas.</p> "> Figure 5 Cont.
<p>(<b>a</b>) Principal Component Analysis (Principal Component 1), (<b>b</b>) False Color Composite image (7,5,3 RGB), of Landsat 7 ETM+ for the validation and completion of the lineament map of the area (red lines presenting lineaments recognized and digitized through the visual interpretation of the images) and (<b>c</b>) an image showing the location of (<b>a</b>,<b>b</b>) zoomed areas.</p> "> Figure 6
<p>The geology and the classified drainage formation of (<b>a</b>) Roustianitis (<b>b</b>) Inachos, (<b>c</b>) Gorgopotamos, (<b>d</b>) Assopos, (<b>e</b>) Vitoliotis, (<b>f</b>) Archanorema, (<b>g</b>) Drimarorema and (<b>h</b>) Xirias catchments.</p> "> Figure 7
<p>Diagrams showing the streams’ mean length deviation from the ideal values of Horton’s law for the four south sub-catchments, (<b>a</b>) Roustianitis, (<b>b</b>) Inachos, (<b>c</b>) Gorgopotamos, (<b>d</b>) Assopos and the four north sub-catchments (<b>e</b>) Vitoliotis, (<b>f</b>) Archanorema, (<b>g</b>) Drimarorema and (<b>h</b>) Xirias.</p> "> Figure 7 Cont.
<p>Diagrams showing the streams’ mean length deviation from the ideal values of Horton’s law for the four south sub-catchments, (<b>a</b>) Roustianitis, (<b>b</b>) Inachos, (<b>c</b>) Gorgopotamos, (<b>d</b>) Assopos and the four north sub-catchments (<b>e</b>) Vitoliotis, (<b>f</b>) Archanorema, (<b>g</b>) Drimarorema and (<b>h</b>) Xirias.</p> "> Figure 8
<p>Rose diagrams of frequency (RF) and density (RD) for (<b>a</b>) high angle normal faults and (<b>b</b>) small-angle reverse faults (overthrust, thrust).</p> "> Figure 9
<p>Rose diagrams of frequency (RF) and density (RD) of the eight sub-catchments’ drainage network with their mean angle range.</p> "> Figure 9 Cont.
<p>Rose diagrams of frequency (RF) and density (RD) of the eight sub-catchments’ drainage network with their mean angle range.</p> "> Figure 10
<p>Graphs of (<b>a</b>) the time area curves of the investigated catchments and (<b>b</b>) the 3 h spatial distributed unit hydrographs, for the examined catchments. The first three catchments (solid lines) belong to the Southern part of Sperchios catchment and the other three (dashed lines) to the Northern part.</p> "> Figure 11
<p>Photos demonstrating the severe flash-flood events that occurred (<b>a</b>) on February 1st 2015 and (<b>b</b>) on January 14th 1997. In the latter case, extended destruction occurred, and six bridges of the river collapsed.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Geological and Lineament Mapping
3.2. Morphometric Analysis
3.3. Drainage Network Analysis
3.4. Tectonic and Drainage Network Correlation
3.5. Analysis of Hydrological Response
4. Results
4.1. Catchment Morphometric and Drainage Network Features Analysis
4.2. Tectonic and Catchment’s Morphometry-Drainage Network Correlation
4.3. Water Flow Velocity and Time Concentration Estimation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology; Chow, V., Ed.; McGraw Hill, Open Access Library: New York, NY, USA, 1964. [Google Scholar]
- Prakash, K.; Rawat, D.; Singh, S.; Chaubey, K.; Kanhaiya, S.; Mohanty, T. Morphometric analysis using SRTM and GIS in synergy with depiction: A case study of the Karmanasa River basin, North central India. Appl. Water Sci. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mesa, L.M. Morphometric analysis of a subtropical Andean basin (Tucumán, Argentina). Environ. Geol. 2006, 50, 1235–1242. [Google Scholar] [CrossRef]
- Sarkar, D.; Mondal, P.; Sutradhar, S.; Sarkar, P. Morphometric Analysis Using SRTM-DEM and GIS of Nagar River Basin, Indo-Bangladesh Barind Tract. J. Indian Soc. Remote Sens. 2020, 48, 597–614. [Google Scholar] [CrossRef]
- Schumm, S.A. Alluvial River Response to Active Tectonics; National Academies Press: Washington, DC, USA, 1986. [Google Scholar]
- Deffontaines, B.; Chorowicz, J. Principles of drainage basin analysis from multisource data: Application to the structural analysis of the Zaire Basin. Tectonophysics 1991, 194, 237–263. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Eos Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Horton, R.E. An Approach Toward a Physical Interpretation of Infiltration-Capacity. Soil Sci. Soc. Am. J. 1941, 5, 399–417. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. GSA Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Statistical Analysis in Geomorphic Research. J. Geol. 1954, 62, 1–25. [Google Scholar] [CrossRef]
- Argyriou, A.V.; Teeuw, R.M.; Soupios, P.; Sarris, A. Neotectonic control on drainage systems: GIS-based geomorphometric and morphotectonic assessment for Crete, Greece. J. Struct. Geol. 2017, 104, 93–111. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, V.; Park, C.C. Drainage basin morphometry. Prog. Phys. Geogr. Earth Environ. 1978, 2, 1–35. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Diakakis, M. A method for flood hazard mapping based on basin morphometry: Application in two catchments in Greece. Nat. Hazards 2011, 803–814. [Google Scholar] [CrossRef]
- Moussa, R. On morphometric properties of basins, scale effects and hydrological response. Hydrol. Process. 2003, 17, 33–58. [Google Scholar] [CrossRef]
- Esper Angillieri, M.Y. Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environ. Geol. 2008, 55, 107–111. [Google Scholar] [CrossRef]
- Bhatt, S.; Ahmed, S.A. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Int. 2014, 29. [Google Scholar] [CrossRef]
- Farhan, Y.; Anaba, O.; Salim, A. Morphometric Analysis and Flash Floods Assessment for Drainage Basins of the Ras En Naqb Area, South Jordan Using GIS. J. Geosci. Environ. Prot. 2016, 4, 9–33. [Google Scholar] [CrossRef] [Green Version]
- Psomiadis, E.; Soulis, K.X.; Efthimiou, N. Using SCS-CN and earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes. Water 2020, 12, 1386. [Google Scholar] [CrossRef]
- Dehbozorgi, M.; Pourkermani, M.; Arian, M.; Matkan, A.A.; Motamedi, H.; Hosseiniasl, A. Geomorphology Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 2010, 121, 329–341. [Google Scholar] [CrossRef]
- Apostolopoulos, G. Geophysical studies relating to the tectonic structure, geothermal fields and geomorphological evolution of the Sperchios River Valley, Central Greece. Min. Eng. 2005, 8, 99–112. [Google Scholar]
- Gao, M.; Zeilinger, G.; Xu, X.; Wang, Q.; Hao, M. Geomorphology DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology 2013, 190, 61–72. [Google Scholar] [CrossRef]
- Gaidzik, K.; Ramírez-Herrera, M.T. Geoscience Frontiers Geomorphic indices and relative tectonic uplift in the Guerrero sector of the Mexican forearc. Geosci. Front. 2017, 8, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Ahnert, F.; Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology. Geogr. Rev. 1965, 55, 452. [Google Scholar] [CrossRef]
- Mahala, A. The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Appl. Water Sci. 2020, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.J.; Sreekumar, S.; Aslam, A. Implication of drainage basin parameters of a tropical river basin of South India. Appl. Water Sci. 2016, 6, 67–75. [Google Scholar] [CrossRef]
- Matoš, B.; Pérez-Peña, J.V.; Tomljenović, B. Landscape response to recent tectonic deformation in the SW Pannonian Basin: Evidence from DEM-based morphometric analysis of the Bilogora Mt. area, NE Croatia. Geomorphology 2016, 263, 132–155. [Google Scholar] [CrossRef]
- Charizopoulos, N.; Mourtzios, P.; Psilovikos, T.; Psilovikos, A.; Karamoutsou, L. Comptes rendus-Geoscience Morphometric analysis of the drainage network of Samos Island (northern Aegean Sea): Insights into tectonic control and flood hazards. Comptes Rendus Geosci. 2019, 351, 375–383. [Google Scholar] [CrossRef]
- Ntokos, D. Catena Formulation of the conceptual model for the tectonic geomorphological evolution of an area: Five main rivers of Greece as a case study. Catena 2018, 167, 60–77. [Google Scholar] [CrossRef]
- Kouli, M.; Vallianatos, F.; Souios, P.; Alexakis, D. A GIS example of Morphometric analysis in tectonic structures of Western Crete, Greece. In Proceedings of the 5th WSEAS International Conference on Environment, Ecosystems and Development, Venice, Italy, 20–22 November 2006; pp. 229–234. [Google Scholar]
- Maroukian, H.; Lagios, E. Neotectonic movements in the Sperkhios River basin, Central Greece. Z. Geomorph. NF Suppl. Bd. 1987, 63, 133–140. [Google Scholar]
- Eliet, P.P.; Gawthorpe, R.L. Drainage development and sediment supply within rifts, examples from the Sperchios Basin, central Greece. J. Geol. Soc. 1995, 152, 883–893. [Google Scholar] [CrossRef]
- Pechlivanidou, S.; Cowie, P.A.; Hannisdal, B.; Whittaker, A.C.; Gawthorpe, R.L.; Pennos, C.; Riiser, O.S. Source-to-sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece. Basin Res. 2018, 30, 522–543. [Google Scholar] [CrossRef] [Green Version]
- Sukumar, B.; Sukumar, A. Morphometric and Terrain analysis of Payaswani River Basin of Kerala and Karnataka States using GIS. Int. J. Geomat. Geosci. 2013, 4, 356–365. [Google Scholar]
- Shrestha, D.P.; Suriyaprasit, M.; Prachansri, S. Assessing soil erosion in inaccessible mountainous areas in the tropics: The use of land cover and topographic parameters in a case study in Thailand. Catena 2014, 121, 40–52. [Google Scholar] [CrossRef]
- Try, S.; Lee, G.; Yu, W.; Oeurng, C. Delineation of flood-prone areas using geomorphological approach in the Mekong River Basin. Quat. Int. 2018, 1–8. [Google Scholar] [CrossRef]
- Waikar, M.L.; Nilawar, A.P. Morphometric Analysis of a Drainage Basin Using Geographical Information System: A Case study. Int. J. Multidiscip. Curr. Res. 2014, 2, 179–184. [Google Scholar]
- Samal, D.R.; Gedam, S.S.; Nagarajan, R. GIS based drainage morphometry and its influence on hydrology in parts of Western Ghats region. Geocarto Int. 2015, 30, 755–778. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. Catena 2020, 187. [Google Scholar] [CrossRef]
- Psomiadis, E.; Migiros, G.; Antoniou, V. Geomorphological quantitative analysis of Sperchios River Basin area (Central Greece) utilizing geographical information systems. Bull. Geol. Soc. Greece 2013, 47, 325. [Google Scholar] [CrossRef] [Green Version]
- Psomiadis, E. Research of Geomorphological and Environmental Changes in the Sperchios’ River Basin Utilizing New Technologies. Ph.D. Thesis, Agricultural Univeristy of Athens, Athens, Greek, 2010. [Google Scholar]
- Pande, C.B.; Moharir, K. GIS based quantitative morphometric analysis and its consequences: A case study from Shanur River Basin, Maharashtra India. Appl. Water Sci. 2017, 7, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Grohmann, C.H.; Riccomini, C.; Alves, F.M. SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Comput. Geosci. 2007, 33, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Nag, S.K. Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. J. Indian Soc. Remote Sens. 1998, 26, 69–76. [Google Scholar] [CrossRef]
- Das, S.; Patel, P.P.; Sengupta, S. Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: A case study of the Supin–Upper Tons Basin, Indian Himalayas. Springerplus 2016, 5, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Band, L.E. Topographic Partition of Watersheds with Digital Elevation Models. Water Resour. Res. 1986, 22, 15–24. [Google Scholar] [CrossRef]
- Venkatesh, M.A. A GIS-based assessment of recent changes in drainage and morphometry of Betwa River basin and sub-basins, Central India. Appl. Water Sci. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Ghebreab, W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J. Afr. Earth Sci. 2006, 46, 371–378. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Tsombos, P.I.; Photiades, A.; Psonis, K.; Zervakou, A. Using remote sensing multispectral data and GIS techniques for the geological mapping of Halki Island. Bull. Geol. Soc. Greece 2013, 47, 1500. [Google Scholar] [CrossRef] [Green Version]
- Psomiadis, E.; Papazachariou, A.; Soulis, K.X.; Alexiou, D.S.; Charalampopoulos, I. Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data. Land 2020, 9, 133. [Google Scholar] [CrossRef]
- Zoka, M.; Psomiadis, E.; Dercas, N. The Complementary Use of Optical and SAR Data in Monitoring Flood Events and Their Effects. Proceedings 2018, 2, 644. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Science of Landsat Analysis Ready Data. Remote Sens. 2019, 11, 2166. [Google Scholar] [CrossRef] [Green Version]
- Parcharidis, I.; Psomiadis, E.; Stamatis, G. Using Landsat TM images to study the karstic phenomenon. Int. J. Appl. Earth Obs. Geoinf. 1998, 2, 118–123. [Google Scholar]
- Psomiadis, E.; Soulis, K.; Zoka, M.; Dercas, N. Synergistic Approach of Remote Sensing and GIS Techniques for Flash-Flood Monitoring and Damage Assessment in Thessaly Plain Area, Greece. Water 2019, 11, 448. [Google Scholar] [CrossRef] [Green Version]
- Parcharidis, I.; Psomiadis, E.; Gartzos, E. Alteration zones detection in Lesvos island, through the application of Landsat 5 TM band ratio images. Miner. Wealth 1999, 112, 37–46. [Google Scholar]
- Sajadi, P.; Singh, A.; Mukherjee, S.; Chapi, K. Influence of structural lineaments on drainage morphometry in Qorveh-Dehgolan basin, Kurdistan, Iran. Geocarto Int. 2019, 1–28. [Google Scholar] [CrossRef]
- Cross, A.; Wadge, G. Geological lineament detection using the Hough transform. RSMT 1988, 3, 1779–1782. [Google Scholar]
- Jawahar Raj, N.; Prabhakaran, A. Lineaments of Kodaikanal-Palani massif, Southern Granulitic Terrain of Tamil Nadu, India: A study using SRTM DEM and LANDSAT satellite’s OLI sensor’s FCC. Geol. Ecol. Landsc. 2018, 2, 188–202. [Google Scholar] [CrossRef]
- Qureshy, M.N. Geophysical and Landsat lineament mapping-An approach illustrated from west-central and south India. Photogrammetria 1982, 37, 161–184. [Google Scholar] [CrossRef]
- Abdullah, A.; Nassr, S.; Ghaleeb, A. Landsat ETM-7 for Lineament Mapping Using Automatic Extraction Technique in the SW Part of Taiz Area, Yemen. Glob. J. Hum.-Soc. Sci. Res. 2013, 13, 35–37. [Google Scholar]
- Argialas, D.; Mavrantza, O.; Stefouli, M. Automatic Mapping of Tectonic Lineaments (Faults) Using Methods and Techniques of Photointerpretation/Digital Remote Sensing and Expert Systems Research Team. 2000. Available online: https://www.ntua.gr/eseve/Vasikh_Ereyna/Thalis/Thalis_projects_English_summaries/Argialas.pdf (accessed on 17 September 2020).
- Psomiadis, E.; Migiros, G.; Parcharidis, I.; Poulos, S. Short Period Change Detection of Sperchios Lower Delta Area Using Space Radar Images. Bull. Geol. Soc. Greece 2004, 36, 919. [Google Scholar] [CrossRef] [Green Version]
- Psomiadis, E.; Parcharidis, I.; Stamatis, G.; Foumelis, M. Remotely sensing data and thematic mapping for sustainable developing in Sperchios river basin (Central Greece). Proc. SPIE Int. Soc.Opt. Eng. 2005, 5983. [Google Scholar] [CrossRef]
- Psomiadis, E.; Parcharidis, I.; Poulos, S.; Stamatis, G.; Migiros, G.; Pavlopoulos, A. Earth observation data in seasonal and long term coastline changes monitoring the case of Sperchios river delta (central Greece). Z. Geomorphol. Suppl. 2005, 137, 159–175. [Google Scholar]
- Karastathis, V.K.; Ganas, A.; Makris, J.; Papoulia, J.; Dafnis, P.; Gerolymatou, E.; Drakatos, G. The application of shallow seismic techniques in the study of active faults: The Atalanti normal fault, central Greece. J. Appl. Geophys. 2007, 62, 215–233. [Google Scholar] [CrossRef]
- Ganas, A.; Roberts, G.P.; Memou, T. Segment boundaries, the 1894 ruptures and strain patterns along the Atalanti Fault, central Greece. J. Geodyn. 1998, 26, 461–486. [Google Scholar] [CrossRef]
- Mariolakos Thoughts and views on certain issues of Geology and Tectonics of the Peloponnese. Ann. Geol. Pays. Hell. 1976, 27, 215–313.
- Ferrière, J. Recent Developments in the Maliakos Isopic Zone, Eastern Central Greece. In Proceedings of the 6th Colloquium Geology of the Aegean Region; Institute of Geological and Mining Research: Athens, Greece, 1977; pp. 197–210. [Google Scholar]
- Maroukian, H. Physico-Geographical Observations in the Catchment Area of Sperchios River; National and KApodistrian University of Athens: Athens, Greece, 1987. [Google Scholar]
- Psomiadis, E.; Stamatis, G.; Parpodis, K.; Kontari, A. Assessment of natural and human effect in the alluvial deposits aquifer of Sperchios’ river plain. In Advances in the Research of Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 2011; pp. 307–315. [Google Scholar]
- Paraschou, T.; Vouvalidis, K. Quantitative analysis of hydrographic and morphotectonic factors in the drainage basin of Inachos River, tributary of Sperchios River (Fthiotida, Central Greece). Bull. Geol. Soc. Greece 2006, XXXIX, 49–61. [Google Scholar]
- Whittaker, A.C.; Walker, A.S. Geomorphic constraints on fault throw rates and linkage times: Examples from the Northern Gulf of Evia, Greece. J. Geophys. Res. Earth Surf. 2015, 120, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Sarkheil, H. Structural Controls of Polyme tal M ine ralization in North Kashmar, Iran. Aust. J. Basic Appl. Sci. 2009, 3, 3058–3066. [Google Scholar]
- Sunuprapto, H.; Danoedoro, P.; Ritohardoyo, S. Evaluation of Pan-sharpening Method: Applied to Artisanal Gold Mining Monitoring in Gunung Pani Forest Area. Procedia Environ. Sci. 2016, 33, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Varnes, D.J. Slope Movement Types and Processes/Special Report 176: Landslides: Analysis and Control; Transportation Research Board: Washington, DC, USA, 1978. [Google Scholar]
- Rahmani, S.; Strait, M.; Merkurjev, D.; Moeller, M.; Wittman, T. An adaptive IHS pan-sharpening method. IEEE Geosci. Remote Sens. Lett. 2010, 7, 746–750. [Google Scholar] [CrossRef] [Green Version]
- Parcharidis, I. Morphostructure patterns in satellite multispectral Landsat TM images. Geol. Carpathica 1998, 49, 307–313. [Google Scholar]
- Karfakis, I.; Nikolakopoulos, K. Use of Landsat TM images for the detection of water outflows in the coastal area of south Attiki Peninsula, Greece. In Proceedings of the Sensors, Systems, and Next-Generation Satellites VI; Fujisada, H., Lurie, J.B., Aten, M.L., Weber, K., Eds.; SPIE: Bellingham, WA, USA, 2003; Volume 4881, p. 692. [Google Scholar]
- Novak, I.D.; Soulakellis, N. Identifying geomorphic features using LANDSAT-5rTM data processing techniques on Lesvos, Greece. Geology 2000, 34, 101–109. [Google Scholar]
- Papadaki, E.E.; Mertikas, S.P.; Sarris, A. Identification of lineaments with possible structural origin using aster images and DEM derived products in Western Crete, Greece. EARSeL Eproc. 2011, 10, 9–26. [Google Scholar]
- Kamel, M.; Youssef, M.; Hassan, M.; Bagash, F. Utilization of ETM+ Landsat data in geologic mapping of wadi Ghadir-Gabal Zabara area, Central Eastern Desert, Egypt. Egypt. J. Remote Sens. Space Sci. 2016, 19, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Al-Nahmi, F.; Alami, O.B.; Baidder, L.; Khanbari, K.; Rhinane, H.; Hilali, A. Using remote sensing for lineament extraction in Al Maghrabah area-Hajjah, Yemen. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 42, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.J.; Mynar, F. Landsat digital enhancements for lineament detection. Environ. Geol. Water Sci. 1986, 8, 123–128. [Google Scholar] [CrossRef]
- Paganelli, F.; Grunsky, E.C.; Richards, J.P.; Pryde, R. Use of RADARSAT-1 principal component imagery for structural mapping: A case study in the Buffalo Head Hills area, northern central Alberta, Canada. Can. J. Remote Sens. 2003, 29, 111–140. [Google Scholar] [CrossRef]
- Adiri, Z.; El Harti, A.; Jellouli, A.; Lhissou, R.; Maacha, L.; Azmi, M.; Zouhair, M.; Bachaoui, E.M. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv. Space Res. 2017, 60, 2355–2367. [Google Scholar] [CrossRef]
- Al-Djazouli, M.O.; Elmorabiti, K.; Zoheir, B.; Rahimi, A.; Amellah, O. Use of Landsat-8 OLI data for delineating fracture systems in subsoil regions: Implications for groundwater prospection in the Waddai area, eastern Chad. Arab. J. Geosci. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Hamdani, N.; Baali, A. Fracture Network Mapping Using Landsat 8 OLI Data and Linkage with the Karst System: A Case Study of the Moroccan Central Middle Atlas. Remote Sens. Earth Syst. Sci. 2019, 2, 1–17. [Google Scholar] [CrossRef]
- Oyawale, A.A.; Adeoti, F.O.; Ajayi, T.R.; Omitogun, A.A. Applications of remote sensing and geographic information system (GIS) in regional lineament mapping and structural analysis in Ikare Area, Southwestern Nigeria. J. Geol. Min. Res. 2020, 12, 13–24. [Google Scholar] [CrossRef]
- Vadrevu, K.P. Introduction to Remote Sensing (FIFTH EDITION). J. B. Campbell and R. H. Wynne. Guilford Press, New York, USA, 2011. ISBN 978 160918 176 5. 297 mm × 210 mm, xxxii + 670 pages. Price US$95·00 hardback. Photogramm. Rec. 2013, 28, 117–118. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Sreedevi, P.D.; Owais, S.; Khan, H.H.; Ahmed, S. Morphometric analysis of a watershed of South India using SRTM data and GIS. J. Geol. Soc. India 2009, 73, 543–552. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadis, E. The Significance of Land Cover Delineation on Soil Erosion Assessment. Environ. Manag. 2018, 62, 383–402. [Google Scholar] [CrossRef] [PubMed]
- USGS USGS EROS Archive-Digital Elevation-Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects (accessed on 15 July 2020).
- Apollov, B.A. A Study of Rivers; Moscow University: Moscow, Russia, 1963. [Google Scholar]
- Mourato, S.; Fernandez, P.; Pereira, L.; Moreira, M.; Andrade, C. Climate change impact on flood hazard in a central Portugal alluvial plain. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018); Themistocleous, K., Hadjimitsis, D.G., Michaelides, S., Ambrosia, V., Papadavid, G., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10773, p. 41. [Google Scholar]
- Choudhari, P.P.; Nigam, G.K.; Singh, S.K.; Thakur, S. Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geol. Ecol. Landsc. 2018, 2, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Castillo, V.; Segovia, A.D.; Alonso, S.G. Quantitative study of fluvial landscapes. Case study in Madrid, Spain. Landsc. Urban Plan. 1988, 16, 201–217. [Google Scholar] [CrossRef]
- Melton, M.A. An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology; Technical Report No. 11; Office of Naval Research, Geography Branch: New York, NY, USA, 1957. [Google Scholar]
- Gregory, K.J.; Walling, D.E. Drainage Basin Form and Process. A Geomorphological Approach; Wiley, Ed.: New York, NY, USA, 1973. [Google Scholar]
- Miller, V.C. Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee; Technical Report No. 3; Department of Geology, Columbia University: New York, NY, USA, 1953. [Google Scholar]
- Luchisheva, A.A. Practical Hydrology; Gidrometeoizdat: Leningrand, Russia, 1950. [Google Scholar]
- Psomiadis, E. Flash flood area mapping utilising Sentinel-1 radar data. Proc. SPIE Int. Soc. Opt. Eng. 2016, 10005. [Google Scholar] [CrossRef]
- Evelpidou, N. Drainage features and the discontinuous structure of the island of Naxos in GIS platform. In Proceedings of the 6th Pan-Hellenic Geographical Congress, Thessaloniki, Greece, 3–6 October 2002; pp. 70–77. [Google Scholar]
- Muzik, I. Flood Modelling with Gis-Derived Distributed Unit Hydrographs. Hydrol. Process. 1996, 10, 1401–1409. [Google Scholar] [CrossRef]
- Kilgore, J.L. Development and Evaluation of a Gis-Based Spatially Distributed Unit Hydrograph Model. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 1997. [Google Scholar]
- Soulis, K.X.; Dercas, N.; Papadaki, C. Effects of forest roads on the hydrological response of a small-scale mountain watershed in Greece. Hydrol. Process. 2015, 29, 1772–1782. [Google Scholar] [CrossRef]
- McCuen, R.H. Hydrologic Analysis and Design, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Molnár, P.; Ramírez, J.A. Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 1998, 34, 1809–1818. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; De Smedt, F. Flood modeling for complex terrain using GIS and remote sensed information. Water Resour. Manag. 2005, 19, 605–624. [Google Scholar] [CrossRef]
- Michas, S.N.; Lazaridis, L.S. Hydrologic modeling for the determination of design discharges in ungauged basins. Glob. Nest J. 2005, 7, 296–305. [Google Scholar]
- Giandotti, M. Previsione delle piene e delle magre dei corsid’acqua. Ist. Poligr. Dello Stato 1934, 8, 107–117. [Google Scholar]
- Sharifi, S.; Hosseini, S.M. Methodology for Identifying the Best Equations for Estimating the Time of Concentration of Watersheds in a Particular Region. J. Irrig. Drain. Eng. 2011, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Shreve, R.L.; Ronald, L. Statistical Law of Stream Numbers. J. Geol. 2016, 74, 17–37. Available online: http://www.jstor.org/stable/30075174 (accessed on 19 July 2020). [CrossRef]
- Ozdemir, H.; Bird, D. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ. Geol. 2009, 56, 1405–1415. [Google Scholar] [CrossRef]
- Obi Reddy, G.P.; Maji, A.K.; Gajbhiye, K.S. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India-A remote sensing and GIS approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16. [Google Scholar] [CrossRef]
- Al-Sulaimi, J.; Khalaf, F.J.; Mukhopadhyay, A. Geomorphological analysis of paleo drainage systems and their environmental implications in the desert of Kuwait. Environ. Geol. 1997, 29, 94–111. [Google Scholar] [CrossRef]
- Cooper, A.H.; Farrant, A.R.; Price, S.J. The use of karst geomorphology for planning, hazard avoidance and development in Great Britain. Geomorphology 2011, 134, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.; Khanday, M.Y.; Rais, S. Watershed prioritization using morphometric and land use/land cover parameters: A remote sensing and GIS based approach. J. Geol. Soc. India 2011, 78, 63–75. [Google Scholar] [CrossRef]
- Kale, V.S.; Shejwalkar, N. Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? J. Earth Syst. Sci. 2008, 117, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Chaabouni, R.; Bouaziz, S.; Peresson, H.; Wolfgang, J. Lineament analysis of South Jenein Area (Southern Tunisia) using remote sensing data and geographic information system. Egypt. J. Remote Sens. Space Sci. 2012, 15, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Zovoili, E.; Konstantinidi, E.; Koukouvelas, I.K. Tectonic geomorphology of escarpments: The cases of kompotades and νεα anchialos faults. Bull. Geol. Soc. Greece 2004, 36, 1716. [Google Scholar] [CrossRef] [Green Version]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Zamani, A.; Maroukian, H. A morphological study of an old delta of the Sperchios River. In Proceedings of the 6th Colloquium on the Geology of the Aegean Region; Kallergis, G., Ed.; Institute of Geological and Mining Research: Athens, Greece, 1979; pp. 261–282. [Google Scholar]
- Stathopoulos, N.; Rozos, D.; Vasileiou, E. Water resources management in Sperchios River Basin, using SWOT analysis. Bull. Geol. Soc. Greece 2017, 47, 779. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems. Appl. Water Sci. 2017, 7, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Bournas, A.; Feloni, E.; Bertsioy, M.; Baltas, E. Hydrological and hydraulic modelling for a severe flood event in Sperchios River Basin. In Proceedings of the 16th International Conference on Environmental Science and Technology, Rhodes, Greece, 4–7 September 2019. [Google Scholar]
- Junker, B.; Buchecker, M.; Müller-Böker, U. Objectives of public participation: Which actors should be involved in the decision making for river restorations? Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Chen, S.; Hou, Z. Multicriterion decision making for flood control operations: Theory and Applications. J. Am. Water Resour. Assoc. 2004, 40, 67–76. [Google Scholar] [CrossRef]
Morphometric Parameters | Roustianitis | Inachos | Gorgopotamos | Assopos | Vitoliotis | Archanorema | Drimarorema | Xirias |
---|---|---|---|---|---|---|---|---|
South Part | North Part | |||||||
Drainage density (km/km2) | 2.33 | 3.47 | 2.69 | 2.32 | 3.74 | 3.81 | 3.70 | 2.08 |
Drainage frequency (n/km2) | 3.86 | 8.45 | 5.87 | 4.64 | 9.74 | 10.21 | 8.75 | 4.12 |
Area (km2) (A) | 53.11 | 341.86 | 67.62 | 112.97 | 58.85 | 47.40 | 26.62 | 109.74 |
Catchment length (km) (Lb) | 14.61 | 29.21 | 15.06 | 19.45 | 10.47 | 12.22 | 11.84 | 17.63 |
Catchment width (km) | 3.64 | 11.70 | 4.50 | 5.81 | 5.62 | 3.88 | 2.25 | 6.22 |
Perimeter (km) (P) | 39.67 | 104.58 | 52.90 | 58.95 | 36.28 | 38.54 | 30.84 | 57.63 |
Maximum Elevation, Hmax(m) | 1724.6 | 2293.6 | 2150.6 | 1804.5 | 1281.3 | 826.5 | 820.5 | 1085.51 |
Minimum Elevation, Hmin(m) | 240.5 | 90.0 | 14.0 | 8.0 | 215.0 | 100.5 | 30.8 | 12.2 |
Total or Relative relief (m) | 1484.1 | 2203.6 | 2136.6 | 1796.3 | 1066.3 | 726.5 | 789.7 | 1073.5 |
Median elevation, Hmedian(m) | 940.0 | 962.0 | 1320.0 | 680.5 | 670.2 | 420.0 | 285.5 | 593.1 |
Mean Elevation, Hmean (m) | 998.7 | 1155.4 | 1.089.7 | 946.94 | 747.4 | 452.6 | 456.1 | 540.0 |
Mean slope (%) | 40 | 42 | 41 | 46 | 39 | 32 | 28 | 30 |
Relief ratio (RH) (m km−1) | 101.58 | 75.44 | 141.87 | 92.35 | 101.84 | 59.45 | 66.70 | 60.89 |
Length-Width index (S) | 4.01 | 2.50 | 3.35 | 3.35 | 1.86 | 3.15 | 5.43 | 2.83 |
Form factor | 0.25 | 0.40 | 0.30 | 0.30 | 0.54 | 0.32 | 0.19 | 0.35 |
Circularity ratio | 0.42 | 0.39 | 0.30 | 0.41 | 0.56 | 0.4 | 0.35 | 0.42 |
Elongation ratio | 0.21 | 0.72 | 0.62 | 0.62 | 0.54 | 0.64 | 0.49 | 0.67 |
Drainage net. density index | 1.53 | 1.60 | 1.82 | 1.56 | 1.33 | 1.58 | 1.69 | 1.55 |
Sinuosity index | 1.06 | 1.04 | 1.05 | 1.11 | 1.11 | 1.18 | 1.06 | 1.1 |
RIVER | Stream Order (u) | Streams Number (Nu) | Ideal Streams Number (Ni) | Deviation | Streams Length (Lu) (km) | Ideal Mean Streams Length (Li) | Deviation | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Roustianitis ΣNu = 205 ΣLu = 123.87 (km) | 1 | 156 | 3.73 | 194 | −38 | 70.2 | 0.45 | 2.38 | 0.45 | 0.0 | ||
2 | 36 | 4.33 | 52 | −16 | 21.24 | 0.59 | 1.31 | 1.07 | −0.48 | |||
3 | 10 | 3.6 | 14 | −4 | 12.3 | 1.23 | 2.09 | 2.55 | −1.32 | |||
4 | 2 | 5.0 | 4 | −2 | 9.42 | 4.71 | 3.83 | 6.07 | −1.36 | |||
5 | 1 | 2.0 | 1 | 0 | 10.71 | 10.71 | 2.27 | 14.44 | −3.73 | |||
Inachos ΣNu = 2887 ΣLu = 1186.02 (km) | 1 | 2206 | 3.65 | 2365 | −159 | 661.8 | 0.3 | 2.17 | 0.3 | 0.0 | ||
2 | 520 | 4.24 | 648 | −128 | 254.8 | 0.49 | 1.63 | 0.65 | −0.16 | |||
3 | 118 | 4.4 | 178 | −60 | 126.26 | 1.07 | 2.18 | 1.41 | −0.34 | |||
4 | 30 | 3.93 | 49 | −19 | 57.3 | 1.91 | 1.79 | 3.07 | −1.16 | |||
5 | 9 | 3.33 | 13 | −4 | 27.0 | 3.0 | 1.57 | 6.65 | −3.65 | |||
6 | 3 | 3.0 | 4 | −1 | 39.06 | 13.02 | 4.34 | 14.44 | −1.42 | |||
7 | 1 | 3.0 | 1 | 0 | 19.8 | 19.8 | 1.52 | 31.32 | −11.52 | |||
Gorgopotamos ΣNu = 397 ΣLu = 123.58 (km) | 1 | 304 | 4.31 | 345 | −41 | 100.32 | 0.33 | 2.78 | 0.33 | 0.0 | ||
2 | 71 | 4.28 | 80 | −9 | 44.02 | 0.64 | 1.94 | 0.92 | −0.28 | |||
3 | 18 | 3.94 | 19 | −1 | 15.3 | 0.85 | 1.33 | 2.59 | −1.74 | |||
4 | 3 | 6.0 | 4 | −1 | 8.94 | 2.98 | 3.51 | 7.24 | −4.26 | |||
5 | 1 | 3.0 | 1 | 0 | 13.0 | 13.0 | 4.36 | 20.28 | −7.28 | |||
Assopos ΣNu = 524 ΣLu = 261.95 (km) | 1 | 405 | 4.54 | 425 | −20 | 141.75 | 0.35 | 2.68 | 0.35 | 0.0 | ||
2 | 91 | 4.45 | 94 | −3 | 59.15 | 0.65 | 1.86 | 0.94 | −0.29 | |||
3 | 23 | 3.96 | 21 | +2 | 27.6 | 1.2 | 1.85 | 2.51 | −1.31 | |||
4 | 4 | 5.75 | 5 | −1 | 19.08 | 4.77 | 3.98 | 6.74 | −1.97 | |||
5 | 1 | 4.0 | 1 | 0 | 14.37 | 14.37 | 3.01 | 18.06 | −3.69 | |||
Vitoliotis ΣNu = 573 ΣLu = 219.8 km | 1 | 437 | 3.57 | 580 | −143 | 120.5 | 0.28 | 1.74 | 0.28 | 0.0 | ||
2 | 104 | 4.2 | 162 | −58 | 47.75 | 0.46 | 1.67 | 0.49 | −0.03 | |||
3 | 24 | 4.33 | 46 | −22 | 27.63 | 1.15 | 2.51 | 0.85 | +0.30 | |||
4 | 5 | 4.8 | 13 | −8 | 12.73 | 2.55 | 2.21 | 1.48 | +1.07 | |||
5 | 2 | 2.5 | 3 | −1 | 9.05 | 4.53 | 1.78 | 2.57 | +1.96 | |||
6 | 1 | 2.0 | 1 | 0 | 2.32 | 2.3 | 0.51 | 4.47 | −2.17 | |||
Archanorema ΣNu = 484 ΣLu = 180.8 km | 1 | 361 | 3.52 | 541 | −180 | 98.65 | 0.27 | 1.90 | 0.27 | 0.0 | ||
2 | 94 | 3.84 | 154 | −60 | 40.32 | 0.43 | 1.87 | 0.51 | −0.00 | |||
3 | 22 | 4.27 | 44 | −22 | 19.31 | 0.88 | 2.05 | 0.98 | −0.10 | |||
4 | 4 | 5.5 | 12 | −8 | 9.7 | 2.43 | 2.76 | 1.85 | −0.05 | |||
5 | 2 | 2 | 4 | −2 | 6.98 | 3.49 | 1.44 | 3.52 | −0.03 | |||
6 | 1 | 2 | 1 | 0 | 5.84 | 5.84 | 1.67 | 6.69 | −0.85 | |||
Drimarorema ΣNu = 233 ΣLu = 98.4 km | 1 | 179 | 3.86 | 222 | −43 | 55.7 | 0.31 | 3.14 | 0.31 | 0.0 | ||
2 | 42 | 4.26 | 58 | −16 | 20.24 | 0.48 | 1.55 | 0.97 | −0.49 | |||
3 | 9 | 4.67 | 15 | −6 | 6.72 | 0.75 | 1.55 | 3.06 | −2.31 | |||
4 | 2 | 4.5 | 4 | −2 | 3.43 | 1.72 | 2.30 | 9.60 | −7.88 | |||
5 | 1 | 2.0 | 1 | 0 | 12.31 | 12.31 | 7.18 | 30.14 | −17.83 | |||
Xirias ΣNu = 452 ΣLu = 228.5 km | 1 | 346 | 4.33 | 352 | −6 | 116.07 | 0.34 | 2.58 | 0.34 | 0.0 | ||
2 | 81 | 4.27 | 81 | 0 | 60.43 | 0.75 | 2.22 | 0.88 | −0.13 | |||
3 | 20 | 4.05 | 19 | +1 | 23.81 | 1.19 | 1.60 | 2.26 | −1.07 | |||
4 | 4 | 5.0 | 4 | 0 | 15.57 | 3.89 | 3.27 | 5.84 | −1.95 | |||
5 | 1 | 4.0 | 1 | 0 | 12.6 | 12.60 | 3.24 | 15.07 | −2.57 |
Basin Pairs (South/North) | Roustianitis/Archanorema | Gorgopotamos/Drimarorema | Assopos/Xirias |
---|---|---|---|
Giandotti empirical formula results (h) | 2.32/3.05 | 2.11/2.29 | 2.92/3.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psomiadis, E.; Charizopoulos, N.; Soulis, K.X.; Efthimiou, N. Investigating the Correlation of Tectonic and Morphometric Characteristics with the Hydrological Response in a Greek River Catchment Using Earth Observation and Geospatial Analysis Techniques. Geosciences 2020, 10, 377. https://doi.org/10.3390/geosciences10090377
Psomiadis E, Charizopoulos N, Soulis KX, Efthimiou N. Investigating the Correlation of Tectonic and Morphometric Characteristics with the Hydrological Response in a Greek River Catchment Using Earth Observation and Geospatial Analysis Techniques. Geosciences. 2020; 10(9):377. https://doi.org/10.3390/geosciences10090377
Chicago/Turabian StylePsomiadis, Emmanouil, Nikos Charizopoulos, Konstantinos X. Soulis, and Nikolaos Efthimiou. 2020. "Investigating the Correlation of Tectonic and Morphometric Characteristics with the Hydrological Response in a Greek River Catchment Using Earth Observation and Geospatial Analysis Techniques" Geosciences 10, no. 9: 377. https://doi.org/10.3390/geosciences10090377
APA StylePsomiadis, E., Charizopoulos, N., Soulis, K. X., & Efthimiou, N. (2020). Investigating the Correlation of Tectonic and Morphometric Characteristics with the Hydrological Response in a Greek River Catchment Using Earth Observation and Geospatial Analysis Techniques. Geosciences, 10(9), 377. https://doi.org/10.3390/geosciences10090377