Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus
<p>Morphological characteristics of <span class="html-italic">T. verruculosus</span> SJ9. (<b>a</b>) Colony morphology of strain SJ9 on PDA plate. (<b>b</b>) Identification of strain SJ9 based on phylogenomic analyses. The phylogenetic tree reveals that strain SJ9 is closely related to <span class="html-italic">T. verruculosus</span>. The red star indicates the SJ9 strain.</p> "> Figure 2
<p>Clusters of orthologous groups of proteins (KOG) function classification of proteins in <span class="html-italic">T. verruculosus</span> SJ9. The x-axis shows the function of the class and the y-axis shows the number of matching genes. KOG functional classification is divided into 26 groups classified as A–Z, and each group has its own function. Different colors with their names and number of genes are also mentioned in the figure.</p> "> Figure 3
<p>Gene Ontology (GO) functional annotation of <span class="html-italic">T. verruculosus</span> SJ9. (<b>a</b>) Biological Process: Biological processes accomplished through multiple molecular activities. (<b>b</b>) Cellular Component: The location of the cellular structure in which the gene product performs its function. (<b>c</b>) Molecular Function: Activity of individual gene products (including proteins and RNA) or complexes of multiple gene products at the molecular level.</p> "> Figure 4
<p>Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation of the <span class="html-italic">T. verruculosus</span> SJ9 genome. The figure indicates the number of genes in the major categories and their names and associated subcategory divisions. The x-axis indicates the scale from a few genes to 1000 genes. KEGG Functions The annotations are grouped into six major categories: cellular processes, environmental information processing, genetic information, human diseases, metabolism, and organismal systems. There are 40 subcategories. Each subcategory is represented by a different color.</p> "> Figure 5
<p>The Non-Redundant Protein Database functional annotation of the <span class="html-italic">T. verruculosus</span> SJ9 genome. In this figure, the x-axis represents the top 20 of 1–20 species, while the y-axis represents the number of matching genes between species on a scale of up to 2500. NR annotations were split into 20 classes. The different colors depict the top 20 species, their names, and values.</p> "> Figure 6
<p>Core and pan gene orthological petals diagram of GXJ.SJ9, 11CN.20.091, W13939, ATCC.10500, CIB, IBT.11181, PMI.201, and TS63.9.</p> "> Figure 7
<p>Species evolutionary analysis of SJ9 (<b>a</b>) <span class="html-italic">T. verruculosus</span> TS63-9, <span class="html-italic">T. marneffei</span> 11CN-20-091, <span class="html-italic">T. rugulosus</span> W13939, <span class="html-italic">T. stipitatus</span> ATCC 10500, <span class="html-italic">T. amestolkiae</span> CIB, <span class="html-italic">T. atroroseus</span> IBT 11181, <span class="html-italic">T. proteolyticus</span> PMI_201, and <span class="html-italic">T. verruculosus</span> GXJ-SJ9 phylogenetic tree among species. (<b>b</b>) Plot of ANI correlation coefficients for SJ9 and seven other reference genomes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures for Isolating and Identifying T. verruculosus SJ9
2.2. Biodegradation of Three Antibiotics
2.3. Extraction of Genome DNA, Library Construction, Sequencing, and Assembly
2.4. Genomic Prediction and Genome Annotation
2.5. Annotation and PCR Validation of Antibiotic Degrading Enzymes
2.6. Procedures and Tools in Comparative Genomic Analysis
3. Results
3.1. Isolation and Characterization of T. verruculosus SJ9
3.2. Genome-Wide Analysis
3.2.1. Genome Assembly and Characteristics of Genomic Analysis
3.2.2. Gene Prediction
3.3. Gene Functional Analysis
3.3.1. Gene Functional Annotations
3.3.2. Prediction of Secreted Proteins, Secondary Metabolic Gene Clusters, and CYP450
3.3.3. Pathogenicity Analysis
3.3.4. Circular Whole-Genome Map of T. verruculosus SJ9
3.4. Common Antibiotic-Degrading Enzymes Annotated to T. verruculosus SJ9
Degradation Enzyme | Antibiotics | Match Gene Number | References |
---|---|---|---|
Laccase | Fluoroquinolones, tetracyclines | 9 | [71,72,73] |
Manganese peroxidase | Fluoroquinolones, tetracyclines | 3 | [74] |
Glucanase | Fluoroquinolones | 1 | [75] |
Ligninase | Fluoroquinolones, tetracyclines | 3 | [22,71,73] |
Cytochrome P450 | Fluoroquinolones | 122 | [73] |
N-acetyltransferase | Fluoroquinolones | 32 | [76] |
Nitrate reductase | Fluoroquinolones | 4 | [76] |
Nitrite reductase | Fluoroquinolones | 2 | [66] |
Glutathione S-transferase | Tetracyclines | 21 | [67] |
Erythromycin esterase | Macrocyclic lactones | 1 | [77,78,79,80] |
2′-phosphotransferase | Macrocyclic lactones | 1 | [29,30,81] |
Glycosyltransferase | Macrocyclic lactones | 37 | [28,82,83] |
3.5. Comparative Genomic Analysis
3.5.1. Core and Pan-Genomic Analysis
3.5.2. Analysis of Species Evolution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.; Liu, Y.; Guo, R.; Chen, J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef]
- Manzetti, S.; Ghisi, R. The environmental release and fate of antibiotics. Mar. Pollut. Bull. 2014, 79, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.S.; Yin, G.Y.; Liu, M.; Chen, C.; Jiang, Y.H.; Hou, L.J.; Zheng, Y.L. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 2021, 777, 146009. [Google Scholar] [CrossRef] [PubMed]
- Gaballah, M.S.; Guo, J.; Sun, H.; Aboagye, D.; Sobhi, M.; Muhmood, A.; Dong, R. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresour. Technol. 2021, 333, 125069. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China—A systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Zhu, L.; Wang, J.; Xing, B. Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. Crit. Rev. Environ. Sci. Technol. 2020, 52, 847–889. [Google Scholar] [CrossRef]
- Escher, B.I.; Bürki, T.; Lienert, J. Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci. Technol. 2007, 56, 87–96. [Google Scholar]
- Pan, Z.; Yang, S.; Zhao, L.; Li, X.; Weng, L.; Sun, Y.; Li, Y. Temporal and spatial variability of antibiotics in agricultural soils from Huang-Huai-Hai Plain, northern China. Chemosphere 2021, 272, 129803. [Google Scholar] [CrossRef]
- Li, Y.J.; Chen, H.B.; Wang, Y.Z.; Yang, Z.L.; Zhang, H.Y. Efficient biodegradation of chlortetracycline in high concentration from strong-acidity pharmaceutical residue with degrading fungi. J. Hazard. Mater. 2022, 424, 127671. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Z.; Deng, L.; Niu, D.; Huhetaoli; Li, Z.; Dong, L.; Zhang, J.; Zhang, R.; Li, C. Degradation of Erythromycin by a Novel Fungus, Penicillium oxalicum RJJ-2, and the Degradation Pathway. Waste Biomass Valor. 2021, 12, 4513–4523. [Google Scholar] [CrossRef]
- Ren, J.; Deng, L.; Niu, D.; Wang, Z.; Fan, B.; Taoli, H.; Li, Z.; Zhang, J.; Li, C. Isolation and identification of a novel erythromycin-degrading fungus, Curvularia sp. RJJ-5, and its degradation pathway. FEMS Microbiol. Lett. 2021, 368, fnaa215. [Google Scholar] [CrossRef] [PubMed]
- Ahumada-Rudolph, R.; Novoa, V.; Becerra, J.; Cespedes, C.; Cabrera-Pardo, J.R. Mycoremediation of oxytetracycline by marine fungi mycelium isolated from salmon farming areas in the south of Chile. Food Chem. Toxicol. 2021, 152, 112198. [Google Scholar] [CrossRef]
- Lucas, D.; Badia-Fabregat, M.; Vicent, T.; Caminal, G.; Rodríguez-Mozaz, S.; Balcázar, J.L.; Barceló, D. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere 2016, 152, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Wang, S.Z.; Wang, J.L. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Appl. Microbiol. Biotechnol. 2018, 102, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Falade, A.O.; Nwodo, U.U.; Iweriebor, B.C.; Green, E.; Mabinya, L.V.; Okoh, A.I. Lignin peroxidase functionalities and prospective applications. Mycobiology 2017, 6, e00394. [Google Scholar] [CrossRef]
- Lueangjaroenkit, P.; Teerapatsakul, C.; Sakka, K.; Sakka, M.; Kimura, T.; Kunitake, E.; Chitradon, L. Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System. Mycobiology 2019, 47, 217–229. [Google Scholar] [CrossRef]
- de Cazes, M.; Belleville, M.P.; Petit, E.; Salomo, M.; Bayer, S.; Czaja, R.; De Gunzburg, J.; Sanchez-Marcanoa, J. Erythromycin degradation by esterase (EreB) in enzymatic membrane reactors. Biochem. Eng. J. 2016, 114, 73–81. [Google Scholar] [CrossRef]
- Ricken, B.; Kolvenbach, B.A.; Bergesch, C.; Benndorf, D.; Kroll, K.; Strnad, H.; Vlcek, C.; Adaixo, R.; Hammes, F.; Shahgaldian, P.; et al. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci. Rep. 2017, 7, 15783. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Hata, T.; Kawai, S.; Okamura, H.; Nishida, T. Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. Bioresour. Technol. 2012, 103, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.P.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L.X.; Shen, Y.; You, C.P.; Guan, Z.B.; Liao, X.R. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. J. Hazard. Mater. 2020, 382, 121084. [Google Scholar] [CrossRef]
- Wen, X.H.; Jia, Y.N.; Li, J.X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere 2009, 75, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.H.; Jia, Y.N.; Li, J.X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177, 924–928. [Google Scholar] [CrossRef]
- Sun, X.M.; Leng, Y.F.; Wan, D.J.; Chang, F.Y.; Huang, Y.; Li, Z.; Xiong, W.; Wang, J. Transformation of Tetracycline by Manganese Peroxidase from Phanerochaete chrysosporium. Molecules 2021, 26, 6803. [Google Scholar] [CrossRef]
- Becker, D.; Della Giustina, S.V.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barceló, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—Degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef]
- Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 2011, 22, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.; Cundliffe, E. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 1991, 108, 55–62. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zheng, X.C.; Hu, Q.W.; Zheng, Y.G. Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism. Res. Microbiol. 2015, 166, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, N.; Katayama, J.; Sasatsu, M. A transposon carrying the gene mphB for macrolide 2′-phosphotransferase II. FEMS Microbiol. Lett. 2000, 192, 175–178. [Google Scholar] [CrossRef]
- Rose, S.; Desmolaize, B.; Jaju, P.; Wilhelm, C.; Warrass, R.; Douthwaite, S. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida. Antimcrob Agents Chemother. 2012, 56, 3664–3669. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-H.; Lee, W.-H.; Lee, C.-M.; Sim, J.-S.; Won, S.Y.; Han, S.-R.; Kwon, S.-J.; Kim, J.S.; Kim, C.-K.; Oh, T.-J. De novo transcriptome sequence of Senna tora provides insights into anthraquinone biosynthesis. PLoS ONE 2020, 15, e0225564. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, J.; Shi, W.; Du, L.; Sun, Y.; Zhan, W.; Jiang, J.-F.; Wang, Q.; Zhang, B.; Ji, P.; et al. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell 2020, 182, 1328–1340.e1313. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, T.; Kang, W.; Tang, D.; Feng, Q. Pathogenic and antimicrobial resistance genes in Streptococcus oralis strains revealed by comparative genome analysis. Genomics 2020, 112, 3783–3793. [Google Scholar] [CrossRef] [PubMed]
- Ardui, S.; Ameur, A.; Vermeesch, J.R.; Hestand, M.S. Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic Acids Res. 2018, 46, 2159–2168. [Google Scholar] [CrossRef]
- Fang, X.; Qin, K.; Li, S.; Han, S.; Zhu, T.; Fang, X.; Qin, K. Whole genome sequence of Diaporthe capsici, a new pathogen of walnut blight. Genomics 2020, 112, 3751–3761. [Google Scholar] [CrossRef] [PubMed]
- Reiner, J.; Pisani, L.; Qiao, W.; Singh, R.; Yang, Y.; Shi, L.; Khan, W.A.; Sebra, R.; Cohen, N.; Babu, A.; et al. Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet–Biedl Syndrome 9 (BBS9) deletion. NPJ Genom. Med. 2018, 3, 1–5. [Google Scholar] [CrossRef]
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef]
- Saha, S.; Bridges, S.; Magbanua, Z.V.; Peterson, D.G. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008, 36, 2284–2294. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Gardner, P.P.; Daub, J.; Tate, J.G.; Nawrocki, E.P.; Kolbe, D.L.; Lindgreen, S.; Wilkinson, A.C.; Finn, R.D.; Griffiths-Jones, S.; Eddy, S.R.; et al. Rfam: Updates to the RNA families database. Nucleic Acids Res. 2009, 37, D136–D140. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, E.P.; Kolbe, D.L.; Eddy, S.R. Infernal 1.0: Inference of RNA alignments. Bioinformatics 2009, 25, 1335–1337. [Google Scholar] [CrossRef]
- Cui, X.; Lu, Z.; Wang, S.; Jing-Yan Wang, J.; Gao, X. CMsearch: Simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics 2016, 32, i332–i340. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, C.; Hsu, C.-H.; Chen, Q.-R.; Niu, K.; Komatsoulis, G.A.; Meerzaman, D. OmicCircos: A Simple-to-Use R Package for the Circular Visualization of Multidimensional Omics Data. Cancer Inform. 2014, 13, 13–20. [Google Scholar] [CrossRef]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Vilella, A.J.; Severin, J.; Ureta-Vidal, A.; Heng, L.; Durbin, R.; Birney, E. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2009, 19, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Fontes, D.I.; Bezerra, T.S.; de Freitas, E.P.B.; de Oliveira, M.N.; Silva, S.C.; Silva, S.Y.S.; Albino, U.B.; Santos, D.A. Production of cellulases from Amazonian fungi and their application in babassu cellulose hydrolysis. Int. Biodeterior. Biodegrad. 2023, 182, 105631. [Google Scholar] [CrossRef]
- Gao, R.; Hao, D.C.; Hu, W.L.; Song, S.; Li, S.Y.; Ge, G.B. Transcriptome profile of polycyclic aromatic hydrocarbon-degrading fungi isolated from Taxus rhizosphere. Curr. Sci. 2019, 116, 1218–1228. [Google Scholar] [CrossRef]
- Aharwar, A.; Parihar, D.K. Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification. Biocatal. Agric. Biotechnol. 2019, 18, 101014. [Google Scholar] [CrossRef]
- Sakai, K.; Asami, Y.; Chiba, T.; Suga, T.; Nonaka, K.; Iwatsuki, M.; Ōmura, S.; Shiomi, K. Oxoberkedienoic acid: A new octadienoic acid derivative isolated from Talaromyces verruculosus using a chemical screening system. J. Gen. Appl. Microbiol. 2018, 64, 136–138. [Google Scholar] [CrossRef]
- Hu, L.; Taujale, R.; Liu, F.; Song, J.; Yin, Q.; Zhang, Y.; Guo, J.; Yin, Y. Draft genome sequence of Talaromyces verruculosus (“Penicillium verruculosum”) strain TS63-9, a fungus with great potential for industrial production of polysaccharide-degrading enzymes. J. Biotechnol. 2016, 219, 5–6. [Google Scholar] [CrossRef]
- Miao, F.; Yang, R.; Chen, D.-D.; Wang, Y.; Qin, B.-F.; Yang, X.-J.; Zhou, L. Isolation, Identification and Antimicrobial Activities of Two Secondary Metabolites of Talaromyces verruculosus. Molecules 2012, 17, 14091–14098. [Google Scholar] [CrossRef]
- Oduro-Mensah, D.; Ocloo, A.; Lowor, S.T.; Bonney, E.Y.; Okine, L.K.N.A.; Adamafio, N.A. Isolation and characterisation of theobromine-degrading filamentous fungi. Micro Res. 2018, 206, 16–24. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sinha, K.; Sil, P.C. Cytochrome P450s: Mechanisms and Biological Implications in Drug Metabolism and its Interaction with Oxidative Stress. Curr. Drug Metab. 2014, 15, 719–742. [Google Scholar] [PubMed]
- Yin, J.; Jiang, L.; Wang, L.; Han, X.; Guo, W.; Li, C.; Zhou, Y.; Denton, M.; Zhang, P. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world’s oldest crops. Mol. Ecol. Resour. 2021, 21, 68–77. [Google Scholar] [CrossRef]
- Demarche, P.; Junghanns, C.; Nair, R.R.; Agathos, S.N. Harnessing the power of enzymes for environmental stewardship. Biotechnol. Adv. 2012, 30, 933–953. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, K.; Faramarzi, M.A.; Mahvi, A.H.; Gholami, M.; Esrafili, A.; Forootanfar, H.; Farzadkia, M. Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. Int. Biodeterior. Biodegard. 2015, 97, 107–114. [Google Scholar] [CrossRef]
- Schwarz, J.; Aust, M.O.; Thiele-Bruhn, S. Metabolites from fungal laccase-catalysed transformation of sulfonamides. Chemosphere 2010, 81, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Lin, X.D.; Ma, W.J.; Huo, M.X.; Tian, X.Y.; Wang, H.Y.; Huang, L.L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. Sci. Total Environ. 2024, 912, 169598. [Google Scholar] [CrossRef]
- Rusch, M.; Spielmeyer, A.; Zorn, H.; Hamscher, G. Biotransformation of ciprofloxacin by Xylaria longipes: Structure elucidation and residual antibacterial activity of metabolites. Appl. Microbiol. Biotechnol. 2018, 102, 8573–8584. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Choung, Y.-K. Degradation of Antibiotics (Tetracycline, Sulfathiazole, Ampicillin) Using Enzymes of Glutathion S-Transferase. Hum. Ecol. Risk Assess. 2007, 13, 1147–1155. [Google Scholar] [CrossRef]
- Morar, M.; Pengelly, K.; Koteva, K.; Wright, G.D. Mechanism and Diversity of the Erythromycin Esterase Family of Enzymes. Biochemistry 2012, 51, 1740–1751. [Google Scholar] [CrossRef]
- Noguchi, N.; Emura, A.; Matsuyama, H.; O’Hara, K.; Sasatsu, M.; Kono, M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2′-phosphotransferase I in Escherichia coli. Antimicrob. Agents Chemother. 1995, 39, 2359–2363. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, K.; Kanda, T.; Ohmiya, K.; Ebisu, T.; Kono, M. Purification and characterization of macrolide 2′-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob. Agents Chemother. 1989, 33, 1354–1357. [Google Scholar] [CrossRef]
- Tadic, D.; Gramblicka, M.; Mistrik, R.; Flores, C.; Piña, B.; Bayona, J.M. Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L). Environ. Pollut. 2020, 260, 114002. [Google Scholar] [CrossRef] [PubMed]
- Llorca, M.; Rodríguez-Mozaz, S.; Couillerot, O.; Panigoni, K.; de Gunzburg, J.; Bayer, S.; Czaja, R.; Barceló, D. Identification of new transformation products during enzymatic treatment of tetracycline and erythromycin antibiotics at laboratory scale by an on-line turbulent flow liquid-chromatography coupled to a high resolution mass spectrometer LTQ-Orbitrap. Chemosphere 2015, 119, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Liu, C.X.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. Chemosphere 2018, 195, 146–155. [Google Scholar] [CrossRef]
- Prieto, A.; Möder, M.; Rodil, R.; Adrian, L.; Marco-Urrea, E. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour. Technol. 2011, 102, 10987–10995. [Google Scholar] [CrossRef]
- Cvancarová, M.; Moeder, M.; Filipová, A.; Cajthaml, T. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi—Metabolites, enzymes and residual antibacterial activity. Chemosphere 2015, 136, 311–320. [Google Scholar] [CrossRef]
- Manasfi, R.; Chiron, S.; Montemurro, N.; Perez, S.; Brienza, M. Biodegradation of fluoroquinolone antibiotics and the climbazole fungicide by Trichoderma species. Environ. Sci. Pollut. Res. Int. 2020, 27, 23331–23341. [Google Scholar] [CrossRef] [PubMed]
- Arthur, M.; Autissier, D.; Courvalin, P. Analysis of the nucleotide sequence of the ereB gene encoding the erythromydn esterase type II. Nucleic Acids Res. 1986, 14, 4987–4999. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.L.; Yu, H.; Qi, J.J.; Jiang, P.; Sun, B.Q.; Cui, J.S.; Ou, C.C.; Chang, W.S.; Hu, Q.H. ErmF and ereD Are Responsible for Erythromycin Resistance in Riemerella anatipestifer. PLoS ONE 2015, 10, e0131058. [Google Scholar] [CrossRef]
- Ounissi, H.; Courvalin, P. Nucleotide sequence of the gene ereA encoding the erythromycin esterase in Escherichia coli. Gene 1985, 35, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.S.; Warrass, R.; Douthwaite, S. Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida. J. Antimicrob. Chemother. 2015, 70, 420–423. [Google Scholar] [CrossRef]
- Hernandez, C.; Olano, C.; Mendez, C.; Salas, J.A. Characterization of a Streptomyces antibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin inactivation. Gene 1993, 134, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Quiros, L.M.; Carbajo, R.J.; Salas, J.A. Inversion of the anomeric configuration of the transferred sugar during inactivation of the macrolide antibiotic oleandomycin catalyzed by a macrolide glycosyltransferase. FEBS lett. 2000, 476, 186–189. [Google Scholar] [CrossRef]
- Santos, P.E.; Piontelli, E.; Shea, Y.R.; Galluzzo, M.L.; Holland, S.M.; Zelazko, M.E.; Rosenzweig, S.D. Penicillium piceum infection: Diagnosis and successful treatment in chronic granulomatous disease. Med. Mycol. 2006, 44, 749–753. [Google Scholar] [CrossRef]
- Bladt, T.T.; Frisvad, J.C.; Knudsen, P.B.; Larsen, T.O. Anticancer and Antifungal Compounds from Aspergillus, Penicillium and Other Filamentous Fungi. Molecules 2013, 18, 11338–11376. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.-M.; Li, J.; Jiang, C.-X.; Shi, Y.-P.; Di, D.-L.; Crews, P.; Wu, Q.-X. The Bioactive Secondary Metabolites from Talaromyces species. Nat. Prod. Bioprospect. 2016, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Salvatore, M.M.; Andolfi, A. Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Mar. Drugs 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Bellavita, R.; Falanga, A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023, 13, 1021. [Google Scholar] [CrossRef]
- Belancic, A.; Scarpa, J.; Peirano, A.; Díaz, R.; Steiner, J.; Eyzaguirre, J. Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. J. Biotechnol. 1995, 41, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C.; Yilmaz, N.; Thrane, U.; Rasmussen, K.B.; Houbraken, J.; Samson, R.A. Talaromyces atroroseus, a New Species Efficiently Producing Industrially Relevant Red Pigments. PLoS ONE 2013, 8, e84102. [Google Scholar] [CrossRef]
- Fahima, T.; Henis, Y. Quantitative assessment of the interaction between the antagonistic fungus Talaromyces flavus and the wilt pathogen Verticillium dahliae on eggplant roots. Plant Soil 1995, 176, 129–137. [Google Scholar] [CrossRef]
- Inglis, G.D.; Kawchuk, L.M. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can. J. Microbiol. 2002, 48, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahim, I.R.; Abo-Elyousr, K.A.M. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol. Res. 2018, 212, 1–9. [Google Scholar] [CrossRef]
- Khalmuratova, I.; Kim, H.; Nam, Y.J.; Oh, Y.; Jeong, M.J.; Choi, H.R.; You, Y.H.; Choo, Y.S.; Lee, I.J.; Shin, J.H.; et al. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea. Mycobiology 2015, 43, 373–383. [Google Scholar] [CrossRef]
- Ding, H.Y.; Wu, Y.X.; Zou, B.C.; Lou, Q.; Zhang, W.H.; Zhong, J.Y.; Lu, L.; Dai, G.F. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J. Hazard. Mater. 2016, 307, 350–358. [Google Scholar] [CrossRef]
- Alsadik, A.; Athamneh, K.; Yousef, A.F.; Shah, I.; Ashraf, S.S. Efficient Degradation of 2-Mercaptobenzothiazole and Other Emerging Pollutants by Recombinant Bacterial Dye-Decolorizing Peroxidases. Biomolecules 2021, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Athamneh, K.; Alneyadi, A.; Alsadik, A.; Wong, T.S.; Ashraf, S.S. Efficient degradation of various emerging pollutants by wild type and evolved fungal DyP4 peroxidases. PLoS ONE 2022, 17, e0262492. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Freeman, J.P.; Lay, J.O.; Beger, R.D.; Williams, A.J.; Sutherland, J.B. Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol. Lett. 1999, 177, 131–135. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Freeman, J.P.; Lay, J.O., Jr.; Moody, J.D.; Williams, A.J.; Beger, R.D.; Sutherland, J.B. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J. Ind. Microbiol. Biotechnol. 2001, 26, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Parshikov, I.A.; Freeman, J.P.; Lay, J.O., Jr.; Beger, R.D.; Williams, A.J.; Sutherland, J.B. Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl. Environ. Microbiol. 2000, 66, 2664–2667. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Heinze, T.M.; Moody, J.D.; Freeman, J.P.; Williams, A.J.; Sutherland, J.B. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl. Microbiol. Biotechnol. 2001, 56, 474–477. [Google Scholar] [CrossRef]
- Kim, D.W.; Heinze, T.M.; Kim, B.S.; Schnackenberg, L.K.; Woodling, K.A.; Sutherland, J.B. Modification of Norfloxacin by a Microbacterium sp Strain Isolated from a Wastewater Treatment Plant. Appl. Environ. Microbiol. 2011, 77, 6100–6108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rosazza, J.P.; Reese, C.P.; Chang, H.Y.; Nowakowski, M.A.; Kiplinger, J.P. Microbial models of soil metabolism: Biotransformations of danofloxacin. J. Ind. Microbiol. Biotechnol. 1997, 19, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.H.; Zhang, C.F.; Chen, X.; Li, X.; Ren, N.Q.; Ho, S.H. Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. Chin. Chem. Lett. 2023, 34, 107727. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Contigs | 30 |
Max_Length (bp) | 8,098,124 |
N50_Length (bp) | 4,534,389 |
Total length (bp) | 40,609,410 |
GC (%) | 45.4 |
Genome size (bp) | 40,609,410 |
Gene number | 8171 |
Gene total length (bp) | 11,257,272 |
Gene average length (bp) | 1378 |
Gene length/Genome (%) | 27.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Wu, X.; Zhang, C.; Tang, Y.; Zhou, F.; Zhang, X.; Fan, S. Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus. Genes 2024, 15, 1643. https://doi.org/10.3390/genes15121643
Fu J, Wu X, Zhang C, Tang Y, Zhou F, Zhang X, Fan S. Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus. Genes. 2024; 15(12):1643. https://doi.org/10.3390/genes15121643
Chicago/Turabian StyleFu, Jing, Xiaoqing Wu, Chi Zhang, Yuhan Tang, Fangyuan Zhou, Xinjian Zhang, and Susu Fan. 2024. "Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus" Genes 15, no. 12: 1643. https://doi.org/10.3390/genes15121643
APA StyleFu, J., Wu, X., Zhang, C., Tang, Y., Zhou, F., Zhang, X., & Fan, S. (2024). Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus. Genes, 15(12), 1643. https://doi.org/10.3390/genes15121643