Identification and Evolution Analysis of the Genes Involved in the 20-Hydroxyecdysone Metabolism in the Mud Crab, Scylla paramamosain: A Preliminary Study
<p>Tertiary structural modelling of 20E metabolism proteins.</p> "> Figure 2
<p>Multiple sequence alignment analysis. Sequences with 100% similarity are highlighted with a black background, sequences with over 75% similarity are highlighted with a dark gray background, and sequences with over 50% similarity are highlighted with a light gray background. (<b>A</b>) Multiplex protein sequences alignment of Nvds. (<b>B</b>) Multiplex protein sequences alignment of CYP315a1. (<b>C</b>) Multiplex protein sequences alignment of CYP307a1. (<b>D</b>) Multiplex protein sequences alignment of CYP302a1. (<b>E</b>) Multiplex protein sequences alignment of CYP18a1.</p> "> Figure 2 Cont.
<p>Multiple sequence alignment analysis. Sequences with 100% similarity are highlighted with a black background, sequences with over 75% similarity are highlighted with a dark gray background, and sequences with over 50% similarity are highlighted with a light gray background. (<b>A</b>) Multiplex protein sequences alignment of Nvds. (<b>B</b>) Multiplex protein sequences alignment of CYP315a1. (<b>C</b>) Multiplex protein sequences alignment of CYP307a1. (<b>D</b>) Multiplex protein sequences alignment of CYP302a1. (<b>E</b>) Multiplex protein sequences alignment of CYP18a1.</p> "> Figure 2 Cont.
<p>Multiple sequence alignment analysis. Sequences with 100% similarity are highlighted with a black background, sequences with over 75% similarity are highlighted with a dark gray background, and sequences with over 50% similarity are highlighted with a light gray background. (<b>A</b>) Multiplex protein sequences alignment of Nvds. (<b>B</b>) Multiplex protein sequences alignment of CYP315a1. (<b>C</b>) Multiplex protein sequences alignment of CYP307a1. (<b>D</b>) Multiplex protein sequences alignment of CYP302a1. (<b>E</b>) Multiplex protein sequences alignment of CYP18a1.</p> "> Figure 2 Cont.
<p>Multiple sequence alignment analysis. Sequences with 100% similarity are highlighted with a black background, sequences with over 75% similarity are highlighted with a dark gray background, and sequences with over 50% similarity are highlighted with a light gray background. (<b>A</b>) Multiplex protein sequences alignment of Nvds. (<b>B</b>) Multiplex protein sequences alignment of CYP315a1. (<b>C</b>) Multiplex protein sequences alignment of CYP307a1. (<b>D</b>) Multiplex protein sequences alignment of CYP302a1. (<b>E</b>) Multiplex protein sequences alignment of CYP18a1.</p> "> Figure 2 Cont.
<p>Multiple sequence alignment analysis. Sequences with 100% similarity are highlighted with a black background, sequences with over 75% similarity are highlighted with a dark gray background, and sequences with over 50% similarity are highlighted with a light gray background. (<b>A</b>) Multiplex protein sequences alignment of Nvds. (<b>B</b>) Multiplex protein sequences alignment of CYP315a1. (<b>C</b>) Multiplex protein sequences alignment of CYP307a1. (<b>D</b>) Multiplex protein sequences alignment of CYP302a1. (<b>E</b>) Multiplex protein sequences alignment of CYP18a1.</p> "> Figure 3
<p>Evolutionary tree. (<b>A</b>) The phylogenetic tree of Neverland in different species. The tree is constructed using the Neighbor-Joining (NJ) method. The size of the circle on the branch represents the bootstrap support rate. (<b>B</b>) The phylogenetic tree of P450 family genes involved in 20E metabolism. The trees is constructed using the Neighbor-Joining (NJ) method. The size of the circle on the branch represents the bootstrap support rate.</p> "> Figure 3 Cont.
<p>Evolutionary tree. (<b>A</b>) The phylogenetic tree of Neverland in different species. The tree is constructed using the Neighbor-Joining (NJ) method. The size of the circle on the branch represents the bootstrap support rate. (<b>B</b>) The phylogenetic tree of P450 family genes involved in 20E metabolism. The trees is constructed using the Neighbor-Joining (NJ) method. The size of the circle on the branch represents the bootstrap support rate.</p> "> Figure 4
<p>The results of the relative expression of genes in different tissues. Note: Hep: hepatopancreas; YO: Y-organ; Mu: muscle; Gill: gill; Cu: cuticle; TG: thoracic ganglion; He: hemocytes; OV: ovary; Te: testes. “*” indicates significant difference between the same or related tissues in different gender (<span class="html-italic">p</span> < 0.05); “**” indicates extremely significant difference between the same or related tissues in different gender (<span class="html-italic">p</span> < 0.01); “ns” indicate no significant difference. (<b>A</b>–<b>E</b>) Different lowercase or uppercase letters indicate significant differences among the different tissues in the same gender.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Samples Collection
2.3. Genes Identification
2.4. The Extraction of Total RNA
2.5. Primer Design
2.6. Multiple Sequence Alignment Analysis
2.7. Evolution Analysis
2.8. Tissue Expression Analysis
2.9. Statistical Analysis
3. Results
3.1. Presence and Basic Information of Genes Related to Molting Hormones in Crustaceans
3.2. Secondary and Tertiary Structure Prediction of 20E Metabolism Proteins
3.2.1. Secondary Structure Prediction of 20E Metabolism Proteins
3.2.2. Tertiary Structural Modelling of 20E Metabolism Proteins
3.3. Evolutionary Analysis of Gene Families
3.3.1. Multiple Sequence Alignment
3.3.2. Evolutionary Tree
3.4. The Results of the Relative Expression of Genes in Different Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, L.; Wang, E.; Zhang, B.; Xu, X.; Li, G. Expression profiling of juvenile hormone and ecdysteroid biosynthesis genes during the development and reproduction of Phytoseiulus persimilis. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Savchenko, R.G.; Veskina, N.A.; Odinokov, V.N.; Benkovskaya, G.V.; Parfenova, L.V. Ecdysteroids: Isolation, chemical transformations, and biological activity. Phytochem. Rev. 2022, 21, 1445–1486. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Chen, X.; Chen, Y.; Yue, W.; Wang, J.; Wang, C. Dynamic analysis of ecdysteroid hormone content and molting related genes expression in the molting cycle of Chinese mitten crab (Eriocheir sinensis). J. Agric. Biotechnol. 2018, 26, 150–158. [Google Scholar]
- Huber, R.; Hoppe, W. Zur Chemie des Ecdysons, VII: Die Kristall-und Molekülstrukturanalyse des Insektenverpuppungshormons Ecdyson mit der automatisierten Faltmolekülmethode. Chem. Berichte 1965, 98, 2403–2424. [Google Scholar] [CrossRef]
- Okumura, T.; Kamba, M.; Sonobe, H.; Aida, K. In vitro secretion of ecdysteroid by Y-organ during molt cycle and evidence for secretion of 3-dehydroecdysone in the giant freshwater prawn, Macrobrachium rosenbergii (Crustacea: Decapoda: Caridea). Invertebr. Reprod. Dev. 2003, 44, 1–8. [Google Scholar] [CrossRef]
- Sumiya, E.; Ogino, Y.; Toyota, K.; Miyakawa, H.; Miyagawa, S.; Iguchi, T. Neverland regulates embryonic moltings through the regulation of ecdysteroid synthesis in the water flea Daphnia magna, and may thus act as a target for chemical disruption of molting. J. Appl. Toxicol. 2016, 36, 1476–1485. [Google Scholar] [CrossRef]
- Yoshiyama, T.; Namiki, T.; Mita, K.; Kataoka, H.; Niwa, R. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 2006, 133, 2565–2574. [Google Scholar] [CrossRef]
- Mason, J.R.; Cammack, R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 1992, 46, 277–305. [Google Scholar] [CrossRef]
- Richards, G. The radioimmune assay of ecdysteroid titres in Drosophila melanogaster. Mol. Cell. Endocrinol. 1981, 21, 181–197. [Google Scholar] [CrossRef]
- Warren, J.T.; Petryk, A.; Marqués, G.; Jarcho, M.; Parvy, J.-P.; Dauphin-Villemant, C.; O’Connor, M.B.; Gilbert, L.I. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2002, 99, 11043–11048. [Google Scholar] [CrossRef]
- Zhu, F.; Fu, Y.; Mu, C.; Liu, L.; Li, R.; Song, W.; Shi, C.; Ye, Y.; Wang, C. Molecular cloning, characterization and effects of catechol-o-methyltransferase (comt) mrna and protein on aggressive behavior in the swimming crab Portunus trituberculatus. Aquaculture 2018, 495, 693–702. [Google Scholar] [CrossRef]
- Namiki, T.; Niwa, R.; Sakudoh, T.; Shirai, K.-i.; Takeuchi, H.; Kataoka, H. Cytochrome P450 CYP307A1/Spook: A regulator for ecdysone synthesis in insects. Biochem. Biophys. Res. Commun. 2005, 337, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Niwa, R.; Matsuda, T.; Yoshiyama, T.; Namiki, T.; Mita, K.; Fujimoto, Y.; Kataoka, H. CYP306a1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J. Biol. Chem. 2004, 279, 35942–35949. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.T.; Petryk, A.; Marqués, G.; Parvy, J.-P.; Shinoda, T.; Itoyama, K.; Kobayashi, J.; Jarcho, M.; Li, Y.; O’Connor, M.B. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: A P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 2004, 34, 991–1010. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, W.; Zhang, F.; Ma, C.; Liu, Z.; Yang, M.-H.; Chen, W.; Li, Q.; Cui, M.; Jiang, K.; et al. A chromosome-level genome of the mud crab (Scylla paramamosain estampador) provides insights into the evolution of chemical and light perception in this crustacean. Mol. Ecol. Resour. 2021, 21, 1299–1317. [Google Scholar] [CrossRef]
- Colbourne, J.K.; Pfrender, M.E.; Gilbert, D.; Thomas, W.K.; Tucker, A.; Oakley, T.H.; Tokishita, S.; Aerts, A.; Arnold, G.J.; Basu, M.K.; et al. The Ecoresponsive Genome of Daphnia pulex. Science 2011, 331, 555–561. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Hou, X.; Wang, J.; Yue, W.; Huang, S.; Xu, G.; Yan, J.; Lu, G.; Hofreiter, M.; et al. “Omics” data unveil early molecular response underlying limb regeneration in the Chinese mitten crab, Eriocheir sinensis. Sci. Adv. 2022, 8, 37. [Google Scholar]
- Lv, J.; Li, R.; Su, Z.; Gao, B.; Ti, X.; Yan, D.; Liu, G.; Liu, P.; Wang, C.; Li, J. A chromosome-level genome of Portunus trituberculatus provides insights into its evolution, salinity adaptation and sex determination. Mol. Ecol. Resour. 2022, 22, 1606–1625. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Sun, Y.; Li, S.; Gao, Y.; Yu, Y.; Liu, C.; Wang, Q.; Lv, X.; Zhang, X.; et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 2019, 10, 356. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, F.; Wang, W.; Liu, Z.; Ma, C.; Fu, Y.; Chen, W.; Ma, L. Identification and evolution analysis of the complete methyl farnesoate biosynthesis and related pathway genes in the mud crab, Scylla paramamosain. Int. J. Mol. Sci. 2022, 23, 9451. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Cao, H.; Zhao, Y.; Cao, Y.; Jin, Q.; Wang, Y.; Zhang, K.; Deng, D. Cloning and functional analysis of the molting gene CYP302A1 of Daphnia sinensis. Front. Zool. 2023, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Li, X.; Chen, Y.; Liang, G.; Gao, G.; Wang, H.; Wang, C.; Mu, C. Metabolic changes in Scylla paramamosain during adaptation to an acute decrease in salinity. Front. Mar. Sci. 2021, 8, 734519. [Google Scholar] [CrossRef]
- Li, N.; Zhou, J.; Wang, H.; Mu, C.; Shi, C.; Liu, L.; Wang, C. Transcriptome analysis of genes and pathways associated with metabolism in Scylla paramamosain under different light intensities during indoor overwintering. BMC Genom. 2020, 21, 775. [Google Scholar] [CrossRef]
- Knigge, T.; LeBlanc, G.A.; Ford, A.T. A crab is not a fish: Unique aspects of the crustacean endocrine system and considerations for endocrine toxicology. Front. Endocrinol. 2021, 12, 587608. [Google Scholar] [CrossRef]
- Niwa, R.; Niwa, Y.S. Enzymes for ecdysteroid biosynthesis: Their biological functions in insects and beyond. Biosci. Biotechnol. Biochem. 2014, 78, 1283–1292. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, Y.-Z.; Ogihara, M.H.; Takeshima, M.; Fujinaga, D.; Liu, C.-W.; Zhu, Z.; Kataoka, H.; Bao, Y.-Y. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 2020, 123, 103428. [Google Scholar] [CrossRef]
- Ameku, T.; Yoshinari, Y.; Fukuda, R.; Niwa, R. Ovarian ecdysteroid biosynthesis and female germline stem cells. Fly 2017, 11, 185–193. [Google Scholar] [CrossRef]
- Khalid, M.Z.; Ahmad, S.; Ngegba, P.M.; Zhong, G. Role of endocrine system in the regulation of female insect reproduction. Biology 2021, 10, 614. [Google Scholar] [CrossRef]
- Diwan, A. Current progress in shrimp endocrinology—A review. Indian J. Exp. Biol. 2005, 43, 209–223. [Google Scholar]
- Vogt, G. Functional cytology of the hepatopancreas of Decapod crustaceans. J. Morphol. 2019, 280, 1405–1444. [Google Scholar] [CrossRef] [PubMed]
- Guittard, E.; Blais, C.; Maria, A.; Parvy, J.-P.; Pasricha, S.; Lumb, C.; Lafont, R.; Daborn, P.J.; Dauphin-Villemant, C. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev. Biol. 2011, 349, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Legrand, E.; Bachvaroff, T.; Schock, T.B.; Chung, J.S. Understanding molt control switches: Transcriptomic and expression analysis of the genes involved in ecdysteroidogenesis and cholesterol uptake pathways in the Y-organ of the blue crab, Callinectes sapidus. PLoS ONE 2021, 16, e0256735. [Google Scholar] [CrossRef] [PubMed]
- Mykles, D.L. Signaling pathways that regulate the crustacean molting gland. Front. Endocrinol. 2021, 12, 674711. [Google Scholar] [CrossRef]
- Mykles, D.L.; Chang, E.S. Hormonal control of the crustacean molting gland: Insights from transcriptomics and proteomics. Gen. Comp. Endocrinol. 2020, 294, 113493. [Google Scholar] [CrossRef]
- Riddiford, L.M.; Hiruma, K.; Zhou, X.; Nelson, C.A. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 2003, 33, 1327–1338. [Google Scholar] [CrossRef]
- Subramoniam, T. Mechanisms and control of vitellogenesis in crustaceans. Fish. Sci. 2011, 77, 1–21. [Google Scholar] [CrossRef]
- Dermauw, W.; Van Leeuwen, T.; Feyereisen, R. Diversity and evolution of the P450 family in arthropods. Insect Biochem. Mol. Biol. 2020, 127, 103490. [Google Scholar] [CrossRef]
- Pondeville, E.; David, J.-P.; Guittard, E.; Maria, A.; Jacques, J.-C.; Ranson, H.; Bourgouin, C.; Dauphin-Villemant, C. Microarray and RNAi analysis of P450s in Anopheles gambiae male and female steroidogenic tissues: CYP307A1 is required for ecdysteroid synthesis. PLoS ONE 2013, 8, e79861. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, B.; Yasen, A.; Zhu, J.; Wang, M.; Shen, X. YTHDF3 is involved in the diapause process of bivoltine Bombyx mori strains by regulating the expression of CYP307a1 and CYP18a1 genes in the ecdysone synthesis pathway. Biomolecules 2022, 12, 1127. [Google Scholar] [CrossRef]
- Jia, S.; Wan, P.-J.; Zhou, L.-T.; Mu, L.-L.; Li, G.-Q. Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper Sogatella furcifera. BMC Mol. Biol. 2013, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Benrabaa, S.A.; Chang, S.A.; Chang, E.S.; Mykles, D.L. Effects of molting on the expression of ecdysteroid biosynthesis genes in the Y-organ of the blackback land crab, Gecarcinus lateralis. Gen. Comp. Endocrinol. 2023, 340, 114304. [Google Scholar] [CrossRef] [PubMed]
- Sin, Y.W.; Kenny, N.J.; Qu, Z.; Chan, K.W.; Chan, K.W.; Cheong, S.P.; Leung, R.W.; Chan, T.F.; Bendena, W.G.; Chu, K.H. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. Gen. Comp. Endocrinol. 2015, 214, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Rewitz, K.F.; Styrishave, B.; Løbner-Olesen, A.; Andersen, O. Marine invertebrate cytochrome P450: Emerging insights from vertebrate and insect analogies. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 143, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Qin, Z.; Zhao, L.; Zhan, F.; Shen, H.; Zhang, M.; Lu, Z.J.; Ye, C.; Li, F.; Pan, G. Cloning and characterization of cytochrome P450 302a1 (CYP302a1) during molting stages in Macrobrachium rosenbergii. J. Fish. China 2020, 44, 562–574. [Google Scholar]
Name | Sequences (5′-3′) | Application |
---|---|---|
Sp-Nvd-F | GAAGTGAGTCTCGCGTTCCT | PCR |
Sp-Nvd-R | GATGTGAAGTCAGCGGGACA | PCR |
Sp-CYP302a1-F | GGCAGGTGTCTGAAGGAACA | PCR |
Sp-CYP302a1-R | ACATATTCACCTCAGCTAGTGC | PCR |
Sp-CYP315a1-F | GAGTGGAGGAAGTACCGCAC | PCR |
Sp-CYP315a1-R | AGGCTACAGACAGTTAAGAGGC | PCR |
Sp-CYP307a1-F | ACTATCGTGCTGATGATGAT | PCR |
Sp-CYP307a1-R | AAGCGAGAGTAAGAAGACAA | PCR |
Sp-CYP18a1-F | TCAAGCAGGATGGCGGTAAT | PCR |
Sp-CYP18a1-R | CGTGAATTGTTGGGTCTTTGC | PCR |
Sp-Nvd-RTF | TGGAGCTTGCTATTCTACCTGG | qRT-PCR |
Sp-Nvd-RTR | ACATCCGTCAGGTCCTTAACA | qRT-PCR |
Sp-CYP302a1-RTF | TCTCACAGAGAGTGCCGAGA | qRT-PCR |
Sp-CYP302a1-RTR | ATGCAGGCAACCAATCAACG | qRT-PCR |
Sp-CYP315a1-RTF | CCTCTGCTTGCTCATAGACCT | qRT-PCR |
Sp-CYP315a1-RTR | ACTTCCACAATCTCTTGGCGA | qRT-PCR |
Sp-CYP307a1-RTF | CTCCTCTGTGGGAGGTTACG | qRT-PCR |
Sp-CYP307a1-RTR | ACTCGGGCTTCTTGATGCAG | qRT-PCR |
Sp-CYP18a1-RTF | CCTGCTCATGTCCGTGAGATT | qRT-PCR |
Sp-CYP18a1-RTR | CTGGTTCACGGACGGTATGT | qRT-PCR |
Order | Diptera | Cladocera | Decapoda | |||
---|---|---|---|---|---|---|
Family | Drosophilidae | Daphniidae | Varunidae | Portunidae | Penaeidae | |
Species | Drosophila melanogaster | Daphnia pulex | Eriocheir sinensis | Portunus trituberculatus | Scylla paramamosain | Litopenaeus vannamei |
Neverland | + | + | + | + | + | + |
CYP307a1 | + | + | + | + | + | + |
CYP306a1 | + | + | + | − | − | + |
CYP302a1 | + | + | + | + | + | + |
CYP315a1 | + | + | + | + | + | + |
CYP314a1 | + | + | − | − | − | − |
CYP18a1 | + | + | + | + | + | + |
Gene Name | NCBI GenBank Accession ID | Number of Amino Acids/aa | Molecular Mass/Da | Theoretical pI | Similarity to Drosophila Genes | Subcellular Localization | Function |
---|---|---|---|---|---|---|---|
Neverland | MN782365 | 463 | 52,366.98 | 8.39 | 38.65% | Nucleus | Catalyzing the conversion of cholesterol to 7-dehydrocholesterol |
CYP307a1 | NC_087153 | 520 | 59,495.28 | 5.8 | 49.44% | ER | Involved in ecdysteroid synthesis |
CYP315a1 | MN782364 | 410 | 45,763.7 | 6.74 | 49.13% | ER | Catalytic hydroxylation of cholesterol ring C2 |
CYP302a1 | NC_087179.1 | 538 | 61,138.29 | 8.76 | 36.25% | ER | Synthesize ecdysteroids to regulate genes related to growth and molting |
CYP18a1 | MN542780 | 655 | 74,730.67 | 8.4 | 39.60% | ER | Catalytic C-26 hydroxylation of 20E |
Protein | Percentage/% | |||
---|---|---|---|---|
α-Helix | Extended Strand | β-Turn | Random Coil | |
Neverland | 34.56 | 15.77 | 5.62 | 44.06 |
CYP307a1 | 30.44 | 8.02 | 8.97 | 52.57 |
CYP315a1 | 48.78 | 7.56 | 2.44 | 41.22 |
CYP302a1 | 45.85 | 12.78 | 3.65 | 37.72 |
CYP18a1 | 47.81 | 8.95 | 5.14 | 38.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Ma, L.; Zhang, F.; Zhang, L.; Yin, J.; Wang, W.; Zhao, M. Identification and Evolution Analysis of the Genes Involved in the 20-Hydroxyecdysone Metabolism in the Mud Crab, Scylla paramamosain: A Preliminary Study. Genes 2024, 15, 1586. https://doi.org/10.3390/genes15121586
Jin X, Ma L, Zhang F, Zhang L, Yin J, Wang W, Zhao M. Identification and Evolution Analysis of the Genes Involved in the 20-Hydroxyecdysone Metabolism in the Mud Crab, Scylla paramamosain: A Preliminary Study. Genes. 2024; 15(12):1586. https://doi.org/10.3390/genes15121586
Chicago/Turabian StyleJin, Xin, Lingbo Ma, Fengying Zhang, Linzi Zhang, Jinju Yin, Wei Wang, and Ming Zhao. 2024. "Identification and Evolution Analysis of the Genes Involved in the 20-Hydroxyecdysone Metabolism in the Mud Crab, Scylla paramamosain: A Preliminary Study" Genes 15, no. 12: 1586. https://doi.org/10.3390/genes15121586
APA StyleJin, X., Ma, L., Zhang, F., Zhang, L., Yin, J., Wang, W., & Zhao, M. (2024). Identification and Evolution Analysis of the Genes Involved in the 20-Hydroxyecdysone Metabolism in the Mud Crab, Scylla paramamosain: A Preliminary Study. Genes, 15(12), 1586. https://doi.org/10.3390/genes15121586