Coordinated Activity of Transcriptional Networks Responding to the Pattern of Action Potential Firing in Neurons
<p>Average relative expression variability (REV) (<b>A</b>) and normalized median expression (<b>B</b>) of all quantified (ALL, 13,974 distinct genes), calcium signaling related genes (CAS, 93 genes) and transcription factors (TRF, 934 genes) after electrical stimulation at two different patterns for 2 and 5 h. The means of the REV distributions in stimulated conditions were significantly different from the control (unstimulated) ones as measured by the <span class="html-italic">p</span>-values of the heteroscedastic (two-sample unequal variance) <span class="html-italic">t</span>-test of the two means equality: 18/1 2 h (ALL < 10 <sup>−308</sup>; CAS 6.28 × 10 <sup>−6</sup>; TRF 3.78 × 10 <sup>−51</sup>), 18/1 5 h (ALL 3.2 × 10 <sup>−216</sup>; CAS 2.76 × 10 <sup>−11</sup>; TRF 2.14 × 10 <sup>−132</sup>), 90/5 2 h (ALL <10 <sup>−308</sup>; CAS 3.59 × 10 <sup>−9</sup>; TRF 2.557 × 10 <sup>−97</sup>), 90/5 5 h (ALL <10 <sup>−308</sup>; CAS 7.10 × 10 <sup>−6</sup>; TRF 1.52 × 10 <sup>−37</sup>).</p> "> Figure 2
<p>Pearson correlation of gene expressions. Percentage of (<span class="html-italic">p</span> < 0.05) significantly uncorrelated and positively or negatively correlated (<b>A</b>) calcium signaling (CAS–CAS) gene pairs, (<b>B</b>) transcription factor (TRF–TRF) gene pairs and (<b>C</b>) CAS–TRF gene pairs in all experimental conditions. Note that the percentage of positive coordination is substantially higher for the 18/1 stimulation pattern at 5 h and strong positive coordination of the calcium signaling genes with the transcription factors. The difference between 100% and sum of the represented percentages is composed by the gene-pairs whose coordination did not meet the statistical evidence to be categorized as significantly uncorrelated, or as significantly positively or negatively correlated.</p> "> Figure 3
<p>Expression regulation and coordination of some voltage-gated channels in stimulated DRG neurons. (<b>A</b>) unstimulated neurons. (<b>B</b>) neurons stimulated for 2 h with 18/1 pattern. (<b>C</b>) neurons stimulated for 5 h with 18/1 pattern. (<b>D</b>) neurons stimulated for 2 h with 90/5 pattern. (<b>E</b>) neurons stimulated for 5 h with 90/5 pattern. Red/green background of the gene symbol indicates significant up-/down-regulation of that gene in that stimulation condition with respect to unstimulated neurons. Yellow background indicates that the expression change was not statistically significant. Red/blue line indicates that the expressions of the linked genes are significantly positively/negatively correlated. Note the substantial differences among the stimulation paradigms. Missing lines indicate that the expression coordination between the corresponding genes were not statistically significant.</p> "> Figure 4
<p>Positive and negative expression coordination of the first 50 alphabetically ordered calcium signaling genes in each pattern of stimulation. (<b>A</b>) positive correlations in unstimulated neurons. (<b>B</b>) negative correlations in unstimulated neurons. (<b>C</b>) positive correlations in neurons stimulated for 2 h with 18/1 pattern. (<b>D</b>) negative correlations in neurons stimulated for 2 h with 18/1 pattern. (<b>E</b>) positive correlations in neurons stimulated for 5 h with 18/1 pattern. (<b>F)</b> negative correlations in neurons stimulated for 5 h with 18/1 pattern. (<b>G</b>) positive correlations in neurons stimulated for 2 h with 90/5 pattern. (<b>H</b>) negative correlations in neurons stimulated for 2 h with 90/5 pattern. (<b>I</b>) positive correlations in neurons stimulated for 5 h with 90/5 pattern. (<b>J</b>) negative correlations in neurons stimulated for 5 h with 90/5 pattern. A red/blue line indicates a statistically significant (<span class="html-italic">p</span>-value < 0.05) positive/negative coordination of the linked genes. Missing lines indicate that the expression coordination between the corresponding genes is not statistically significant.</p> "> Figure 5
<p>Positive and negative expression coordination of 50 alphabetically ordered, randomly selected transcription factor genes (TRF) in all experimental conditions. (<b>A</b>) positive correlations in unstimulated neurons. (<b>B</b>) negative correlations in unstimulated neurons. (<b>C</b>) positive correlations in neurons stimulated for 2 h with 18/1 pattern. (<b>D</b>) negative correlations in neurons stimulated for 2 h with 18/1 pattern. (<b>E</b>) positive correlations in neurons stimulated for 5 h with 18/1 pattern. (<b>F</b>) negative correlations in neurons stimulated for 5 h with 18/1 pattern. (<b>G</b>) positive correlations in neurons stimulated for 2 h with 90/5 pattern. (<b>H</b>) negative correlations in neurons stimulated for 2 h with 90/5 pattern. (<b>I</b>) positive correlations in neurons stimulated for 5 h with 90/5 pattern. (<b>J</b>) negative correlations in neurons stimulated for 5 h with 90/5 pattern. A red/blue line indicates a statistically significant (<span class="html-italic">p</span>-value < 0.05) positive/negative coordination of the linked genes. Missing lines indicate that the expression coordination is not statistically significant. As in the case of CAS genes, the TRF network responds to the action potential firing pattern.</p> "> Figure 6
<p>Pair-wise relevance (PWR) analysis of the interaction between 50 calcium signaling genes (CAS) and 50 transcription factors (TRF) in all patterns of stimulation. (<b>A</b>) unstimulated neurons. (<b>B</b>) neurons stimulated for 2 h with 18/1 pattern. (<b>C</b>) neurons stimulated for 5 h with 18/1 pattern. (<b>D</b>) neurons stimulated for 2 h with 90/5 pattern. (<b>E</b>) neurons stimulated for 5 h with 90/5 pattern. The medallions present the relevant TRF–CAS gene pairs (and their PWR scores) in each condition.</p> "> Figure A1
<p>Comparison of the expression coordination of the 93 adequately quantified calcium signaling genes among stimulation paradigms. A red/blue/yellow square indicates a statistically significant (<span class="html-italic">p</span> value < 0.05) positive/negative/independent coordination while a blank square indicates lack of statistical significance to assess the type of coordination. Numbers indicate the percentages of gene pairs exhibiting statistically significant positive (S), negative (A) and independent (I) coordination in the respective pattern of stimulation.</p> "> Figure A2
<p>Part of the expression coordination of the all 93 quantified calcium signaling genes with 200 randomly selected (out of 934) transcription factors. A red/blue/ square indicates a statistically significant (<span class="html-italic">p</span> value < 0.05) positive/negative coordination, an yellow square indicates no correlation, while a blank square indicates lack of statistical significance to assess the type of correlation. Note the significantly higher degree of coordination between the transcription factors and the calcium signaling genes for the 5 h stimulation with the 18/1 pattern.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary Neuronal Cell Culture
2.2. Electrical Stimulation of DRG Neurons
2.3. Microarray Analysis
2.4. Expression Variability and Coordination
2.5. Genomic Fabric Topology
3. Results
3.1. Relative Expression Variability
3.2. Expression Coordination
3.3. Expression Level and Correlation of the Voltage-Gated Ion Channels Depends on Electrical Stimulation
3.4. Coordination Networks
3.5. Gene Pairing Can Be Reversed by Changing Pattern or Duration of Stimulation
3.6. Interplay of Calcium Signaling Genes and Transcription Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fields, R.D.; Lee, P.R.; Cohen, J.E. Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 2005, 37, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Eisen, M.; Spellman, P.; Brown, P.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863–14868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butte, A.J.; Tamayo, P.; Slonim, D.; Golub, T.R.; Kohane, I.S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. USA 2000, 97, 12182–12186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, S.; Dong, J. Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Comput. Biol. 2008, 4, e1000117. [Google Scholar] [CrossRef] [PubMed]
- Oldham, M.C.; Langfelder, P.; Horvath, S. Network methods for describing sample relationships in genomic datasets: Application to Huntington’s disease. BMC Syst. Biol. 2012, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Gardy, J.L.; Lynn, D.J.; Brinkman, F.S.; Hancock, R.E. Enabling a systems biology approach to immunology: Focus on innate immunity. Trends Immunol. 2009, 30, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, L.; Yuan, Y.; Li, J.; Hei, N.; Liang, H. Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat. Commun. 2014, 5, 3231. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, D.H.; Konopka, G. Neuroscience in the era of functional genomics and systems biology. Nature 2009, 461, 908–915. [Google Scholar] [CrossRef]
- Iacobas, S.; Iacobas, D.A. Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol. 2010, 6, 157–169. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Iacobas, S.; Spray, D.C. Connexin43 and the brain transcriptome of the newborn mice. Genomics 2007, 89, 113–123. [Google Scholar] [CrossRef]
- Iacobas, S.; Thomas, N.M.; Iacobas, D.A. Plasticity of the myelination genomic fabric. Mol. Genet. Genom. 2012, 287, 237–246. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Iacobas, S.; Urban-Maldonado, M.; Spray, D.C. Sensitivity of the brain transcriptome to connexin ablation. Biochim. Biofis. Acta 2005, 1711, 183–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Jia, M.; Fields, R.D.; Nelson, P.G. Modulation of calcium currents by electrical activity. J. Neurophysiol. 1996, 76, 2595–2607. [Google Scholar] [CrossRef] [PubMed]
- Fields, R.D.; Eshete, F.; Stevens, B.; Itoh, K. Action potential-dependent regulation of gene expression: Temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J. Neurosci. 1997, 17, 7252–7266. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.R.; Cohen, J.E.; Iacobas, D.A.; Iacobas, S.; Fields, R.D. Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. Sci. Rep. 2017, 7, 43765. [Google Scholar] [CrossRef] [Green Version]
- Iacobas, D.A.; Tuli, N.; Iacobas, S.; Rasamny, J.K.; Moscatello, A.; Geliebter, J.; Tiwari, R.M. Gene master regulators of papillary and anaplastic thyroid cancer phenotypes. Oncotarget 2018, 9, 2410–2424. [Google Scholar] [CrossRef]
- Iacobas, S.; Ede, N.; Iacobas, D.A. The gene master regulators (GMR) approach provides legitimate targets for personalized, time-sensitive cancer gene therapy. Genes 2019, 10, 560. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Iacobas, S.; Tanowitz, H.B.; deCarvalho, A.C.; Spray, D.C. Functional genomic fabrics are remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy. Microbes Infect. 2018, 20, 185–195. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Chachua, T.; Iacobas, S.; Benson, M.J.; Borges, K.; Veliskova, J.; Velisek, L. ACTH and PMX53 recover the normal synaptic transcriptome in a rat model of infantile spasms. Sci. Rep. 2018, 8, 5722. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Iacobas, S.; Nebieridze, N.; Velisek, L.; Veliskova, J. Estrogen protects neurotransmission transcriptome during status epilepticus. Front. Neurosci. 2018, 12, 332. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Velisek, L. Regeneration of neurotransmission transcriptome in a model of epileptic encephalopathy after antiinflammatory treatment. Neural Regen. Res. 2018, 13, 1715–1718. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Stevens, B.; Schachner, M.; Fields, R.D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 1995, 270, 1369–1372. [Google Scholar] [CrossRef] [PubMed]
- Raser, J.M.; O’Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 2004, 304, 1811–1814. [Google Scholar] [CrossRef] [PubMed]
- Raser, J.M.; O’Shea, E.K. Noise in gene expression: Origins, consequences, and control. Review. Science 2005, 309, 2010–2013. [Google Scholar] [CrossRef] [PubMed]
- Loebrich, S.; Nedivi, E. The function of activity-regulated genes in the nervous system. Physiol. Rev. 2009, 89, 1079–1103. [Google Scholar] [CrossRef]
- Iacobas, D.A. Medical Biostatistics, 3rd ed.; Bucura Mond: Bucharest, Romania, 1997; pp. 96–98. [Google Scholar]
- Marbach, D.; Costello, J.C.; Küffner, R.; Vega, N.M.; Prill, R.J.; Camacho, D.M.; Allison, K.R.; Aderhold, A.; Bonneau, R.; Chen, Y.; et al. Wisdom of the crowds for robust gene network inference. Nat. Methods 2012, 9, 796–804. [Google Scholar] [CrossRef]
- Iacobas, D.A.; Iacobas, S.; Chachua, T.; Goletiani, C.; Sidyelyeva, G.; Velíšková, J.; Velíšek, L. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: Insights from a novel animal model of infantile spasms. J. Neuroendocrinol. 2013, 25, 964–979. [Google Scholar] [CrossRef]
- Koenig, S.; Moreau, C.; Dupont, G.; Scoumanne, A.; Erneux, C. Regulation of NGF-driven neurite outgrowth by Ins(1,4,5)P3 kinase is specifically associated with the two isoenzymes Itpka and Itpkb in a model of PC12 cells. FEBS J. 2015, 282, 2553–2569. [Google Scholar] [CrossRef]
- Klein, J.P.; Tendi, E.A.; Dib-Hajj, S.D.; Fields, R.D.; Waxman, S.G. Patterned electrical activity modulates sodium channel expression in sensory neurons. J. Neurosci. Res. 2003, 74, 192–198. [Google Scholar] [CrossRef]
- Teng, S.; Ma, L.; Zhen, Y.; Lin, C.; Bähring, R.; Vardanyan, V.; Pongs, O.; Hui, R. Novel gene hKCNE4 slows the activation of the KCNQ1 channel. Biochem. Biophys. Res. Commun. 2003, 303, 808–813. [Google Scholar] [CrossRef]
- Spray, D.C.; Iacobas, D.A. Organizational principles of the connexin-related brain transcriptome. J. Membr. Biol. 2007, 218, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.V.; Ganley, I.G.; Pfeffer, S.R. Clues to neuro-degeneration in Niemann-Pick type C disease from global gene expression profiling. PLoS ONE 2006, 1, e19. [Google Scholar] [CrossRef] [PubMed]
- Gracida, X.; Dion, M.F.; Harris, G.; Zhang, Y.; Calarco, J.A. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation. Cell Rep. 2017, 21, 3089–3101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.X.; Smith, E.R.; Shilatifard, A. Born to run: Control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2018, 19, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, C.; Pelletier, I.; Téoulé, F.; Vidalain, P.O.; Brisac, C.; Tangy, F.; Delpeyroux, F.; Blondel, B. The CREB3-Herp signalling module limits the cytosolic calcium concentration increase and apoptosis induced by poliovirus. J. Gen. Virol. 2016, 97, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Herdegen, S.; Kamal, S.; Patel, J.; Patel, U.; Perez, L.; Rivota, M.; Calin-Jageman, R.J.; Calin-Jageman, I.E. Transcriptional correlates of memory maintenance following long-term sensitization of Aplysia californica. Learn Mem. 2017, 24, 502–515. [Google Scholar] [CrossRef]
- Michel, V.; Booth, K.T.; Patni, P.; Cortese, M.; Azaiez, H.; Bahloul, A.; Kahrizi, K.; Labbé, M.; Emptoz, A.; Lelli, A.; et al. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol. Med. 2017, 9, 1711–1731. [Google Scholar] [CrossRef]
- Sławek, I.; Arodź, T. ENNET: Inferring large gene regulatory networks from expression data using gradient boosting. BMC Syst. Biol. 2013, 7, 106. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.M.; Shin, W.; Han, S.W.; Jeon, M.; Jang, H.J.; Jang, I.S.; Kang, J. BTNET: Boosted tree based gene regulatory network inference algorithm using time-course measurement data. BMC Syst. Biol. 2018, 12, 20. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar]
- Duggal, P.; Gillanders, E.M.; Holmes, T.N.; Bailey-Wilson, J.E. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genom. 2008, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Holm, S. A simple sequentially rejective multiple tes t procedure. Scand. Stat. Theory Appl. 1979, 6, 65–70. [Google Scholar]
- Hommel, G.; Bernhard, G. A rapid algorithm and a computer program for multiple test procedures using logical structures of hypotheses. Comput. Methods Programs Biomed. 1994, 43, 213–216. [Google Scholar] [CrossRef]
Gene | Description | Rev | Average Expression Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
UNST | 18/1 2 h | 18/1 5 h | 90/5 2 h | 90/5 5 h | UNST | 18/1 2 h | 18/1 5 h | 90/5 2 h | 90/5 5 h | ||
Itpkc | Inositol 1,4,5-trisphosphate 3-kinase C | 4.08 | 69.86 | 23.45 | 46.48 | 21.24 | 0.85 | 0.78 | 0.60 | 0.78 | 0.88 |
Phka1 | Phosphorylase kinase alpha 1 | 5.09 | 28.95 | 74.08 | 58.14 | 37.93 | 1.63 | 1.47 | 3.55 | 1.97 | 2.01 |
P2rx4 | Purinergic receptor P2X, ligand-gated ion channel 4 | 16.37 | 3.95 | 112.25 | 117.08 | 19.17 | 9.29 | 10.71 | 26.82 | 25.88 | 12.50 |
Camk2g | Calcium/calmodulin-dependent protein kinase II gamma | 34.96 | 9.81 | 22.38 | 15.84 | 45.57 | 10.06 | 7.05 | 8.58 | 8.90 | 8.11 |
Itpr1 | Inositol 1,4,5-trisphosphate receptor 1 | 40.17 | 55.94 | 10.70 | 77.73 | 71.53 | 0.42 | 0.41 | 1.31 | 0.54 | 0.46 |
Nos3 | Nitric oxide synthase 3, endothelial cell | 16.83 | 43.24 | 15.12 | 112.12 | 51.14 | 0.44 | 0.46 | 0.39 | 0.38 | 0.43 |
Ptger1 | Prostaglandin E receptor 1 (subtype EP1) | 43.58 | 36.53 | 49.36 | 13.32 | 30.79 | 0.50 | 0.35 | 0.60 | 0.42 | 0.47 |
P2rx3 | Purinergic receptor P2X, ligand-gated ion channel, 3 | 35.66 | 32.39 | 37.78 | 14.48 | 44.31 | 3.43 | 3.04 | 2.77 | 4.01 | 3.69 |
Prkacb | Protein kinase, cAMP dependent, catalytic, beta | 18.42 | 65.01 | 79.03 | 32.26 | 14.03 | 2.90 | 2.37 | 4.47 | 2.69 | 2.66 |
Tnnc2 | Troponin C2, fast | 38.88 | 16.41 | 104.57 | 65.73 | 14.63 | 0.15 | 0.18 | 0.38 | 0.16 | 0.18 |
Gna14 | Guanine nucleotide binding protein, alpha 14 | 111.31 | 108.18 | 65.77 | 91.80 | 135.19 | 2.38 | 2.89 | 4.46 | 2.43 | 2.29 |
Itpka | Inositol 1,4,5-trisphosphate 3-kinase A | 135.85 | 70.23 | 43.64 | 52.15 | 50.27 | 0.31 | 0.27 | 0.31 | 0.36 | 0.48 |
Adcy8 | Adenylate cyclase 8 | 53.29 | 140.51 | 129.81 | 161.86 | 49.72 | 0.31 | 0.28 | 0.19 | 0.33 | 0.30 |
Adcy1 | Adenylate cyclase 1 | 72.76 | 187.74 | 83.73 | 96.58 | 49.77 | 1.18 | 0.93 | 2.03 | 1.66 | 1.20 |
Cacna1i | Calcium channel, voltage-dependent, alpha 1I subunit | 15.41 | 13.73 | 241.17 | 111.72 | 41.66 | 0.17 | 0.15 | 2.12 | 0.14 | 0.28 |
P2rx6 | Purinergic receptor P2X, ligand-gated ion channel, 6 | 43.00 | 81.81 | 247.15 | 69.38 | 78.50 | 0.18 | 0.19 | 4.19 | 0.21 | 0.22 |
Atp2b4 | ATPase, Ca++ transporting, plasma membrane 4 | 32.40 | 27.58 | 64.75 | 185.86 | 19.62 | 0.22 | 0.20 | 0.19 | 0.38 | 0.27 |
Pdgfrb | Platelet derived growth factor receptor, beta polypeptide | 89.66 | 59.63 | 71.95 | 189.03 | 53.23 | 1.11 | 1.09 | 3.97 | 4.29 | 1.19 |
Phkb | Phosphorylase kinase beta | 18.64 | 59.47 | 91.03 | 46.67 | 114.62 | 0.53 | 0.46 | 1.01 | 0.70 | 0.64 |
Gna14 | Guanine nucleotide binding protein, alpha 14 | 111.31 | 108.18 | 65.77 | 91.80 | 135.19 | 2.38 | 2.89 | 4.46 | 2.43 | 2.29 |
Psmd4 | Proteasome (prosome, macropain) 26S subunit, non-ATPase, 4 | 3.58 | 41.88 | 22.38 | 27.56 | 19.04 | 7.99 | 8.28 | 8.58 | 9.88 | 8.81 |
Meis3 | Meis homeobox 3 | 4.79 | 44.56 | 105.78 | 82.12 | 42.64 | 4.43 | 4.09 | 9.58 | 8.58 | 5.77 |
Hes2 | Hairy and enhancer of split 2 (Drosophila) | 60.24 | 3.20 | 118.34 | 92.56 | 22.53 | 0.14 | 0.13 | 0.95 | 0.45 | 0.15 |
Dmap1 | DNA methyltransferase 1-associated protein 1 | 8.75 | 3.36 | 112.71 | 56.49 | 32.57 | 7.51 | 7.67 | 5.26 | 7.70 | 9.23 |
Zscan26 | Zinc finger and SCAN domain containing 26 | 37.80 | 59.71 | 4.11 | 57.66 | 71.56 | 2.73 | 2.57 | 5.16 | 2.36 | 2.18 |
Zfp454 | Zinc finger protein 454 | 71.95 | 35.51 | 6.34 | 75.85 | 56.53 | 0.30 | 0.26 | 0.74 | 0.76 | 0.26 |
Zfpm1 | Zinc finger protein, multitype 1 | 57.82 | 27.68 | 31.25 | 3.00 | 32.40 | 1.98 | 1.44 | 1.54 | 1.28 | 1.88 |
Ebf1 | Early B cell factor 1 | 21.01 | 50.60 | 41.41 | 10.42 | 45.89 | 5.05 | 4.48 | 12.31 | 7.42 | 4.10 |
Lmx1b | LIM homeobox transcription factor 1 beta | 44.43 | 29.51 | 130.55 | 137.91 | 1.37 | 0.23 | 0.22 | 0.92 | 0.44 | 0.33 |
Irf3 | Interferon regulatory factor 3 | 13.04 | 21.88 | 55.66 | 47.89 | 4.79 | 5.91 | 6.49 | 6.11 | 6.77 | 7.51 |
Fos | FBJ osteosarcoma oncogene | 234.09 | 37.80 | 36.62 | 42.38 | 41.18 | 0.98 | 2.70 | 5.22 | 4.63 | 6.20 |
Hoxa11 | Homeobox A11 | 282.22 | 274.19 | 129.55 | 170.19 | 222.34 | 4.82 | 4.52 | 6.85 | 6.61 | 5.55 |
Kit | Kit oncogene | 139.43 | 197.96 | 177.49 | 152.75 | 48.95 | 0.29 | 0.33 | 1.02 | 0.38 | 0.25 |
Hoxa11 | Homeobox A11 | 282.22 | 274.19 | 129.55 | 170.19 | 222.34 | 4.82 | 4.52 | 6.85 | 6.61 | 5.55 |
Esrrb | Estrogen related receptor, beta | 46.14 | 38.10 | 237.35 | 206.64 | 20.94 | 0.27 | 0.22 | 2.57 | 1.21 | 0.23 |
Id3 | Inhibitor of DNA binding 3 | 90.45 | 77.58 | 244.49 | 144.85 | 85.30 | 1.05 | 1.23 | 2.20 | 2.13 | 1.06 |
Sall4 | Sal-like 4 (Drosophila) | 30.32 | 16.78 | 72.94 | 186.67 | 18.01 | 1.12 | 1.15 | 73.32 | 36.72 | 1.14 |
Esrrb | Estrogen related receptor, beta | 46.14 | 38.10 | 237.35 | 206.64 | 20.94 | 0.27 | 0.22 | 2.57 | 1.21 | 0.23 |
Ski | Ski sarcoma viral oncogene homolog (avian) | 25.40 | 82.12 | 69.90 | 92.66 | 211.33 | 0.31 | 0.24 | 0.17 | 0.26 | 1.69 |
Hoxa11 | Homeobox A11 | 282.22 | 274.19 | 129.55 | 170.19 | 222.34 | 4.82 | 4.52 | 6.85 | 6.61 | 5.55 |
Calcium Signaling Genes | ||||
---|---|---|---|---|
Gene Pair | 90/5 2 h | Unstimulated | 18/1 2 h | 90/5 5 h |
Adcy8-Calm2 | 0.93590 | −0.90817 | ||
Adcy9-Calm1 | 0.95850 | −0.95630 | ||
Adora2a-Cd38 | 0.93826 | −0.95238 | ||
Adora2a-Oxtr | 0.93992 | −0.98837 | ||
Adra1b-Camk2b | 0.93396 | −0.92631 | ||
Agtr1b-Camk2b | 0.98624 | −0.90249 | ||
Atp2b1-Camk4 | −0.90327 | 0.96986 | ||
Atp2b3-Grm5 | −0.90199 | 0.99263 | ||
Atp2b4-Calm2 | 0.91756 | −0.94692 | ||
Atp2b4-Gna14 | 0.98172 | −0.94881 | −0.94881 | |
Cacna1i-Gna14 | 0.95922 | −0.98677 | ||
Cacna1i-Itpr1 | −0.94637 | 0.96679 | ||
Calm2-Egfr | −0.90024 | 0.99080 | ||
Camk2d-Egfr | −0.99649 | 0.92581 | ||
Camk4-Itpkc | 0.92652 | −0.90723 | ||
Egfr-Itpr1 | 0.90311 | −0.91124 | ||
F2r-Grm5 | −0.90302 | 0.98162 | ||
Transcription Factors | ||||
Gene Pair | 18/1 2 h | UNSTIMULATED | 18/1 5 h | 90/5 2 h |
Ahctf1-Grhl3 | 0.97253 | −0.90926 | ||
Arid3a-Ctcf | 0.90668 | −0.95895 | ||
Arid3a-Ctcf | 0.91114 | −0.94827 | ||
Bhlha9-Gsk3b | 0.93771 | −0.98955 | ||
Bnc2-Gsk3b | 0.96196 | −0.98325 | ||
Camk1d-Cc2d1a | 0.92630 | −0.97453 | ||
Camk1d-Hoxa7 | 0.94662 | −0.99943 | ||
Camk1d-Hoxa9 | 0.97426 | −0.95027 | ||
Camk1d-Hoxb3 | 0.97329 | −0.95391 | −0.99620 | |
Cask-Hmgn3 | 0.93393 | −0.92576 | ||
Ccnh-Gabpb1 | 0.97091 | −0.90340 | ||
Cdk8-Hoxb2 | 0.98575 | −0.94405 | ||
Cnot7-Hoxb3 | 0.98709 | −0.93779 | ||
Ctcf-Hoxb3 | 0.99212 | −0.91724 | ||
Dach2-Hoxb5 | −0.97088 | 0.96951 | ||
Dpf1-Hmbox1 | 0.97469 | −0.90904 | ||
Dpf1-Hoxb2 | 0.90242 | −0.92939 | ||
Dpf2-Gsk3b | 0.95509 | −0.99496 | ||
Ercc2-Hnrnpd | 0.99951 | −0.95748 | ||
Ercc2-Hoxb3 | 0.91956 | −0.98387 | ||
Fos-Gsk3b | 0.95949 | −0.91342 | ||
Fos-Hoxb3 | 0.91623 | −0.93715 | ||
Gsk3b-Hmgn3 | 0.91755 | −0.99482 | ||
Hmbox1-Hoxb3 | 0.96990 | −0.94583 | ||
Hoxa9-Hoxb4 | 0.94215 | −0.91487 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacobas, D.A.; Iacobas, S.; Lee, P.R.; Cohen, J.E.; Fields, R.D. Coordinated Activity of Transcriptional Networks Responding to the Pattern of Action Potential Firing in Neurons. Genes 2019, 10, 754. https://doi.org/10.3390/genes10100754
Iacobas DA, Iacobas S, Lee PR, Cohen JE, Fields RD. Coordinated Activity of Transcriptional Networks Responding to the Pattern of Action Potential Firing in Neurons. Genes. 2019; 10(10):754. https://doi.org/10.3390/genes10100754
Chicago/Turabian StyleIacobas, Dumitru A., Sanda Iacobas, Philip R. Lee, Jonathan E. Cohen, and R. Douglas Fields. 2019. "Coordinated Activity of Transcriptional Networks Responding to the Pattern of Action Potential Firing in Neurons" Genes 10, no. 10: 754. https://doi.org/10.3390/genes10100754
APA StyleIacobas, D. A., Iacobas, S., Lee, P. R., Cohen, J. E., & Fields, R. D. (2019). Coordinated Activity of Transcriptional Networks Responding to the Pattern of Action Potential Firing in Neurons. Genes, 10(10), 754. https://doi.org/10.3390/genes10100754