[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Organizational Principles of the Connexin-Related Brain Transcriptome

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have found that deletion of genes encoding the gap junction proteins Cx43, Cx32 and Cx36 alter the expression levels of large numbers of genes in mouse brain located on all chromosomes and encoding proteins from all major functional categories. Gene regulation in Cx32 and Cx43 null brains was more similar than that in the Cx36 null brain, suggesting the possibility of transcriptomic controls exerted by both genes on both astrocytes and oligodendrocytes. In order to explore the nature of expression linkage among the genes, we examined coordinated expression patterns in wild-type and connexin null brains. Coordination with Cx43 in wild-type brain predicted regulation in Cx43 nulls with considerable accuracy. Moreover, interlinkage within gene networks was greatly perturbed in the Cx43 null brain. These findings suggest several principles regarding regulatory transcriptomic networks involving gap junction genes and raise the issue of the underlying cause of connexin null phenotypes as well as mechanisms of regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI (2000) Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105:161–171

    PubMed  CAS  Google Scholar 

  • Alcolea S, Jarry-Guichard T, de Bakker J, Gonzalez D, Lamers W, Coppen S, Barrio L, Jongsma H, Gros D, van Rijen H (2004) Replacement of connexin40 by connexin45 in the mouse: impact on cardiac electrical conduction. Circ Res 94:100–109

    Article  PubMed  CAS  Google Scholar 

  • Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL, Spray DC, Scemes E (2005) Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res 80:798–808

    Article  PubMed  CAS  Google Scholar 

  • Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin−43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    Article  PubMed  CAS  Google Scholar 

  • Davy A, Bush JO, Soriano P (2006) Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol 4:e315

    Article  PubMed  CAS  Google Scholar 

  • Debeer P, Van Esch H, Huysmans C, Pijkels E, De Smet L, Van de Ven W, Devriendt K, Fryns JP (2005) Novel GJA1 mutations in patients with oculo-dento-digital dysplasia (ODDD). Eur J Med Genet 48:377–387

    Article  PubMed  Google Scholar 

  • Duffy HS, Iacobas I, Hotchkiss K, Hirst-Jensen BJ, Bosco A, Dandachi N, Dermietzel R, Sorgen PL, Spray DC (2007) The gap junction protein connexin32 interacts with the Src homology 3/Hook domain of discs large homolog 1. J Biol Chem 282:9789–9796

    Article  PubMed  CAS  Google Scholar 

  • Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279:36943–36950

    Article  PubMed  CAS  Google Scholar 

  • Ge H, Walhout AJ, Vidal M (2003) Integrating “omic” information: a bridge between genomics and systems biology. Trends Genet 19:551–560

    Article  PubMed  CAS  Google Scholar 

  • Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942

    Article  PubMed  CAS  Google Scholar 

  • Gong XQ, Shao Q, Langlois S, Laird DW, Bai D (2007) Differential potency of dominant negative connexin43 mutations in oculodentodigital dysplasia. J Biol Chem (in press)

  • Iacobas DA, Fan C, Iacobas S, Spray DC, Haddad GG (2006) Transcriptomic changes in developing kidney exposed to chronic hypoxia. Biochem Biophys Res Commun 349:329–338

    Article  PubMed  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Li WE, Zoidl G, Dermietzel R, Spray DC (2005a) Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Genomics 20:211–223

    Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007a) Connexin43 and the brain transcriptome of newborn mice. Genomics 89:113–123

    Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007b) Connexin-dependent transcriptomic networks in mouse brain. Prog Biophys Biophys Chem 94:169–185

    Article  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005b) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196

    Google Scholar 

  • Iacobas DA, Scemes E, Spray DC (2004) Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int 45:243–250

    Article  PubMed  CAS  Google Scholar 

  • Iacobas D, Suadicani SO, Iacobas S, Chrisman C, Cohen M, Spray DC, Scemes E (2007c) Gap junction and purinergic P2 receptor proteins as a functional unit: insights from transcriptomics. J Membr Biol (this issue)

  • Iacobas DA, Urban-Maldonado M, Iacobas S, Scemes E, Spray DC (2003) Array analysis of gene expression in connexin−43 null astrocytes. Physiol Genomics 15:177–190

    PubMed  CAS  Google Scholar 

  • Insel PA, Patel HH (2007) Do studies in caveolin-knockouts teach us about physiology and pharmacology or instead, the ways mice compensate for “lost proteins”? Br J Pharmacol 150:251–254

    Article  PubMed  CAS  Google Scholar 

  • Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC (2007) The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol 94:245–264

    Article  PubMed  CAS  Google Scholar 

  • Lai A, Le DN, Paznekas WA, Gifford WD, Jabs EW, Charles AC (2006) Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J Cell Sci 119(pt 3):532–541

    Article  PubMed  CAS  Google Scholar 

  • Loddenkemper T, Grote K, Evers S, Oelerich M, Stogbauer F (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol 249:584–595

    Article  PubMed  Google Scholar 

  • Loewenstein WR (1999) The Touchstone of Life. New York: Oxford University Press

    Google Scholar 

  • Loewenstein WR, Rose B (1992) The cell-cell channel in the control of growth. Semin Cell Biol 3:59–79

    Article  PubMed  CAS  Google Scholar 

  • Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME (2005) Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. Anat Rec A Discov Mol Cell Evol Biol 283:224–238

    PubMed  Google Scholar 

  • Penes MC, Li X, Nagy JI (2005) Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 22:404–418

    Article  PubMed  Google Scholar 

  • Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388:265–292

    Article  PubMed  CAS  Google Scholar 

  • Shibayama J, Paznekas W, Seki A, Taffet S, Jabs EW, Delmar M, Musa H (2005) Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circ Res 96:e83–e91

    Article  PubMed  CAS  Google Scholar 

  • Spray DC, Duffy HS, Scemes E (1999) Gap junctions in glia. Types, roles, and plasticity. Adv Exp Med Biol 468:339–359

    CAS  Google Scholar 

  • Spray DC, Kojima T, Scemes E, Suadicani SO, Gao Y, Zhao S, Fort A (2000) “Negative” physiology: what connexin-deficient mice reveal about the functional roles of individual gap junctions. Curr Top Membr 49:509–533

    Article  CAS  Google Scholar 

  • Stains JP, Civitelli R (2005) Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell 16:64–72

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568(pt 2):459–468

    Article  PubMed  CAS  Google Scholar 

  • Wiencken-Barger AE, Djukic B, Casper KB, McCarthy KD (2007) A role for connexin43 during neurodevelopment. Glia 55:675–686

    Article  PubMed  Google Scholar 

  • Winterhager E, Pielensticker N, Freyer J, Ghanem A, Schrickel JW, Kim JS, Behr R, Grummer R, Maass K, Urschel S, Lewalter T, Tiemann K, Simoni M, Willecke K (2007) Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev Biol 7:26

    Article  PubMed  CAS  Google Scholar 

  • Zheng-Fischhofer Q, Ghanem A, Kim JS, Kibschull M, Schwarz G, Schwab JO, Nagy J, Winterhager E, Tiemann K, Willecke K (2006) Connexin31 cannot functionally replace connexin43 during cardiac morphogenesis in mice. J Cell Sci 119(pt 4):693–701

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Institutes of Health grants MH65495 and NS41282. All data interpreted in this review were obtained through array hybridization and preparation of animals and cell cultures by Dr. Sanda Iacobas and Ms. Marcia Urban-Maldonaldo, and functional classification and consideration of biological relevance have relied on the additional efforts and input of Dr. Sanda Iacobas and Dr. Eliana Scemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Spray.

Additional information

Both authors contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spray, D.C., Iacobas, D.A. Organizational Principles of the Connexin-Related Brain Transcriptome. J Membrane Biol 218, 39–47 (2007). https://doi.org/10.1007/s00232-007-9049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9049-5

Keywords

Navigation