Semi-Solid Dosage Forms Containing Pranoprofen-Loaded NLC as Topical Therapy for Local Inflammation: In Vitro, Ex Vivo and In Vivo Evaluation
"> Figure 1
<p>pH values for at 4 °C, 25 °C, and 40 °C for (<b>A</b>) PRA-NLC-Car; and (<b>B</b>) PRA-NLC-Sep.</p> "> Figure 2
<p>Autocorrelation function plot for the gel formulations at 4 °C, 25 °C, and 40 °C: (<b>A</b>) PRA-NLC-Car and (<b>B</b>) PRA-NLC-Sep. The blue dotted lines represent a 95 confidence limit of the autocorrelation and partial autocorrelation representations.</p> "> Figure 3
<p>SEM photomicrographs of the dried (<b>A</b>) PRA-NLC-Car (magnification ×30,000); and (<b>B</b>) PRA-NLC-Sep (magnification ×15,000). Scale bar = 100 nm and 1 µm, respectively.</p> "> Figure 4
<p>Fourier-transform infrared spectroscopy (FTIR) of PRA-NLC-Car, PRA-NLC-Sep, and PRA.</p> "> Figure 5
<p>Flow curves and viscosity curves for (<b>A</b>) PRA-NLC-Car and (<b>B</b>) PRA-NLC-Sep formulations.</p> "> Figure 6
<p>Surface area (cm<sup>2</sup>) on the basis of the tested mass (g) at 25 °C of (<b>A</b>) PRA-NLC-Car and (<b>B</b>) PRA-NLC-Sep. Mean ± standard deviation (SD) (<span class="html-italic">n</span> = 3).</p> "> Figure 7
<p>(<b>A</b>) The swelling ratio of PRA-NLC-Car; (<b>B</b>) swelling ratio of PRA-NLC-Sep, both upon being submerged in PBS; (<b>C</b>) representation of the percentage of weight reduction degradation in PRA-NLC-Car; (<b>D</b>) percentage of weight loss degradation of PRA-NLC-Sep, both in PBS (pH = 5.5) (<span class="html-italic">n</span> = 3).</p> "> Figure 8
<p>In vitro release profiles of PRA from gels (<b>A</b>) PRA-NLC-Car and (<b>B</b>) PRA-NLC-Sep.</p> "> Figure 9
<p>Plots of the biomechanical properties: (<b>A</b>) stratum corneum hydration and (<b>B</b>) evolution of the skin thickness of the mice ears over time.</p> "> Figure 10
<p>Representative images of histological sections of mice ears treated with different formulations: (<b>A</b>) negative control; (<b>B</b>) positive control, (<b>C</b>) PRA-NLC-Car; and (<b>D</b>) PRA-NLC-Sep. The asterisk indicates leucocyte infiltrate, the arrow indicates disruption due to edema, e is the epidermis, d is the dermis, and ac is the auricular cartilage, 200× magnification. Scale bar = 100 µm.</p> "> Figure 11
<p>Representative images of histological sections of rat skin treated with different formulations: (<b>A</b>) negative control; (<b>B</b>) PRA-NLC-Car; and (<b>C</b>) PRA-NLC-Sep. Asterisk indicates a scar-increased epidermis and loss of stratum corneum. SC is the stratum corneum, e is the epidermis, and d is the dermis. Images at 100× magnification. Scale bar = 200 µm.</p> "> Figure 12
<p>Biomechanical parameters evolution was monitored before applying the gels, and 5 min, 15 min, 1 h, and 2 h after application. (<b>A</b>) TEWL of PRA-NLC-Car (g/h × m<sup>2</sup>); (<b>B</b>) PRA-NLC-Sep (g/h × m<sup>2</sup>); (<b>C</b>) SCH of PRA-NLC-Car (arbitrary units); (<b>D</b>) SCH of PRA-NLC-Sep (arbitrary units). Significant statistical differences: **** <span class="html-italic">p</span> < 0.0001, *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05, ns = non-significant.</p> "> Figure 13
<p>Extensibility device.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of the Gels: PRA-NLC-Car and PRA-NLC-Sep
2.1.1. Appearance and pH Evaluation
2.1.2. Morphological Characterization
2.1.3. Fourier-Transform Infrared (FT-IR)
2.1.4. Rheological Profile
2.1.5. Spreadability or Extensibility Analysis
2.1.6. Swelling, Degradation, and Porosity Studies
2.2. In Vitro Release Assay
2.3. Ex Vivo Permeation Studies
2.4. Anti-Inflammatory Efficacy Studies: Xylol-Induced Mouse Ear Inflammation Model and Rat Back Skin Abrasion Model
2.4.1. Ear Thickness Evaluation and Stratum Corneum Hydration (SCH)
2.4.2. Histological Studies
2.5. In Vivo Tolerance and Biomechanical Human Skin Properties Evaluation
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Preparation of PRA-NLC Dispersion
4.3. Preparation of the Gels: PRA-NLC-Car and PRA-NLC-Sep Gels
- -
- PRA-NLC-Car: The blank gel was developed with carbomer 940 (1% w/v), dispersed in milli Q water, and permitted to hydrate for a day. Afterward, it was stirred moderately and then the pH was adjusted with triethanolamine to ensure a eudermic pH. The PRA-NLC suspension previously optimized and selected was incorporated into the blank gel under continuous magnetic stirring (final formula composition 10.7 mg PRA/g gel). It was left without stirring until it reached equilibrium for a day at 25 °C (room temperature) prior to use.
- -
- PRA-NLC-Sep: The blank gel was prepared with Sepigel 305® (3% w/v) dispersed in milli Q water under continuous stirring to obtain the gel formulation. The PRA-NLC was added to the gel under magnetic stirring until complete homogenization with a final formula composition of 10.7 mg PRA/g gel to maintain an effective active ingredient concentration. The gel was left without stirring right up until achieved equilibrium for a day at 25 °C (room temperature) prior to use. Table 9 indicates the percentage composition for the different phases during of the formulations, as well as the total percentage in the final product.
4.4. Physicochemical Characterization of PRA-NLC-Car and PRA-NLC-Sep
4.4.1. pH and Morphological Characterization
4.4.2. Fourier-Transform Infrared (FT-IR)
4.4.3. Rheological Behavior
4.4.4. Spreadability or Extensibility Analysis
4.4.5. Swelling, Degradation, and Porosity Studies
4.5. In Vitro Release Assay
4.6. Ex Vivo Permeation Study
4.7. Anti-Inflammatory Efficacy Studies: Xylol-Induced Mouse Ear Inflammation Model and Rat Back Skin Abrasion Model
4.7.1. Study Protocol
4.7.2. Ear Thickness Evaluation and Stratum Corneum Hydration (SCH)
4.7.3. Histological Studies
4.8. In Vivo Tolerance, Biomechanical Human Skin Properties Evaluation
4.8.1. Transepidermal Water Loss (TEWL)
4.8.2. Hydration Measurements (SCH)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laura Guerrero Sánchez, E.; Fierro Arias, L.; María Ponce Olivera, R.; Peniche Castellanos, A. Revisión de Técnicas de Abrasión Cutánea. Dermatol. Cosmética Médica Quirúrgica 2015, 13, 66–71. [Google Scholar]
- Gold, M.H. Dermabrasion in Dermatology. Am. J. Clin. Dermatol. 2003, 4, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Bai, Y.; Duan, Z.; Yuan, R.; Liu, X.; Liu, Y.; Liang, X.; Wu, H.; Zhuo, F. Efficacy and Safety of Long-Pulsed 755-Nm Alexandrite Laser for Keratosis Pilaris: A Split-Body Randomized Clinical Trial. Dermatol. Ther. 2022, 12, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Meaike, J.D.; Agrawal, N.; Chang, D.; Lee, E.I.; Nigro, M.G. Noninvasive Facial RejuvenationPart 3: Physician-Directed-Lasers, Chemical Peels, and Other Noninvasive Modalities. Semin. Plast. Surg. 2016, 30, 143–150. [Google Scholar] [CrossRef]
- Zamiri, R.; Zakaria, A.; Abbastabar, H.; Darroudi, M.; Husin, M.S.; Mahdi, M.A. Laser-Fabricated Castor Oil-Capped Silver Nanoparticles. Int. J. Nanomed. 2011, 6, 565–568. [Google Scholar] [CrossRef]
- Bustos-Salgado, P.; Andrade-Carrera, B.; Domínguez-Villegas, V.; Díaz-Garrido, N.; Rodríguez-Lagunas, M.J.; Badía, J.; Baldomà, L.; Mallandrich, M.; Calpena-Campmany, A.; Garduño-Ramírez, M.L. Screening Anti-Inflammatory Effects of Flavanones Solutions. Int. J. Mol. Sci. 2021, 22, 8878. [Google Scholar] [CrossRef]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal Models of Inflammation for Screening of Anti-Inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef]
- Vane, J.R. Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs. Nat. New Biol. 1971, 231, 232–235. [Google Scholar] [CrossRef]
- Rincón, M.; Silva-Abreu, M.; Espinoza, L.C.; Sosa, L.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Colom, H. Enhanced Transdermal Delivery of Pranoprofen Using a Thermo-Reversible Hydrogel Loaded with Lipid Nanocarriers for the Treatment of Local Inflammation. Pharmaceuticals 2022, 15, 22. [Google Scholar] [CrossRef]
- Rincón, M.; Espinoza, L.C.; Silva-Abreu, M.; Sosa, L.; Pesantez-Narvaez, J.; Abrego, G.; Calpena, A.C.; Mallandrich, M. Quality by Design of Pranoprofen Loaded Nanostructured Lipid Carriers and Their Ex Vivo Evaluation in Different Mucosae and Ocular Tissues. Pharmaceuticals 2022, 15, 1185. [Google Scholar] [CrossRef]
- Gouda, A.M.; Beshr, E.A.; Almalki, F.A.; Halawah, H.H.; Taj, B.F.; Alnafaei, A.F.; Alharazi, R.S.; Kazi, W.M.; AlMatrafi, M.M. Arylpropionic Acid-Derived NSAIDs: New Insights on Derivatization, Anticancer Activity and Potential Mechanism of Action. Bioorg. Chem. 2019, 92, 103224. [Google Scholar] [CrossRef] [PubMed]
- Abrego, G.; Alvarado, H.L.; Egea, M.A.; Gonzalez-Mira, E.; Calpena, A.C.; Garcia, M.L. Design of Nanosuspensions and Freeze-Dried PLGA Nanoparticles as a Novel Approach for Ophthalmic Delivery of Pranoprofen. J. Pharm. Sci. 2014, 103, 3153–3164. [Google Scholar] [CrossRef] [PubMed]
- Abrego, G.; Alvarado, H.; Souto, E.B.; Guevara, B.; Bellowa, L.H.; Parra, A.; Calpena, A.; Garcia, M.L. Biopharmaceutical Profile of Pranoprofen-Loaded PLGA Nanoparticles Containing Hydrogels for Ocular Administration. Eur. J. Pharm. Biopharm. 2015, 95, 261–270. [Google Scholar] [CrossRef]
- Cañadas, C.; Alvarado, H.; Calpena, A.C.; Silva, A.M.; Souto, E.B.; García, M.L.; Abrego, G. In Vitro, Ex Vivo and in Vivo Characterization of PLGA Nanoparticles Loading Pranoprofen for Ocular Administration. Int. J. Pharm. 2016, 511, 719–727. [Google Scholar] [CrossRef]
- Tripathi, P.; Kumar, A.; Jain, P.K.; Patel, J.R. Carbomer Gel Bearing Methotrexate Loaded Lipid Nanocontainers Shows Improved Topical Delivery Intended for Effective Management of Psoriasis. Int. J. Biol. Macromol. 2018, 120, 1322–1334. [Google Scholar] [CrossRef]
- Vermeer, B.J. Skin Irritation and Sensitization. J. Control. Release 1991, 15, 261–265. [Google Scholar] [CrossRef]
- Esposito, E.; Nastruzzi, C.; Sguizzato, M.; Cortesi, R. Nanomedicines to Treat Skin Pathologies with Natural Molecules. Curr. Pharm. Des. 2019, 25, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Chen, G.; Zhang, Y.H.; Chen, F.Q.; Weng, H.F.; Xiao, A.F. Agarose Stearate-Carbomer940 as Stabilizer and Rheology Modifier for Surfactant-Free Cosmetic Formulations. Mar. Drugs 2021, 19, 344. [Google Scholar] [CrossRef]
- Rowe, R.; Sheskey, P.J.; Owen, S.C. Handbook of Pharmaceutical Excipients, 5th ed.; Pharmaceutical Press: London, UK; American Pharmacists Association: Washington, DC, USA, 2006. [Google Scholar]
- Berenguer, D.; Sosa, L.; Alcover, M.; Sessa, M.; Halbaut, L.; Guillén, C.; Fisa, R.; Calpena-Campmany, A.C.; Riera, C. Development and Characterization of a Semi-Solid Dosage Form of Meglumine Antimoniate for Topical Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2019, 11, 613. [Google Scholar] [CrossRef]
- Anchisi, C.; Maccioni, A.M.; Sinico, C.; Valenti, D. Stability Studies of New Cosmetic Formulations with Vegetable Extracts as Functional Agents. Il Farm. 2001, 56, 427–431. [Google Scholar] [CrossRef]
- Acofarma. Fichas de Información Técnica: Excipiente Sepigel 305. Available online: https://Formulasmagistrales.Acofarma.Com/Idb/Descarga/3/F00c6c5ca1ee70a1.Pdf (accessed on 22 January 2023).
- Rincón, M.; Calpena, A.C.; Clares, B.; Espina, M.; Garduño-Ramírez, M.L.; Rodríguez-Lagunas, M.J.; García, M.L.; Abrego, G. Skin-Controlled Release Lipid Nanosystems of Pranoprofen for the Treatment of Local Inflammation and Pain. Nanomedicine 2018, 13, 2397–2413. [Google Scholar] [CrossRef]
- Rincón, M.; Calpena, A.C.; Fabrega, M.J.; Garduño-Ramírez, M.L.; Espina, M.; Rodríguez-Lagunas, M.J.; García, M.L.; Abrego, G. Development of Pranoprofen Loaded Nanostructured Lipid Carriers to Improve Its Release and Therapeutic Efficacy in Skin Inflammatory Disorders. Nanomaterials 2018, 8, 22. [Google Scholar] [CrossRef]
- Khan, B.A.; Ali, A.; Hosny, K.M.; Halwani, A.A.; Almehmady, A.M.; Iqbal, M.; Alharbi, W.S.; Abualsunun, W.A.; Bakhaidar, R.B.; Murshid, S.S.A.; et al. Carbopol Emulgel Loaded with Ebastine for Urticaria: Development, Characterization, in Vitro and in Vivo Evaluation. Drug Deliv. 2022, 29, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Brugués, A.P.; Naveros, B.C.; Calpena Campmany, A.C.; Pastor, P.H.; Saladrigas, R.F.; Lizandra, C.R. Developing Cutaneous Applications of Paromomycin Entrapped in Stimuli-Sensitive Block Copolymer Nanogel Dispersions. Nanomedicine 2015, 10, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Thiruchenthooran, V.; Świtalska, M.; Bonilla, L.; Espina, M.; García, M.L.; Wietrzyk, J.; Sánchez-López, E.; Gliszczyńska, A. Novel Strategies against Cancer: Dexibuprofen-Loaded Nanostructured Lipid Carriers. Int. J. Mol. Sci. 2022, 23, 11310. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.; Picard, C.; Savary, G.; Grisel, M. Rheological and Textural Characterization of Cosmetic Emulsions Containing Natural and Synthetic Polymers: Relationships between Both Data. Colloids Surf. A Physicochem. Eng. Asp. 2013, 421, 150–163. [Google Scholar] [CrossRef]
- Carolina Espinoza, L.; Sosa, L.; Granda, P.C.; Bozal, N.; Díaz-Garrido, N.; Cristina Calpena, A. Development of a Topical Amphotericin B and Bursera Graveo-2 Lens Essential Oil-Loaded Gel for the Treatment of Dermal Candid-3 Iasis. Pharmaceuticals 2021, 14, 1033. [Google Scholar] [CrossRef]
- El Moussaoui, S.; Abo-horan, I.; Halbaut, L.; Alonso, C.; Coderch, L.; Garduño-Ramírez, M.L.; Clares, B.; Soriano, J.L.; Calpena, A.C.; Fernández-campos, F.; et al. Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-ablation. Pharmaceutics 2021, 13, 1784. [Google Scholar] [CrossRef]
- Abrego, G.; Alvarado, H.; Souto, E.B.; Guevara, B.; Bellowa, L.H.; Garduño, M.L.; Garcia, M.L.; Calpena, A.C. Biopharmaceutical Profile of Hydrogels Containing Pranoprofen-Loaded PLGA Nanoparticles for Skin Administration: In Vitro, Ex Vivo and in Vivo Characterization. Int. J. Pharm. 2016, 501, 350–361. [Google Scholar] [CrossRef]
- Neupane, Y.R.; Srivastava, M.; Ahmad, N.; Kumar, N.; Bhatnagar, A.; Kohli, K. Lipid Based Nanocarrier System for the Potential Oral Delivery of Decitabine: Formulation Design, Characterization, Ex Vivo, and in Vivo Assessment. Int. J. Pharm. 2014, 477, 601–612. [Google Scholar] [CrossRef]
- Kasongo, K.W.; Mller, R.H.; Walker, R.B. The Use of Hot and Cold High Pressure Homogenization to Enhance the Loading Capacity and Encapsulation Efficiency of Nanostructured Lipid Carriers for the Hydrophilic Antiretroviral Drug, Didanosine for Potential Administration to Paediatric Patients. Pharm. Dev. Technol. 2012, 17, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Risaliti, L.; Piazzini, V.; Di Marzo, M.G.; Brunetti, L.; Cecchi, R.; Lencioni, P.; Bilia, A.R.; Bergonzi, M.C. Topical Formulations of Delta-Aminolevulinic Acid for the Treatment of Actinic Keratosis: Characterization and Efficacy Evaluation. Eur. J. Pharm. Sci. 2018, 115, 345–351. [Google Scholar] [CrossRef] [PubMed]
- El Moussaoui, S.; Mallandrich, M.; Garrós, N.; Calpena, A.C.; Lagunas, M.J.R.; Fernández-Campos, F. Hpv Lesions and Other Issues in the Oral Cavity Treatment and Removal without Pain. Int. J. Mol. Sci. 2021, 22, 11158. [Google Scholar] [CrossRef]
- Pérez-González, N.; Bozal-de Febrer, N.; Calpena-Campmany, A.C.; Nardi-Ricart, A.; Rodríguez-Lagunas, M.J.; Morales-Molina, J.A.; Soriano-Ruiz, J.L.; Fernández-Campos, F.; Clares-Naveros, B. New Formulations Loading Caspofungin for Topical Therapy of Vulvovaginal Candidiasis. Gels 2021, 7, 259. [Google Scholar] [CrossRef]
- El Moussaoui, S.; Fernández-Campos, F.; Alonso, C.; Limón, D.; Halbaut, L.; Garduño-Ramirez, M.L.; Calpena, A.C.; Mallandrich, M. Topical Mucoadhesive Alginate-Based Hydrogel Loading Ketorolac for Pain Management after Pharmacotherapy, Ablation, or Surgical Removal in Condyloma Acuminata. Gels 2021, 7, 8. [Google Scholar] [CrossRef]
- Limón, D.; Jiménez-Newman, C.; Rodrigues, M.; González-Campo, A.; Amabilino, D.B.; Calpena, A.C.; Pérez-García, L. Cationic Supramolecular Hydrogels for Overcoming the Skin Barrier in Drug Delivery. ChemistryOpen 2017, 6, 585–598. [Google Scholar] [CrossRef]
- Garrós, N.; Mallandrich, M.; Beirampour, N.; Mohammadi, R.; Domènech, Ò.; Rodríguez-Lagunas, M.J.; Clares, B.; Colom, H. Baricitinib Liposomes as a New Approach for the Treatment of Sjögren’s Syndrome. Pharmaceutics 2022, 14, 1895. [Google Scholar] [CrossRef]
- Domínguez-Villegas, V.; Clares-Naveros, B.; García-López, M.L.; Calpena-Campmany, A.C.; Bustos-Zagal, P.; Garduño-Ramírez, M.L. Development and Characterization of Two Nano-Structured Systems for Topical Application of Flavanones Isolated from Eysenhardtia platycarpa. Colloids Surf. B Biointerfaces 2014, 116, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Sarango-Granda, P.; Espinoza, L.C.; Díaz-Garrido, N.; Alvarado, H.; Rodríguez-Lagunas, M.J.; Baldomá, L.; Calpena, A. Effect of Penetration Enhancers and Safety on the Transdermal Delivery of Apremilast in Skin. Pharmaceutics 2022, 14, 1011. [Google Scholar] [CrossRef] [PubMed]
- Kajiyama, H.; Fujimura, A.; Ebihara, A.; Hino, Y. Pharmacokinetics of Pranoprofen in the Elderly. Int. J. Clin. Pharmacol. Res. 1991, 11, 123–127. [Google Scholar]
- Parra, A.; Clares, B.; Rosselló, A.; Garduño-Ramírez, M.L.; Abrego, G.; García, M.L.; Calpena, A.C. Ex Vivo Permeation of Carprofen from Nanoparticles: A Comprehensive Study through Human, Porcine and Bovine Skin as Anti-Inflammatory Agent. Int. J. Pharm. 2016, 501, 10–17. [Google Scholar] [CrossRef] [PubMed]
Concentration (%) | Color | Homogeneity | Consistency | Phase Separation | |
---|---|---|---|---|---|
0.5 | White | ++ | ++ | None | |
Carbomer 940 gels | 1 | White | +++ | +++ | None |
2 | White | +++ | ++ | None | |
2 | White | ++ | ++ | None | |
Sepigel® 305 gels | 2.5 | White | ++ | +++ | None |
3 | White | +++ | +++ | None |
Stability Parameters | Fresh | 1 Day | 3 Days | 1 Week | 2 Weeks | 1 Month | |
---|---|---|---|---|---|---|---|
Color | White | White | White | White | White | White | |
PRA-NLC-Car | Odor | −ch | −ch | −ch | −ch | −ch | −ch |
Phase separation | −ch | −ch | −ch | −ch | −ch | −ch | |
Homogeneity | −ch | −ch | −ch | −ch | −ch | −ch | |
Color | White | White | White | White | White | White | |
PRA-NLC-Sep | Odor | −ch | −ch | −ch | −ch | −ch | −ch |
Phase separation | −ch | −ch | −ch | −ch | −ch | −ch | |
Homogeneity | −ch | −ch | −ch | −ch | −ch | −ch |
Temperature | Fresh | 1 Day | 3 Days | 1 Week | 2 Weeks | 1 Month | |
---|---|---|---|---|---|---|---|
4 °C | 5.20 | 5.20 | 5.35 | 5.39 | 5.48 | 5.49 | |
PRA-NLC-Car | 25 °C | 5.20 | 5.22 | 5.34 | 5.55 | 5.65 | 5.66 |
40 °C | 5.20 | 5.31 | 5.42 | 5.63 | 5.71 | 5.92 | |
4 °C | 6.08 | 6.10 | 6.11 | 6.17 | 6.21 | 6.21 | |
PRA-NLC-Sep | 25 °C | 6.08 | 6.10 | 6.14 | 6.23 | 6.32 | 6.36 |
40 °C | 6.08 | 6.11 | 6.20 | 6.35 | 6.44 | 6.47 |
One-Site Binding (Hyperbola) (Y = Bmax × X/Kd + X) | PRA-NLC-Car | PRA-NLC-Sep |
---|---|---|
Best-fit values | ||
Bmax (mg) | 11.90 | 26.86 |
Kd (h) | 3.352 | 3.476 |
Std. Error | ||
Bmax | 0.2619 | 0.5332 |
Kd | 0.5259 | 0.4629 |
95% CI (profile likelihood) | ||
Bmax | 11.37 to 12.43 | 25.77 to 27.96 |
Kd | 2.280 to 4.425 | 2.522 to 4.429 |
Goodness of Fit | ||
Degrees of Freedom | 31 | 25 |
R squared | 0.9500 | 0.9706 |
Square Sum | 20.17 | 58.04 |
Sy.x | 0.8066 | 1.524 |
Jss (µg/h/cm2) | Kp (cm/h) × 103 | Q24h (µg) | Qret (µg/g/cm2) | Old-Age Humans Css (µg/mL) × 104 | Young Humans Css (µg/mL) × 104 | |
---|---|---|---|---|---|---|
PRA-NLC-Car | 0.02917 | 1.9447 | 0.88 | 134.15 | 47.901 | 25.442 |
(0.02745–0.03163) | (1.8302–2.1087) | (0.82–0.93) | (130.09–138.32) | (45.074–51.938) | (23.940–27.585) | |
PRA-NLC-Sep | 0.31781 | 21.1875 | 12.66 | 79.98 | 5.218 | 2.771 |
(0.30275–0.33054) | (20.1833–22.0361) | (12.07–12.99) | (75.23–91.43) | (4.971–5.428) | (2.640–2.883) |
0 min | 5 min | 20 min | 40 min | |
---|---|---|---|---|
PRA-NLC-Car | 0.38 ± 0.01 | 0.47 ± 0.02 | 0.31 ± 0.01 | 0.37 ± 0.01 |
PRA-NLC-Sep | 0.39 ± 0.03 | 0.51 ± 0.02 | 0.48 ± 0.02 | 0.40 ± 0.03 |
Control − | 0.37 ± 0.02 | 0.37 ± 0.01 | 0.37 ± 0.01 | 0.37 ± 0.01 |
Control + | 0.43 ± 0.04 | 0.54 ± 0.05 | 0.57 ± 0.06 | 0.58 ± 0.05 |
0 min | 5 min | 20 min | 40 min | |
---|---|---|---|---|
PRA-NLC-Car | 6.3 ± 0.01 | 6.4 ± 0.01 | 13.1 ± 0.02 | 15.1 ± 0.02 |
PRA-NLC-Sep | 6.3 ± 0.03 | 6.2 ± 0.04 | 8.3 ± 0.04 | 9.5 ± 0.04 |
Control − | 8 ± 0.01 | 8.4 ± 0.02 | 9.4 ± 0.02 | 8.3 ± 0.02 |
Control + | 7.5 ± 0.03 | 7.3 ± 0.02 | 16.1 ± 0.04 | 18.7 ± 0.3 |
0 | 1 | 2 | 3 | |
---|---|---|---|---|
PRA-NLC-Car | −0.66 | −0.113 | 0.369 | 0.054 |
PRA-NLC-Sep | −0.282 | −0.574 | 0.06 | 0.201 |
Control + | 0.744 | −0.056 | −0.372 | −0.202 |
Phase | Ingredient | Percentage (%) | Total Percentage in Final Formula (%) | |
---|---|---|---|---|
PRA-NLC-Car | PRA-NLC-Sep | |||
NLC | Pranoprofen | 1.50 | 1.07 | 1.07 |
Tween®80 | 2.50 | 1.79 | 1.79 | |
Solid lipid (Precirol ATO5) | 2.50 | 0.45 | 0.45 | |
Liquid lipid (LAS) 1 | 1.88 | 1.34 | 1.34 | |
Liquid lipid (Castor oil) | 0.63 | 1.79 | 1.79 | |
Milli-Q water | 91.00 | 64.99 | 64.99 | |
Car-Gel | Carbomer 940 | 1.00 | 0.29 | - |
Triethanolamine | 0.10 | 0.03 | - | |
Milli-Q water | 98.90 | 28.27 | - | |
Sep-Gel | Sepigel 305 | 3.00 | - | 0.86 |
Milli-Q water | 97.00 | - | 27.72 |
Parameter | Condition |
---|---|
Receptor fluid | Phosphate-buffered saline (PBS pH = 7.4) |
Cell volume | 5 mL |
Membrane | Dialysis membrane |
Diffusion area | 0.64 cm2 |
Temperature | 32 ± 0.5 °C |
Stirring | 600 r.p.m. |
Dose | 2.6 g |
Sample volume | 200 µL |
Sampling times | 0, 12, 16, 20, 24, 41, 47, 59, 70, 88 h |
Replicates | n = 5 |
Parameter | Condition |
---|---|
Receptor medium | Phosphate-buffered saline (PBS pH = 7.4) |
Franz cell volume | 5 mL |
Membrane | Abdominal human skin |
Skin diffusion area | 0.64 cm2 |
Thickness | 400 µm |
Temperature | 32 ± 0.5 °C |
Stirring | 600 r.p.m. |
Dose | 0.1 g |
Sample volume | 200 µL |
Sampling times | 4, 10, 18, 22, 25, 28, and 34 h |
Replicates | n = 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, N.; Rincón, M.; Silva-Abreu, M.; Sosa, L.; Pesantez-Narvaez, J.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Mallandrich, M. Semi-Solid Dosage Forms Containing Pranoprofen-Loaded NLC as Topical Therapy for Local Inflammation: In Vitro, Ex Vivo and In Vivo Evaluation. Gels 2023, 9, 448. https://doi.org/10.3390/gels9060448
Ahmadi N, Rincón M, Silva-Abreu M, Sosa L, Pesantez-Narvaez J, Calpena AC, Rodríguez-Lagunas MJ, Mallandrich M. Semi-Solid Dosage Forms Containing Pranoprofen-Loaded NLC as Topical Therapy for Local Inflammation: In Vitro, Ex Vivo and In Vivo Evaluation. Gels. 2023; 9(6):448. https://doi.org/10.3390/gels9060448
Chicago/Turabian StyleAhmadi, Negar, María Rincón, Marcelle Silva-Abreu, Lilian Sosa, Jessica Pesantez-Narvaez, Ana Cristina Calpena, María J. Rodríguez-Lagunas, and Mireia Mallandrich. 2023. "Semi-Solid Dosage Forms Containing Pranoprofen-Loaded NLC as Topical Therapy for Local Inflammation: In Vitro, Ex Vivo and In Vivo Evaluation" Gels 9, no. 6: 448. https://doi.org/10.3390/gels9060448
APA StyleAhmadi, N., Rincón, M., Silva-Abreu, M., Sosa, L., Pesantez-Narvaez, J., Calpena, A. C., Rodríguez-Lagunas, M. J., & Mallandrich, M. (2023). Semi-Solid Dosage Forms Containing Pranoprofen-Loaded NLC as Topical Therapy for Local Inflammation: In Vitro, Ex Vivo and In Vivo Evaluation. Gels, 9(6), 448. https://doi.org/10.3390/gels9060448