Various Hydrogel Types as a Potential In Vitro Angiogenesis Model
"> Figure 1
<p>Characterization of MSCs and HUVECs using flow cytometry. (<b>A</b>) In the upper row: a typical flow cytometric analysis of one exemplary MSC donor for stem cell markers, which should stain positive (CD73+, CD90+, CD105+), as well as surface markers of hematopoietic stem cells and endothelial cells, which should stain negative (CD34−, CD45−). In the lower row: a typical flow cytometric analysis of the HUVEC donor for endothelial-specific markers (CD31+ and vWF+) and hematopoietic stem cells, which should be stained negative (CD45−). (<b>B</b>) Flow cytometric quantification of surface marker expression of the 3 donors of BM-MSCs. CD34− and CD45− were negative for all cell types. High levels of CD73+ (>99.8), CD90+ (>99.8%), and CD105+ (>98.8%) expression were detectable in all stem cell types. (<b>C</b>) Flow cytometric quantification of surface marker expression of the three donors of each cell type. CD45− was negative and CD31+ and vWF+ achieved high levels of expression, at 89.1% and 98.25%, respectively. The percentage indicates the percentage of cells that express the respective marker. Abbreviations: BM-MSCs, bone marrow-derived mesenchymal stem cells; HUVECs, human umbilical vein endothelial cells; vWF, von Willebrand factor. Biological <span class="html-italic">n</span> = 3 for BM-MSCs and <span class="html-italic">n</span> = 1 for HUVECs.</p> "> Figure 2
<p>Two-dimensional angiogenesis experiments. (<b>A</b>) Representative immunofluorescence-staining pictures with no additive, suramin, or VEGF addition on days 1, 7, and 10. CD31+ is shown in red and cell nuclei in blue (DAPI). Images were taken at 100× magnification; scale bar: 200 μm. (<b>B</b>) Quantification of the fluorescent microscopy pictures showing the number of branches/segments/junctions, total branch/segment length, and total mesh area of the three conditions on days 7 and 10. Two-way ANOVA was applied (<span class="html-italic">p</span> * ≤ 0.01, <span class="html-italic">p</span> ** ≤ 0.005, <span class="html-italic">p</span> *** ≤ 0.001, <span class="html-italic">p</span> **** ≤ 0.0001) with a Tukey post hoc test.</p> "> Figure 3
<p>Characterization of the hydrogels. (<b>A</b>) SEM pictures of the three different hydrogels after 1 day and 10 days in culture. Magnification of 20,000× with a scale bar of 3 µm. (<b>B</b>) Determination of Young’s elastic modulus of the hydrogels using nanoindentation to investigate stiffness and stability over time. Two-way ANOVA was applied (<span class="html-italic">p</span> * ≤ 0.01).</p> "> Figure 4
<p>Angiogenesis in hydrogels—representative immunofluorescence pictures of collagen, fibrin, and HPL on days 1, 7, and 10. Experiments were repeated with three different MSC donors. CD31 is shown in red and cell nuclei in blue (DAPI). Images were taken at 100× magnification; scale bar: 200 μm.</p> "> Figure 5
<p>Angiogenesis in hydrogels—2-photon microscopy and TEM. (<b>A</b>) Immunofluorescence staining with no additive for each of the three gel types (fibrin, collagen, and HPL). For each gel type the diagonal, side, and top views are shown. (<b>B</b>) Diagonal and side views and stack image of HPL gel. The green circle highlights a formed lumen. CD31 is shown in red and DAPI in blue. The diagonal view, side view, and one stack image are shown for an immunofluorescence staining. (<b>C</b>) TEM visualization of lumens in HPL and fibrin gels with and without VEGF. The white dashed line indicates the lumen diameter for quantification.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cell Characterization
2.2. Angiogenesis W/O Added Hydrogel
2.3. Hydrogel Characterization
2.4. Angiogenesis in Hydrogels
2.5. Discussion
3. Conclusions
4. Materials and Methods
4.1. Cell Culture
4.2. Flow Cytometry
4.3. Angiogenesis Without Added Hydrogel
4.4. Immunofluorescence Staining and Fluorescence Microscopy
4.5. Quantification
4.6. Hydrogel Synthesis
4.7. Scanning Electron Microscopy
4.8. Nanoindentation
4.9. 3D Angiogenesis
4.10. Immunofluorescence Staining
4.11. 2-Photon-Microscopy
4.12. Transmission Electron Microscopy
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, A.G.; Panigrahy, D. Targeting Angiogenesis via Resolution of Inflammation. Cold Spring Harb. Perspect. Med. 2023, 13, a041172. [Google Scholar] [CrossRef]
- Korntner, S.; Lehner, C.; Gehwolf, R.; Wagner, A.; Grütz, M.; Kunkel, N.; Tempfer, H.; Traweger, A. Limiting angiogenesis to modulate scar formation. Adv. Drug Deliv. Rev. 2019, 146, 170–189. [Google Scholar] [CrossRef]
- Han, C.; Barakat, M.; Dipietro, L.A. Angiogenesis in Wound Repair: Too Much of a Good Thing? Cold Spring Harb. Perspect. Biol. 2022, 14, a041225. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Werlein, C.; Plucinski, E.; Leypold, S.; Kühnel, M.P.; Verleden, S.E.; Khalil, H.A.; Länger, F.; Welte, T.; Mentzer, S.J.; et al. The role of vasculature and angiogenesis in respiratory diseases. In Angiogenesis; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Ucuzian, A.A.; Greisler, H.P. In vitro models of angiogenesis. World J. Surg. 2007, 31, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Brassard-Jollive, N.; Monnot, C.; Muller, L.; Germain, S. In vitro 3D Systems to Model Tumor Angiogenesis and Interactions With Stromal Cells. Front. Cell Dev. Biol. 2020, 8, 594903. [Google Scholar] [CrossRef]
- Song, J.; Gerecht, S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler. Thromb. Vasc. Biol. 2023, 43, E291–E302. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.; Theret, M.; Scott, W.; Hill, L.; Underhill, T.M.; Hinz, B.; Rossi, F.M.V. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell 2021, 28, 1690–1707. [Google Scholar] [CrossRef] [PubMed]
- Zegeye, M.M.; Andersson, B.; Sirsjö, A.; Ljungberg, L.U. IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells 2020, 9, 1414. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, D.B.; Severn, C.E.; Twomey, C.; Greenhough, A.; Cash, J.; Toye, A.M.; Mellor, H.; Martin, P. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018, 37, e97786. [Google Scholar] [CrossRef]
- Guerra, A.; Belinha, J.; Mangir, N.; MacNeil, S.; Natal Jorge, R. Sprouting Angiogenesis: A Numerical Approach with Experimental Validation. Ann. Biomed. Eng. 2021, 49, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Du Cheyne, C.; Smeets, M.; De Spiegelaere, W. Techniques used to assess intussusceptive angiogenesis: A systematic review. Dev. Dyn. 2021, 250, 1704–1716. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Vimalraj, S.; Pavani, K.; Nikarika, R.; Sumantran, V.N. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci. 2020, 252, 117670. [Google Scholar] [CrossRef] [PubMed]
- Vimalraj, S.; Pichu, S.; Pankajam, T.; Dharanibalan, K.; Djonov, V.; Chatterjee, S. Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models. Nitric Oxide 2019, 82, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Chau, T.C.Y.; Keyser, M.S.; Da Silva, J.A.; Morris, E.K.; Yordanov, T.E.; Duscyz, K.P.; Paterson, S.; Yap, A.S.; Hogan, B.M.; Lagendijk, A.K. Dynamically regulated focal adhesions coordinate endothelial cell remodelling in developing vasculature. Development 2022, 149, dev200454. [Google Scholar] [CrossRef] [PubMed]
- van Duinen, V.; Zhu, D.; Ramakers, C.; van Zonneveld, A.J.; Vulto, P.; Hankemeier, T. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 2019, 22, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Boas, S.E.M.; Carvalho, J.; van den Broek, M.; Weijers, E.M.; Goumans, M.J.; Koolwijk, P.; Merks, R.M.H. A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants. PLoS Comput. Biol. 2018, 14, e1006239. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Agarwal, T.; Mishra, D.; Maiti, T.K.; Mohanty, S. Goat tendon collagen-human fibrin hydrogel for comprehensive parametric evaluation of HUVEC microtissue-based angiogenesis. Colloids Surf. B Biointerfaces 2018, 163, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Salamone, M.; Rigogliuso, S.; Nicosia, A.; Campora, S.; Bruno, C.M.; Ghersi, G. 3D Collagen Hydrogel Promotes In Vitro Langerhans Islets Vascularization through ad-MVFs Angiogenic Activity. Biomedicines 2021, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Kent, R.N.; Huang, S.A.; Jarman, E.H.; Shikanov, E.H.; Davidson, C.D.; Hiraki, H.L.; Lin, D.; Wall, M.A.; Matera, D.L.; et al. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Acta Biomater. 2021, 135, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Senk, A.; Djonov, V. Collagen fibers provide guidance cues for capillary regrowth during regenerative angiogenesis in zebrafish. Sci. Rep. 2021, 11, 19520. [Google Scholar] [CrossRef]
- Mendes, B.B.; Gómez-Florit, M.; Pires, R.A.; Domingues, R.M.A.; Reis, R.L.; Gomes, M.E. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. Nanoscale 2018, 10, 17388–17401. [Google Scholar] [CrossRef]
- Fortunato, T.M.; Beltrami, C.; Emanueli, C.; De Bank, P.A.; Pula, G. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: Tissue engineering implications. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Zhang, D.; Liu, F.; Cheng, Y.; Ma, Y.; Zhou, Y.; Zhao, Y. Platelet-Derived Exosomes Affect the Proliferation and Migration of Human Umbilical Vein Endothelial Cells Via miR-126. Curr. Vasc. Pharmacol. 2018, 17, 379–387. [Google Scholar] [CrossRef]
- Wein, S.; Schemmer, C.; Al Enezy-Ulbrich, M.A.; Jung, S.A.; Rütten, S.; Kühnel, M.; Jonigk, D.; Jahnen-Dechent, W.; Pich, A.; Neuss, S. Fibrin-Based Hydrogels with Reactive Amphiphilic Copolymers for Mechanical Adjustments Allow for Capillary Formation in 2D and 3D Environments. Gels 2024, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Han, B.; Cao, C.; Yang, D.; Qu, X.; Wang, X. An injectable double-network hydrogel for the co-culture of vascular endothelial cells and bone marrow mesenchymal stem cells for simultaneously enhancing vascularization and osteogenesis. J. Mater. Chem. B 2018, 6, 7811–7821. [Google Scholar] [CrossRef]
- Sears, V.; Ghosh, G. Harnessing mesenchymal stem cell secretome: Effect of extracellular matrices on proangiogenic signaling. Biotechnol. Bioeng. 2020, 117, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Piard, C.; Jeyaram, A.; Liu, Y.; Caccamese, J.; Jay, S.M.; Chen, Y.; Fisher, J. 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials 2019, 222, 119423. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, G.; Berndt, S.; Ferratge, S.; Rasband, W.; Cuendet, M.; Uzan, G.; Albanese, P. Mesenchymal stem cells can be recruited to wounded tissue via hepatocyte growth factor-loaded biomaterials. J. Tissue Eng. Regen. Med. 2017, 11, 2988–2998. [Google Scholar]
- Cholewa, D.; Stieh, T.; Schellenberg, A.; Bokermann, G.; Joussen, S.; Koch, C.; Cholewa, D.; Stieh, T.; Schellenberg, A.; Bokermann, G.; et al. Single-cell analysis of cultured bone marrow stromal cells reveals high similarity to fibroblasts in situ. Exp. Hematol. 2022, 110, 28–33. [Google Scholar]
- Neuss, S.; Becher, E.; Wöltje, M.; Tietze, L.; Jahnen-Dechent, W. Functional Expression of HGF and HGF Receptor/c-met in Adult Human Mesenchymal Stem Cells Suggests a Role in Cell Mobilization, Tissue Repair, and Wound Healing. Stem Cells 2004, 22, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Bienert, M.; Hoss, M.; Bartneck, M.; Weinandy, S.; Böbel, M.; Jockenhövel, S.; Knüchel, R.; Pottbacker, K.; Wöltje, M.; Jahnen-Dechent, W.; et al. Growth factor-functionalized silk membranes support wound healing in vitro. Biomed. Mater. 2017, 12, 045023. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.M.; Siegman, S.N.; Segura, T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 2011, 32, 7432–7443. [Google Scholar] [CrossRef]
- Waltenberger, J.; Mayr, U.; Frank, H.; Hombach, V. Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. J. Mol. Cell Cardiol. 1996, 28, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, G.; Berndt, S.; Ferratge, S.; Rasband, W.; Cuendet, M.; Uzan, G.; Albanese, P. Angiogenesis Analyzer for ImageJ—A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay”. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Walenda, G.; Hemeda, H.; Schneider, R.K.; Merkel, R.; Hoffmann, B.; Wagner, W. Human platelet lysate gel provides a novel three dimensional-matrix for enhanced culture expansion of mesenchymal stromal cells. Tissue Eng. Part. C Methods 2012, 18, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, J.; Malyaran, H.; Enezy-Ulbrich MAAl Jung, S.; Radermacher, C.; Buhl, E.M.; Pich, A.; Neuss, S. Assessment of Fibrin-Based Hydrogels Containing a Fibrin-Binding Peptide to Tune Mechanical Properties and Cell Responses. Macromol. Mater. Eng. 2023, 308, 2200678. [Google Scholar] [CrossRef]
- Cholewa, D.; Stiehl, T.; Schellenberg, A.; Bokermann, G.; Joussen, S.; Koch, C.; Walenda, T.; Pallua, N.; Marciniak-Czochra, A.; Suschek, C.V.; et al. Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant. 2011, 20, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Minor, A.J.; Coulombe KL, K. Engineering a collagen matrix for cell-instructive regenerative angiogenesis. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- Osidak, E.O.; Kalabusheva, E.P.; Alpeeva, E.V.; Belousov, S.I.; Krasheninnikov, S.V.; Grigoriev, T.E.; Domogatsky, S.P.; Vorotelyak, E.A.; Chermnykh, E.S. Concentrated Collagen Hydrogels: A New Approach for Developing Artificial Tissues. Acta Mater. 2021, 20, 101217. [Google Scholar] [CrossRef]
- LaBelle, S.A.; Dinkins, S.S.; Hoying, J.B.; Budko, E.V.; Rauff, A.; Strobel, H.A.; Lin, A.H.; Weiss, J.A. Matrix anisotropy promotes angiogenesis in a density-dependent manner. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H806–H818. [Google Scholar] [CrossRef] [PubMed]
- Camasão, D.B.; Pezzoli, D.; Loy, C.; Kumra, H.; Levesque, L.; Reinhardt, D.P.; Candiani, G.; Mantovani, D. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells. Biotechnol. J. 2019, 14, 1700768. [Google Scholar] [CrossRef] [PubMed]
- Petsoglou, C.; Wen, L.; Hoque, M.; Zhu, M.; Valtink, M.; Sutton, G.; You, J. Effects of human platelet lysate on the growth of cultured human corneal endothelial cells. Exp. Eye Res. 2021, 208, 108613. [Google Scholar] [CrossRef] [PubMed]
- Bowers, S.L.K.; Kemp, S.S.; Aguera, K.N.; Koller, G.M.; Forgy, J.C.; Davis, G.E. Defining an Upstream VEGF (Vascular Endothelial Growth Factor) Priming Signature for Downstream Factor-Induced Endothelial Cell-Pericyte Tube Network Coassembly. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2891–2909. [Google Scholar] [CrossRef] [PubMed]
- Juliar, B.A.; Keating, M.T.; Kong, Y.P.; Botvinick, E.L.; Putnam, A.J. Sprouting angiogenesis induces significant mechanical heterogeneities and ECM stiffening across length scales in fibrin hydrogels. Biomaterials 2018, 162, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Schallmoser, K.; Henschler, R.; Gabriel, C.; Koh, M.B.C.; Burnouf, T. Production and Quality Requirements of Human Platelet Lysate: A Position Statement from the Working Party on Cellular Therapies of the International Society of Blood Transfusion. Trends Biotechnol. 2020, 38, 13–23. [Google Scholar] [CrossRef]
Component | µL |
---|---|
Fibrinogen (6.2 mg/mL) | 288.98 |
CaCl2 (50 mM) | 16.04 |
GBSH5 | 6.42 |
Tranexamic acid (100 mg/mL) | 6.42 |
∑ Fibrogen-buffer suspension | 317.86 |
Thrombin (10 U) | 32.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radermacher, C.; Rohde, A.; Kucikas, V.; Buhl, E.M.; Wein, S.; Jonigk, D.; Jahnen-Dechent, W.; Neuss, S. Various Hydrogel Types as a Potential In Vitro Angiogenesis Model. Gels 2024, 10, 820. https://doi.org/10.3390/gels10120820
Radermacher C, Rohde A, Kucikas V, Buhl EM, Wein S, Jonigk D, Jahnen-Dechent W, Neuss S. Various Hydrogel Types as a Potential In Vitro Angiogenesis Model. Gels. 2024; 10(12):820. https://doi.org/10.3390/gels10120820
Chicago/Turabian StyleRadermacher, Chloé, Annika Rohde, Vytautas Kucikas, Eva Miriam Buhl, Svenja Wein, Danny Jonigk, Willi Jahnen-Dechent, and Sabine Neuss. 2024. "Various Hydrogel Types as a Potential In Vitro Angiogenesis Model" Gels 10, no. 12: 820. https://doi.org/10.3390/gels10120820
APA StyleRadermacher, C., Rohde, A., Kucikas, V., Buhl, E. M., Wein, S., Jonigk, D., Jahnen-Dechent, W., & Neuss, S. (2024). Various Hydrogel Types as a Potential In Vitro Angiogenesis Model. Gels, 10(12), 820. https://doi.org/10.3390/gels10120820