IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells
"> Figure 1
<p>The role of exogeneous and endogenous IL-6 in tube formation of vascular endothelial cells (ECs). Representative images (24h) showing tube formation of (<b>A</b>) unstimulated ECs or (<b>B</b>) ECs treated with IL-6 alone (100 ng/mL) or (<b>C</b>) in combination with sIL-6R (100 ng/mL). Quantification of the tube formation is presented as (<b>D</b>) total tube length, (<b>E</b>) number of branching points, and (<b>F</b>) loop count per image. Tube formation of ECs exposed to non-target siRNA (<b>G</b>) or IL-6 targeting siRNAs (<b>H</b>) and the quantification of tube formation is shown as (<b>I</b>) total tube length, (<b>J</b>) number of branching points, and (<b>K</b>) loop count per image. Dot plots from 3-4 experiments that were each run in duplicate is presented. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 compared to control.</p> "> Figure 2
<p>Proliferation and migration of vascular ECs after stimulation with IL-6 (100 ng/mL) and sIL-6R (100 ng/mL). (<b>A</b>) The rate of EC proliferation in response to IL-6/sIL6R over a period of 168 h (7 days) is shown as fold change (mean ± SEM) in cell number from baseline time = 0 h (set to 1). (<b>B</b>) Scatter plot and flow cytometry data showing the viability of ECs stimulated with IL-6/sIL6R compared to untreated controls and representative density plots are presented. The percentage of wound closure after a scratch assay on vascular ECs pre-treated with IL-6 (100 ng/mL) and sIL-6R (100 ng/mL) is shown as mean ± SEM of 6 experiments each run in duplicate (<b>C</b>) and representative images are shown at baseline and after 12 h incubation (<b>D</b>). The images are brightness/contrast-adjusted and were cropped using ImageJ. *<span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 compared to control. 7-AAD = 7-aminoactinomycin D.</p> "> Figure 3
<p>Gene and protein expression of selected genes regulated by IL-6 trans-signaling in vascular ECs. qPCR analyses showing the gene expression (mean ± SEM) of (<b>A</b>) CXCL10, (<b>B</b>) SERPINF1, (<b>C</b>) cKIT, and (<b>D</b>) CXCL8 by ECs treated with IL-6 (100 ng/mL) and sIL-6R (100 ng/mL) combined compared to untreated controls (set to 1). The dot plots (mean) show Olink proteomic data on the production of (<b>E</b>) CXCL10 and (<b>F</b>) CXCL8 by vascular ECs in response to IL-6 (100 ng/mL) and sIL-6R (100 ng/mL) combination (48 h). *<span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 compared to control.</p> "> Figure 4
<p>Ingenuity Pathway Analysis (IPA) of the angiogenesis array gene expression data from vascular ECs after treatment with IL-6 (100 ng/mL) and sIL-6R (100 ng/mL) combined (48 h). The differentially regulated genes in response to IL-6 trans-signaling enriched the functions related to tube formation of endothelial cells (<b>A</b>) and migration of endothelial cells (<b>B</b>). The downregulated and upregulated genes in response to IL-6 trans-signaling are shown with green and red colors, respectively. Inhibition of the functions “tube formation” and “migration” of ECs are depicted in blue color (center), and the differentially regulated genes that lead to the inhibition of tube formation and migration are connected with blue lines. The yellow lines show disagreement between state of the differentially regulated gene expression and the state of tube formation or migration of ECs (i.e., inhibition). Gray lines indicate that no prediction could be made.</p> "> Figure 5
<p>The effect of IL-6 trans-signaling on vascular endothelial growth factor-A (VEGF-A) signaling in vascular ECs. Representative immunoblots (top row) and quantified signal (bottom row) of phosphorylation of (<b>A</b>) Erk1/2<sup>Thr202.Tyr204</sup>, (<b>B</b>) p38<sup>T180/Y182</sup>, and (<b>C</b>) Akt<sup>S473</sup> in response to VEGF-A (10ng/mL) in ECs with or without IL-6 + sIL-6R (100 ng/mL each) pre-treatment. The dot plots (mean) show signals from the phosphorylated proteins normalized to β-tubulin (loading control) compiled from six independent experiments. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culturing
2.2. Stimulation of HUVECs with IL-6 and sIL-6R
2.3. IL-6 Knockdown Using siRNAs
2.4. Tube Formation Assay
2.5. Proliferation Assay Using Crystal Violet Staining
2.6. Apoptosis Assay
2.7. Migration Assay
2.8. Total RNA Isolation and cDNA Synthesis
2.9. Cell Lysate Preparation and Total Protein Quantification
2.10. Human Angiogenesis Array
2.11. Real-Time PCR
2.12. Olink Proteomics Analyses
2.13. Western Blotting
2.14. Data Analysis
3. Results
3.1. Effect of IL-6 Signaling on Tube Formation of Human Vascular ECs
3.2. Regulation of Proliferation and Migration of Human Vascular ECs by IL-6
3.3. Exploring Molecular Mechanisms Behind Regulation of Vascular Endothelial Tube Formation and Migration by IL-6 trans-Signaling
3.4. Impact of IL-6 Trans-Signaling on VEGF-A Signaling in Vascular ECs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Lamalice, L.; Le Boeuf, F.; Huot, J. Endothelial cell migration during angiogenesis. Circ. Res. 2007, 100, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect Med. 2012, 2, 1–22. [Google Scholar] [CrossRef]
- Takahashi, T.; Yamaguchi, S.; Chida, K.; Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 2001, 20, 2768–2778. [Google Scholar] [CrossRef] [Green Version]
- Fujio, Y.; Walsh, K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J. Biol. Chem. 1999, 274, 16349–16354. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Nagy, J.A.; Manseau, E.J.; Phung, T.L.; Dvorak, H.F.; Benjamin, L.E. Rapamycin Inhibition of the Akt/mTOR Pathway Blocks Select Stages of VEGF-A164-Driven Angiogenesis, in Part by Blocking S6Kinase. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1172–1178. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Bian, D.; Mahanivong, C.; Cheng, R.K.; Zhou, W.; Huang, S. P38 mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. J. Biol. Chem. 2004, 279, 50446–50454. [Google Scholar] [CrossRef] [Green Version]
- Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox. Biol. 2017, 12, 18–34. [Google Scholar] [CrossRef]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Carlos-Reyes, A.; Lopez-Camarillo, C.; Hernadez de la Cruz, O.N.; Lopez-Gonzalez, J.S. Contribution of Angiogenesis to Inflammation and Cancer. Front. Oncol. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantatore, F.P.; Maruotti, N.; Corrado, A.; Ribatti, D. Angiogenesis Dysregulation in Psoriatic Arthritis: Molecular Mechanisms. Biomed. Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.; Incio, J.; Soares, R. Angiogenesis and chronic inflammation: Cause or consequence? Angiogenesis 2007, 10, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Fahey, E.; Doyle, S.L. IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front. Immunol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainson, R.C.; Johnston, D.A.; Chu, H.C.; Holderfield, M.T.; Nakatsu, M.N.; Crampton, S.P.; Davis, J.; Conn, E.; Hughes, C.C. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 2008, 111, 4997–5007. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, N.; Kishimoto, T. Interleukin 6: From bench to bedside. Nat. Clin. Pract. Rheumatol. 2006, 2, 619–626. [Google Scholar] [CrossRef]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef]
- Starkie, R.; Ostrowski, S.R.; Jauffred, S.; Febbraio, M.; Pedersen, B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003, 17, 884–886. [Google Scholar] [CrossRef]
- Wunderlich, F.T.; Ströhle, P.; Könner, A.C.; Gruber, S.; Tovar, S.; Brönneke, H.S.; Juntti-Berggren, L.; Li, L.S.; Van Rooijen, N.; Libert, C.; et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 2010, 12, 237–249. [Google Scholar] [CrossRef]
- Schaper, F.; Rose-John, S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015, 26, 475–487. [Google Scholar] [CrossRef]
- Schumacher, N.; Meyer, D.; Mauermann, A.; Von Der Heyde, J.; Wolf, J.; Schwarz, J.; Knittler, K.; Murphy, G.; Michalek, M.; Garbers, C.; et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J. Biol. Chem. 2015, 290, 26059–26071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashizume, M.; Hayakawa, N.; Suzuki, M.; Mihara, M. IL-6/sIL-6R trans-signalling, but not TNF-α induced angiogenesis in a HUVEC and synovial cell co-culture system. Rheumatol. Int. 2009, 29, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Catar, R.; Witowski, J.; Zhu, N.; Lücht, C.; Soria, A.D.; Fernandez, J.U.; Chen, L.; Jones, S.A.; Fielding, C.; Rudolf, A.; et al. IL-6 trans-signaling links inflammation with angiogenesis in the peritoneal membrane. J. Am. Soc. Nephrol. 2017, 28, 1188–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzeng, H.-E.; Tsai, C.-H.; Chang, Z.-L.; Su, C.-M.; Wang, S.-W.; Hwang, W.-L.; Tang, C.-H. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochem. Pharmacol. 2013, 85, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.-H.; Chu, C.; Chiu, H.-C.; Huang, Y.-L.; Tsai, W.-L.; Liao, Y.; Kuo, M.-L. Interleukin-6 Induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-Kinase/Akt pathways. J. Invest. Dermatol. 2004, 123, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegeye, M.M.; Lindkvist, M.; Fälker, K.; Kumawat, A.K.; Paramel, G.; Grenegård, M.; Sirsjö, A.; Ljungberg, L.U. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell. Commun. Signal. 2018, 16, 55. [Google Scholar] [CrossRef]
- Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Arnaoutova, I.; Kleinman, H.K. In vitro angiogenesis: Endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 2010, 5, 628–635. [Google Scholar] [CrossRef]
- Ljungberg, L.U.; Zegeye, M.M.; Kardeby, C.; Fälker, K.; Repsilber, D.; Sirsjö, A. Global Transcriptional Profiling Reveals Novel Autocrine Functions of Interleukin 6 in Human Vascular Endothelial Cells. Mediators Inflamm. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Naldini, A.; Carraro, F. Role of inflammatory mediators in angiogenesis. Curr. Drug Targets Inflamm. Allergy 2005, 4, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, R.; Lorusso, G.; Albini, A.; Noonan, D. Cytokines and Chemokines as Regulators of Angiogenesis in Health and Disease. Curr. Pharm. Des. 2007, 12, 3101–3115. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, R.J.; Yates, C.C.; Wells, A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ. Res. 2006, 98, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Yates-Binder, C.C.; Rodgers, M.; Jaynes, J.; Wells, A.; Bodnar, R.J.; Turner, T. An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS ONE 2012, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.X.; Wang, J.J.; Gao, G.; Parke, K.; Ma, J.X. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J. Mol. Endocrinol. 2006, 37, 1–12. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Cheng, R.; Benyajati, S.; Ma, J.X. PEDF and its roles in physiological and pathological conditions: Implication in diabetic and hypoxia-induced angiogenic diseases. Clin. Sci. 2015, 128, 805–823. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.L.; Seo, S.; Kim, J.T.; Kim, J.; Kim, W.; Yeo, Y.; Sung, J.-H.; Park, S.G.; Suh, W. SCF (Stem Cell Factor) and cKIT modulate pathological ocular neovascularization. Arterioscler Thromb. Vasc Biol. 2019, 39, 2120–2131. [Google Scholar] [CrossRef]
- Matsui, J.; Wakabayashi, T.; Asada, M.; Yoshimatsu, K.; Okada, M. Stem Cell Factor/c-kit Signaling Promotes the Survival, Migration, and Capillary Tube Formation of Human Umbilical Vein Endothelial Cells. J. Biol. Chem. 2004, 279, 18600–18607. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Varney, M.L.; Valasek, J.; Godfrey, M.; Dave, B.J.; Singh, R.K. Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 2005, 8, 63–71. [Google Scholar] [CrossRef]
- Shi, J.; Wei, P.K. Interleukin-8: A potent promoter of angiogenesis in gastric cancer. Oncol. Lett. 2016, 11, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Ishii, E.; Saito, S.; Tashiro, K.; Fujita, I.; Yoshidomi, S.; Ohtubo, M.; Akazawa, K.; Miyazaki, S. Umbilical vein endothelial cells are an important source of c-kit and stem cell factor which regulate the proliferation of haemopoietic progenitor cells. Br. J. Haematol. 1996, 94, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Siemann, D.W. Axl signaling is an important mediator of tumor angiogenesis. Oncotarget 2019, 10, 2887–2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, G.X.; Kazlauskas, A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 2012, 31, 1692–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zegeye, M.M.; Andersson, B.; Sirsjö, A.; Ljungberg, L.U. IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells 2020, 9, 1414. https://doi.org/10.3390/cells9061414
Zegeye MM, Andersson B, Sirsjö A, Ljungberg LU. IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells. 2020; 9(6):1414. https://doi.org/10.3390/cells9061414
Chicago/Turabian StyleZegeye, Mulugeta M, Blanka Andersson, Allan Sirsjö, and Liza U Ljungberg. 2020. "IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells" Cells 9, no. 6: 1414. https://doi.org/10.3390/cells9061414
APA StyleZegeye, M. M., Andersson, B., Sirsjö, A., & Ljungberg, L. U. (2020). IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells, 9(6), 1414. https://doi.org/10.3390/cells9061414