ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications
"> Figure 1
<p>Swelling ratios of gellan gum hydrogels treated with (<b>A</b>) silk fibroin in PBS (pH 7.4), (<b>B</b>) sodium alginate in PBS (pH 7.4), (<b>C</b>) silk fibroin in ABS (pH 1.2), and (<b>D</b>) sodium alginate in ABS (pH 1.2). Data are mean ± SD, <span class="html-italic">n</span> = 3. Hydrogels in PBS showed significantly higher swelling ratios compared to ABS (<span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 2
<p>SEM images of scaffold surface morphology at 100 µm magnification, illustrating the surface characteristics of gellan-gum-based hydrogels, with distinct structural features observed across the silk fibroin (<b>GF1</b>–<b>GF4</b>) and sodium alginate (<b>GA1</b>–<b>GA4</b>) series, emphasizing the influence of these components on the scaffold surface.</p> "> Figure 3
<p>Peripheral blood smears showing erythrocyte morphology and platelet adhesion analysis in blank samples, negative control, and hydrogel-treated blood samples at 400 µm.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrogel Formulations
2.2. Swelling Kinetics
2.3. Morphological Analysis
2.4. Hemocompatibility Analysis Following ISO10993-4 Standards
2.4.1. Hemolysis Index Analysis
2.4.2. Coagulation Analysis
2.4.3. Complete Blood Count Evaluation
2.4.4. Qualitative Erythrocyte Morphology Analysis and Platelet Adhesion Analysis
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Extraction and Purification of Silk Fibroin
4.2.2. Sodium Alginate Dissolution
4.2.3. Gellan Gum Dissolution
4.2.4. Hydrogel Preparation
4.2.5. Swelling Characteristics
Statistical Analysis
4.2.6. Lyophilization
4.2.7. Scanning Electron Micrography (SEM)
4.2.8. Hemocompatibility Assessment
In-Vitro Coagulation Analysis
Complete Blood Count Analysis
Quantitative Hemolysis Index
Erythrocyte Morphology and Platelet Adhesion Analysis
4.3. Statistical Evaluation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luu, C.H.; Nguyen, N.T.; Ta, H.T. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv. Healthc. Mater. 2024, 13, e2301039. [Google Scholar] [CrossRef]
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.F.; Anderson, J.M. Practical approach to blood compatibility assessments: General considerations and standards. In Biocompatibility and Performance of Medical Devices; Woodhead Publishing: Cambridge, UK, 2020; pp. 167–205. [Google Scholar] [CrossRef]
- Jaffer, I.H.; Weitz, J.I. The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem. Acta Biomater. 2019, 94, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Maitz, M.F.; Martins, M.C.L.; Grabow, N.; Matschegewski, C.; Huang, N.; Chaikof, E.L.; Barbosa, M.A.; Werner, C.; Sperling, C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater. 2019, 94, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Maitz, M.F.; Werner, C. 7—Coatings for biomaterials to improve hemocompatibility. In Hemocompatibility of Biomaterials for Clinical Applications; Woodhead Publishing: Cambridge, UK, 2018; pp. 163–190. [Google Scholar] [CrossRef]
- Rosa, V.; Silikas, N.; Yu, B.; Dubey, N.; Sriram, G.; Zinelis, S.; Lima, A.F.; Bottino, M.C.; Ferreira, J.N.; Schmalz, G.; et al. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent. Mater. 2024, 40, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Akulo, K.A.; Adali, T.; Moyo, M.T.G.; Bodamyali, T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers 2022, 14, 2359. [Google Scholar] [CrossRef]
- Alula, K.; Adali, T.; Ebedal, O.H. Preparation characterization and blood compatibility studies of silk fibroin/gelatin/curcumin injectable hydrogels. Bio-Med. Mater. Eng. 2023, 34, 77–93. [Google Scholar] [CrossRef]
- Lalebeigi, F.; Alimohamadi, A.; Afarin, S.; Aliabadi, H.A.M.; Mahdavi, M.; Farahbakhshpour, F.; Hashemiaval, N.; Khandani, K.K.; Eivazzadeh-Keihan, R.; Maleki, A. Recent advances on biomedical applications of gellan gum: A review. Carbohydr. Polym. 2024, 334, 122008. [Google Scholar] [CrossRef]
- Moyo, M.T.G.; Adali, T. Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies. J. Bioact. Compat. Polym. 2024; in press. [Google Scholar] [CrossRef]
- Moyo, M.T.G.; Adali, T.; Tulay, P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen. Ther. 2024, 26, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Yadav, I.; Sheikh, W.M.; Dan, A.; Darban, Z.; Shah, S.A.; Mishra, N.C.; Shahabuddin, S.; Hassan, S.; Bashir, S.M.; et al. Dual cross-linked gellan gum/gelatin-based multifunctional nanocomposite hydrogel scaffold for full-thickness wound healing. Int. J. Biol. Macromol. 2023, 251, 126349. [Google Scholar] [CrossRef]
- Silva-Correia, J.; Oliveira, J.M.; Caridade, S.G.; Oliveira, J.T.; Sousa, R.A.; Mano, J.F.; Reis, R.L. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J. Tissue Eng. Regen. Med. 2010, 5, e97–e107. [Google Scholar] [CrossRef]
- Dodi, G.; Sabau, R.E.; Crețu, B.E.; Gardikiotis, I. Exploring the Antioxidant Potential of Gellan and Guar Gums in Wound Healing. Pharmaceutics 2023, 15, 2152. [Google Scholar] [CrossRef]
- Silva-Correia, J.; Zavan, B.; Vindigni, V.; Silva, T.H.; Oliveira, J.M.; Abatangelo, G.; Reis, R.L. Biocompatibility Evaluation of Ionic- and Photo-Crosslinked Methacrylated Gellan Gum Hydrogels: In Vitro and In Vivo Study. Adv. Health Mater. 2013, 2, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mittal, H.; Ansar, S. Synthesis and characterization of Gellan gum-based hydrogels for the delivery of anticancer drug etoposide. Int. J. Biol. Macromol. 2024, 278, 135007. [Google Scholar] [CrossRef]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of gellan—A review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Meng, Y.C.; Hong, L.B.; Jin, J.Q. A Study on the Gelation Properties and Rheological Behavior of Gellan Gum. Appl. Mech. Mater. 2013, 284, 20–24. [Google Scholar] [CrossRef]
- Muthukumar, T.; Song, J.E.; Khang, G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019, 24, 4514. [Google Scholar] [CrossRef] [PubMed]
- Adalı, T.; Uncu, M. Silk fibroin as a non-thrombogenic biomaterial. Int. J. Biol. Macromol. 2016, 90, 11–19. [Google Scholar] [CrossRef]
- Ajam, A.; Huang, Y.; Islam, M.S.; Kilian, K.A.; Kruzic, J.J. Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum. J. Mech. Behav. Biomed. Mater. 2024, 157, 106642. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Xu, K.; Wei, N.; Fang, Y.; Qin, Z. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: Preparation, characterization, adsorption, and kinetics studies. Chem. Eng. Res. Des. 2022, 179, 227–236. [Google Scholar] [CrossRef]
- Gao, W.; Wang, H.; Liu, Y.; Tang, Q.; Wu, P.; Lin, T.; Li, T.; Sun, D. Sodium alginate-hydrogel coatings on extracorporeal membrane oxygenation for anticoagulation. Front. Cardiovasc. Med. 2022, 9, 966649. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, M. Swelling and biocompatibility of sodium alginate/poly (γ-glutamic acid) hydrogels. Polym. Adv. Technol. 2010, 21, 561–567. [Google Scholar] [CrossRef]
- Wang, T.; Yi, W.; Zhang, Y.; Wu, H.; Fan, H.; Zhao, J.; Wang, S. Sodium alginate hydrogel containing platelet-rich plasma for wound healing. Colloids Surf. B Biointerfaces 2023, 222, 113096. [Google Scholar] [CrossRef]
- Martin-Saldaña, S.; Al Waeel, M.; Alsharabasy, A.M.; Daly, A.; Pandit, A. An interdisciplinary framework for the characterization of extracellular matrix-hydrogels for biomedical applications. Matter 2022, 5, 3659–3705. [Google Scholar] [CrossRef]
- Pal, K.; Banthia, A.K.; Majumdar, D.K. Polymeric Hydrogels: Characterization and Biomedical Applications. Des. Monomers Polym. 2009, 12, 197–220. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani, F.S.; Vasheghani, F.E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J. 2010, 19, 375–398. [Google Scholar]
- Maitra, J.; Shukla, V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 2014, 25–31. [Google Scholar] [CrossRef]
- Stachowiak, N.; Kowalonek, J.; Kozlowska, J.; Burkowska-But, A. Stability Studies, Biodegradation Tests, and Mechanical Properties of Sodium Alginate and Gellan Gum Beads Containing Surfactant. Polymers 2023, 15, 2568. [Google Scholar] [CrossRef]
- De Silva, D.A.; Poole-Warren, L.A.; Martens, P.J.; Panhuis, M.I.H. Mechanical characteristics of swollen gellan gum hydrogels. J. Appl. Polym. Sci. 2013, 130, 3374–3383. [Google Scholar] [CrossRef]
- Rodrigues, J.M.; Li, Y.; Tomás, H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012, 41, 2193–2221. [Google Scholar] [CrossRef]
- Seyfert, U.T.; Biehl, V.; Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng. 2002, 19, 91–96. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-4; Biological Evaluation of Medical Devices Part 4—Selection of Tests for Interactions with Blood. International Organization for Standardization: Geneva, Switzerland, 2017.
- Thangaraju, P.; Varthya, S.B. ISO 10993: Biological evaluation of medical devices. In Medical Device Guidelines and Regulations Handbook; Springer: Berlin/Heidelberg, Germany, 2022; pp. 163–187. [Google Scholar]
- Food and Drug Administration. Use of International Standard ISO 10993-1, ‘Biological evaluation of medical devices-Part 1: Evaluation and testing within a risk management process’ Guidance for Industry and Food and Drug Administration Staff Preface Public Comment. 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information- (accessed on 23 May 2024).
- van Oeveren, W. Obstacles in Haemocompatibility Testing. Scientifica 2013, 2013, 392584. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.; Morais, A.d.S.; Garet, E.; Silva-Correia, J.; Reis, R.L.; González-Fernández, Á.; Oliveira, J.M. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater. Sci. Eng. 2021, 7, 4898–4913. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.B.; Custódio, C.A.; Gasperini, L.; Reis, R.L.; Mano, J.F. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater. 2016, 41, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Vuorenpää, H.; Valtonen, J.; Penttinen, K.; Koskimäki, S.; Hovinen, E.; Ahola, A.; Gering, C.; Parraga, J.; Kelloniemi, M.; Hyttinen, J.; et al. Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes. Cytotechnology 2024, 76, 483–502. [Google Scholar] [CrossRef]
- Dhar, S.; Mali, V.; Bodhankar, S.; Shiras, A.; Prasad, B.L.; Pokharkar, V. Biocompatible gellan gum-reduced gold nanoparticles: Cellular uptake and subacute oral toxicity studies. J. Appl. Toxicol. 2011, 31, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Gadziński, P.; Froelich, A.; Jadach, B.; Wojtyłko, M.; Tatarek, A.; Białek, A.; Krysztofiak, J.; Gackowski, M.; Otto, F.; Osmałek, T. Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2022, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xiao, R.; Wu, Y.; Xu, L. Advances in tissue engineering of gellan gum-based hydrogels. Carbohydr. Polym. 2023, 324, 121484. [Google Scholar] [CrossRef] [PubMed]
- Carrêlo, H.; Cidade, M.T.; Borges, J.P.; Soares, P. Gellan Gum/Alginate Microparticles as Drug Delivery Vehicles: DOE Production Optimization and Drug Delivery. Pharmaceuticals 2023, 16, 1029. [Google Scholar] [CrossRef]
- Alharbi, H.Y.; Alnoman, R.B.; Aljohani, M.S.; Al-Anazia, M.; Monier, M. Synthesis and characterization of gellan gum-based hydrogels for drug delivery applications. Int. J. Biol. Macromol. 2024, 258, 128828. [Google Scholar] [CrossRef]
- Oliveira, J.T.; Martins, L.; Picciochi, R.; Malafaya, P.B.; Sousa, R.A.; Neves, N.M.; Mano, J.F.; Reis, R.L. Gellan gum: A new biomaterial for cartilage tissue engineering applications. J. Biomed. Mater. Res. A 2010, 93, 852–863. [Google Scholar] [CrossRef]
- Tsaryk, R.; Silva-Correia, J.; Oliveira, J.M.; Unger, R.E.; Landes, C.; Brochhausen, C.; Ghanaati, S.; Reis, R.L.; Kirkpatrick, C.J. Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration. J. Tissue Eng. Regen. Med. 2017, 11, 637–648. [Google Scholar] [CrossRef]
- Paulsson, M.; Hägerström, H.; Edsman, K. Rheological studies of the gelation of deacetylated gellan gum (Gelrite) in physiological conditions. Eur. J. Pharm. Sci. 1999, 9, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Gong, T.; Li, X.; Li, X.; Yang, X.; Guo, Y. Preparation of thermally stable emulsion gels based on Glucono-δ-lactone induced gelation of gellan gum. Int. J. Biol. Macromol. 2020, 156, 565–575. [Google Scholar] [CrossRef]
- Kundu, B.; Brancato, V.; Oliveira, J.; Correlo, V.M.; Reis, R.L.; Kundu, S. Silk fibroin promotes mineralization of gellan gum hydrogels. Int. J. Biol. Macromol. 2020, 153, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, J.H.; Kim, P.; Youn, J.; Song, J.E.; Motta, A.; Migliaresi, C.; Khang, G. Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2021, 15, 936–947. [Google Scholar] [CrossRef]
- Yuan, L.; Jiang, X.; Jiang, M.; Guo, Y.; Liu, Y.; Ming, P.; Li, S.; Zhou, P.; Cai, R.; Yu, K.; et al. Biocompatible gellan gum/sericin hydrogels containing halloysite@polydopamine nanotubes with hemostasis and photothermal antibacterial properties for promoting infectious wound repair. Mater. Des. 2023, 227, 111744. [Google Scholar] [CrossRef]
- Reczyńska-Kolman, K.; Hartman, K.; Kwiecień, K.; Brzychczy-Włoch, M.; Pamuła, E. Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. Int. J. Mol. Sci. 2021, 23, 321. [Google Scholar] [CrossRef] [PubMed]
- Stang, K.; Krajewski, S.; Neumann, B.; Kurz, J.; Post, M.; Stoppelkamp, S.; Fennrich, S.; Avci-Adali, M.; Armbruster, D.; Schlensak, C.; et al. Hemocompatibility testing according to ISO 10993-4: Discrimination between pyrogen- and device-induced hemostatic activation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Moyo, M.T.G.; Adali, T.; Edebal, O.H.; Bayir, E.; Şendemir, A. Hemocompatibility studies of layer-by-layer polyelectrolyte complexes for bio-based polymers. Mater. Technol. 2023, 57, 525–536. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J.; Youn, J.; Lee, Y.; Kim, W.; Choe, S.; Song, J.; Reis, R.L.; Khang, G. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Biomolecules 2021, 11, 1184. [Google Scholar] [CrossRef] [PubMed]
- Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Rowley, J.A.; Eiselt, P.; Moy, E.M.; Bouhadir, K.H.; Mooney, D.J. Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules 2000, 33, 4291–4294. [Google Scholar] [CrossRef]
- Liu, J.; Sun, H.; Peng, Y.; Chen, L.; Xu, W.; Shao, R. Preparation and Characterization of Natural Silk Fibroin Hydrogel for Protein Drug Delivery. Molecules 2022, 27, 3418. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.; Braune, S. Thrombogenicity and hemocompatibility of biomaterials. Biointerphases 2015, 11, 029601. [Google Scholar] [CrossRef] [PubMed]
- Milleret, V.; Hefti, T.; Hall, H.; Vogel, V.; Eberli, D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater. 2012, 8, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
Sample | Gellan Gum Concentration (%) | Silk Fibroin Concentration (%) | Sodium Alginate Concentration (%) |
---|---|---|---|
GF1 | 0.3% | 3% | - |
GF2 | 0.5% | 3% | - |
GF3 | 0.75% | 3% | - |
GF4 | 1% | 3% | - |
GA1 | 0.3% | - | 4.2% |
GA2 | 0.5% | - | 4.2% |
GA3 | 0.75% | - | 4.2% |
GA4 | 1% | - | 4.2% |
Parameter | Standard Range | Blank | Negative Control | GF1 | GF2 | GF3 | GF4 | GA1 | GA2 | GA3 | GA4 |
---|---|---|---|---|---|---|---|---|---|---|---|
Hemolysis index | 30/0 | 23/0 | 28/0 | 46.2/1+ | 56.3/1+ | 59/1+ | 66.2/1+ | 22.7/0 | 38.8/1+ | 39/1+ | 39.3/1+ |
Parameter | Standard Range | Blank | Negative Control | GF1 | GF2 | GF3 | GF4 | GA1 | GA2 | GA3 | GA4 |
---|---|---|---|---|---|---|---|---|---|---|---|
PT (Sec) | 10–14 | 12.1 | 12.5 | 12.1 | 12.3 | 12.4 | 12.6 | 12.3 | 12.5 | 12.6 | 12.9 |
aPTT (Sec) | 25–35 | 28.0 | 24.9 | 27.1 | 27.3 | 27.5 | 28.0 | 28.1 | 28.3 | 29.6 | 30.5 |
Fibrinogen (mg/dL) | 200–400 | 200.4 | 172.7 | 203.1 | 200.4 | 205.9 | 205.9 | 195.2 | 195.2 | 195.2 | 192.7 |
Blood Cells | Measurement Units | Standard Range | Blank Sample | Negative Control | GF1 | GF2 | GF3 | GF4 | GA1 | GA2 | GA3 | GA4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
White blood cells (WBC) | [103/µL] | 4.0–11.0 | 5.19 | 5.11 | 4.62 | 4.73 | 4.65 | 4.91 | 4.65 | 4.71 | 4.38 | 4.44 |
Red blood cells (RBC) | [106/µL] | 4.2–6.1 | 5.65 | 5.61 | 5.39 | 5.40 | 5.50 | 5.40 | 5.33 | 5.42 | 5.38 | 5.58 |
Hemoglobin (HGB) | [g/dL] | 12.1–17.2 | 16.6 | 16.7 | 16.1 | 16.2 | 16.2 | 16.1 | 16.1 | 16.2 | 16.0 | 16.4 |
Hematocrit (HCT) | [%] | 36–54 | 48.4 | 48.3 | 46.5 | 46.6 | 47.3 | 46.7 | 46.0 | 46.6 | 46.4 | 48.1 |
Mean Corpuscular Volume (MCV) | [fL] | 80–100 | 85.7 | 86.1 | 86.3 | 86.3 | 86.0 | 86.5 | 86.3 | 86.0 | 86.2 | 86.2 |
Mean corpuscular hemoglobin (MCH) | [pg] | 27–33 | 29.4 | 29.8 | 29.9 | 30.0 | 29.5 | 29.8 | 30.2 | 29.7 | 29.7 | 29.4 |
Mean Corpuscular Hemoglobin Concentration (MCHC) | [g/dL] | 31.5–35.5 | 34.3 | 34.6 | 34.6 | 34.8 | 34.2 | 34.5 | 35.0 | 34.5 | 34.5 | 34.1 |
Platelets (PLT) | [103/µL] | 150–450 | 363 | 363 | 338 | 335 | 348 | 348 | 336 | 357 | 365 | 338 |
Red Cell Distribution Width-Standard Deviation (RDW-SD) | [fL] | 35–55 | 40.1 | 40.4 | 40.8 | 40.4 | 40.1 | 41.0 | 40.6 | 40.6 | 40.5 | 40.5 |
Red Cell Distribution Width-Coefficient of Variation (RDW-CV) | [%] | 11.5–14.5 | 12.8 | 12.9 | 13.2 | 13.0 | 12.9 | 13.1 | 13.1 | 13.1 | 13.0 | 13.1 |
Platelet Distribution Width (PDW) | [fL] | 9–17 | 10.5 | 10.8 | 10.4 | 10.5 | 11.0 | 11.1 | 11.4 | 10.5 | 10.7 | 10.2 |
Mean Platelet Volume (MPV) | [fL] | 7.5–11.5 | 9.4 | 9.9 | 9.5 | 9.8 | 9.8 | 9.7 | 9.6 | 10.1 | 9.9 | 9.7 |
Platelet-Large Cell Ratio (P-LCR) | [%] | 15–30 | 20.6 | 23.3 | 21.2 | 22.8 | 22.7 | 21.9 | 21.6 | 24.0 | 23.1 | 21.6 |
Plateletcrit (PCT) | [%] | 0.2–0.5 | 0.34 | 0.36 | 0.32 | 0.33 | 0.34 | 0.34 | 0.32 | 0.36 | 0.36 | 0.33 |
Nucleated Red Blood Cells (NRBCs) | [103/µL] | 0–2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Neutrophils (Neut) | [103/µL] | 1.8–7.8 | 2.64 | 2.72 | 2.41 | 2.49 | 2.41 | 2.53 | 2.50 | 2.51 | 2.27 | 2.36 |
lymphocytes (Lymph) | [103/µL] | 1.0–4.8 | 2.03 | 1.88 | 1.71 | 1.73 | 1.72 | 1.60 | 1.64 | 1.71 | 1.64 | 1.61 |
Monocytes (Mono) | [103/µL] | 0.2–0.8 | 0.44 | 0.40 | 0.40 | 0.40 | 0.41 | 0.45 | 0.40 | 0.39 | 0.37 | 0.38 |
Eosinophils (Eo) | [103/µL] | 0–6 | 0.06 | 0.08 | 0.08 | 0.09 | 0.09 | 0.10 | 0.08 | 0.08 | 0.08 | 0.07 |
Basophils (Ba) | [103/µL] | 0–0.2 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
Immature Granulocytes (IG) | [103/µL] | 0.0–0.1 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyo, M.T.G.; Adali, T.; Edebal, O.H. ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications. Gels 2024, 10, 824. https://doi.org/10.3390/gels10120824
Moyo MTG, Adali T, Edebal OH. ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications. Gels. 2024; 10(12):824. https://doi.org/10.3390/gels10120824
Chicago/Turabian StyleMoyo, Mthabisi Talent George, Terin Adali, and Oğuz Han Edebal. 2024. "ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications" Gels 10, no. 12: 824. https://doi.org/10.3390/gels10120824
APA StyleMoyo, M. T. G., Adali, T., & Edebal, O. H. (2024). ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications. Gels, 10(12), 824. https://doi.org/10.3390/gels10120824