Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs
<p>Three-dimensional bioprinting based on gel-based suspension mediums offers a broad printing window and more printing methods compared with traditional printing. The scheme and printing window (considering cell viability and structural fidelity) of traditional bioprinting (<b>a</b>) and the embedded bioprinting based on gel-based suspension mediums (<b>b</b>). Schematic diagram of bioprinting using a sacrificial ink (<b>c</b>) and a pure cell ink (<b>d</b>) within a gel-based suspension medium.</p> "> Figure 2
<p>The yield stress of some common gel-based suspension mediums.</p> "> Figure 3
<p>Rheological properties of the gel-based suspension medium. (<b>a</b>) The schematic diagram illustrates the state changes during the 3D printing process. The suspension medium near the nozzle transitions from a solid-like to a liquid-like state, facilitating the extrusion of bioinks. Once the nozzle moves away, the liquid-like suspension medium re-solidifies, trapping the bioink in a defined spatial position. (<b>b</b>) Representative rheology of a qualified suspension medium, including yield response, shearthinning, and self-healing.</p> "> Figure 4
<p>Preparation of gel-based suspension medium. (<b>a</b>) Mechanical blending; (<b>b</b>) coacervation; (<b>c</b>) flash solidification; and (<b>d</b>) air-assisted co-axial jetting.</p> ">
Abstract
:1. Introduction
2. Properties of the Gel-Based Suspension Medium
2.1. Rheological Properties
2.1.1. Yield Stress
2.1.2. Shear Thinning
2.1.3. Self-Healing
2.2. Biocompatibility
2.3. Transparency
2.4. Specifical Properties
2.4.1. Removable
2.4.2. Photopolymerizable
2.4.3. Supportive Suspension Culture
3. Preparation of Suspension Mediums in the Form of Microgels
3.1. Mechanical Blending
3.2. Coacervation
3.3. Flash-Solidification
3.4. Air-Assisted Co-Axial Jetting
4. Gel-Based Suspension Mediums Used in Constructing Tissue/Organ Analogs
4.1. Cornea
4.2. Vasculature
4.3. Menisci
4.4. Neuron Networks
4.5. Skeletal Muscle
4.6. Heart
4.7. Brain
5. Challenge
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Wang, C.; Yang, Y.; Liu, H.; Xiong, Z.; Zhang, T.; Sun, W. A Multifunctional 3D Bioprinting System for Construction of Complex Tissue Structure Scaffolds: Design and Application. Int. J. Bioprinting 2022, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Zurina, I.M.; Presniakova, V.S.; Butnaru, D.V.; Svistunov, A.A.; Timashev, P.S.; Rochev, Y.A. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater. 2020, 113, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, C.C.; Damas, I.I.; Andrade, K.C.; Westin, C.B.; Moraes, Â.M.; Coimbra, I.B. Chondrogenesis of human amniotic fluid stem cells in Chitosan-Xanthan scaffold for cartilage tissue engineering. Sci. Rep. 2021, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wehrle, E.; Rubert, M.; Müller, R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci. 2021, 22, 3971. [Google Scholar] [CrossRef] [PubMed]
- You, F.; Eames, B.F.; Chen, X. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 1597. [Google Scholar] [CrossRef]
- Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020, 226, 119536. [Google Scholar] [CrossRef]
- Emmermacher, J.; Spura, D.; Cziommer, J.; Kilian, D.; Wollborn, T.; Fritsching, U.; Steingroewer, J.; Walther, T.; Gelinsky, M.; Lode, A. Engineering considerations on extrusion-based bioprinting: Interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication 2020, 12, 025022. [Google Scholar] [CrossRef]
- Arumugam, P.; Kaarthikeyan, G.; Eswaramoorthy, R. Three-Dimensional Bioprinting: The Ultimate Pinnacle of Tissue Engineering. Cureus 2024, 16, e58029. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Mao, S.; Sun, W.; Yao, R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 2015, 7, 045002. [Google Scholar] [CrossRef]
- Ouyang, L.; Yao, R.; Zhao, Y.; Sun, W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 2016, 8, 035020. [Google Scholar] [CrossRef]
- Wang, X.; Ao, Q.; Tian, X.; Fan, J.; Tong, H.; Hou, W.; Bai, S. Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers 2017, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Q.; Hatakeyama, M.; Kitaoka, T. Injectable cell-laden hydrogels fabricated with cellulose and chitosan nanofibers for bioprinted liver tissues. Biomed. Mater. 2023, 18, 045018. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yan, M.; Wang, Y.; Fu, J.; Suo, H. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. ACS Appl. Mater. Interfaces 2018, 10, 6849–6857. [Google Scholar] [CrossRef]
- Rocca, M.; Fragasso, A.; Liu, W.; Heinrich, M.A.; Zhang, Y.S. Embedded Multimaterial Extrusion Bioprinting. SLAS Technol. 2018, 23, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Hinton, T.J.; Hudson, A.; Pusch, K.; Lee, A.; Feinberg, A.W. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding. ACS Biomater. Sci. Eng. 2016, 2, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Colly, A.; Marquette, C.; Courtial, E.J. Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel. Langmuir ACS J. Surf. Colloids 2021, 37, 4154–4162. [Google Scholar] [CrossRef]
- Yogeshwaran, S.; Goodarzi Hosseinabadi, H.; Gendy, D.E.; Miri, A.K. Design considerations and biomaterials selection in embedded extrusion 3D bioprinting. Biomater. Sci. 2024, 12, 4506–4518. [Google Scholar] [CrossRef]
- Heo, D.N.; Alioglu, M.A.; Wu, Y.; Ozbolat, V.; Ayan, B.; Dey, M.; Kang, Y.; Ozbolat, I.T. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. ACS Appl. Mater. Interfaces 2020, 12, 20295–20306. [Google Scholar] [CrossRef]
- Wu, W.; DeConinck, A.; Lewis, J.A. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 2011, 23, H178–H183. [Google Scholar] [CrossRef]
- Brassard, J.A.; Nikolaev, M.; Hübscher, T.; Hofer, M.; Lutolf, M.P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 2021, 20, 22–29. [Google Scholar] [CrossRef]
- Öztürk-Öncel, M.; Leal-Martínez, B.H.; Monteiro, R.F.; Gomes, M.E.; Domingues, R.M.A. A dive into the bath: Embedded 3D bioprinting of freeform in vitro models. Biomater. Sci. 2023, 11, 5462–5473. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.Z.; Kundukad, B.; Wong, W.K.; Khan, S.A.; Doyle, P.S. Embedded droplet printing in yield-stress fluids. Proc. Natl. Acad. Sci. USA 2020, 117, 5671–5679. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Stark, C.J.; Madira, S.; Ethiraj, S.; Venkatesh, A.; Anilkumar, S.; Jung, J.; Lee, S.; Wu, C.A.; Walsh, S.K.; et al. Three-Dimensional Bioprinting with Alginate by Freeform Reversible Embedding of Suspended Hydrogels with Tunable Physical Properties and Cell Proliferation. Bioengineering 2022, 9, 807. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Gil, C.J.; Marshall, S.L.; Urueña, J.M.; O’bryan, C.S.; Carstens, M.; Keselowsky, B.G.; Palmer, G.D.; Ghivizzani, S.; Gibbs, C.P.; et al. Liquid-like Solids Support Cells in 3D. ACS Biomater. Sci. Eng. 2016, 2, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Mitchell, K.; Kariyawasam, L.S.; Do, C.; Chen, J.; Raymond, L.; Valentin, N.; Coulter, R.; Yang, Y.; Jin, Y. Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid with an Interactive Dual Microstructure. ACS Appl. Mater. Interfaces 2022, 14, 39420–39431. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, T.; Gao, G.; Zhang, X.; Wu, B. Fabrication of 3D GelMA Scaffolds Using Agarose Microgel Embedded Printing. Micromachines 2022, 13, 469. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, T.; Luo, Y.; Xu, R.; Li, G.; Hu, Z.; Cao, X.; Yao, J.; Chen, Y.; Zhu, Y.; et al. Embedded Bioprinting of Tissue-like Structures Using κ-Carrageenan Sub-Microgel Medium. J. Vis. Exp. JoVE 2024, e66806. [Google Scholar] [CrossRef]
- Zeng, J.; Xie, Z.; Dekishima, Y.; Kuwagaki, S.; Sakai, N.; Matsusaki, M. “Out-of-the-box” Granular Gel Bath Based on Cationic Polyvinyl Alcohol Microgels for Embedded Extrusion Printing. Macromol. Rapid Commun. 2023, 44, e2300025. [Google Scholar] [CrossRef]
- Lai, G.; Meagher, L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: Rheological properties, printability, and cytocompatibility study. Biofabrication 2024, 16, 035005. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Hu, Z.; Chen, M.; Chen, S.; Yao, Y.; Yao, J.; Shao, X.; Wu, K.; Zhu, Y.; et al. Cation-crosslinkedκ-carrageenan sub-microgel medium for high-quality embedded bioprinting. Biofabrication 2024, 16, 025009. [Google Scholar] [CrossRef]
- Jeon, O.; Lee, Y.B.; Jeong, H.; Lee, S.J.; Wells, D.; Alsberg, E. Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Mater. Horiz. 2019, 6, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, M.E.; Burdick, J.A. Computational Modeling and Experimental Characterization of Extrusion Printing into Suspension Baths. Adv. Healthc. Mater. 2022, 11, e2101679. [Google Scholar] [CrossRef]
- McCormack, A.; Highley, C.B.; Leslie, N.R.; Melchels, F.P.W. 3D Printing in Suspension Baths: Keeping the Promises of Bioprinting Afloat. Trends Biotechnol. 2020, 38, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Scalzone, A.; Imparato, G.; Urciuolo, F.; Netti, P.A. Bioprinting of human dermal microtissues precursors as building blocks for endogenousin vitroconnective tissue manufacturing. Biofabrication 2024, 16, 035009. [Google Scholar] [CrossRef] [PubMed]
- Davis-Hall, D.; Thomas, E.; Peña, B.; Magin, C.M. 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication 2022, 15, 015017. [Google Scholar] [CrossRef]
- Compaan, A.M.; Song, K.; Huang, Y. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting. ACS Appl. Mater. Interfaces 2019, 11, 5714–5726. [Google Scholar] [CrossRef]
- Hu, T.; Cai, Z.; Yin, R.; Zhang, W.; Bao, C.; Zhu, L.; Zhang, H. 3D Embedded Printing of Complex Biological Structures with Supporting Bath of Pluronic F-127. Polymers 2023, 15, 3493. [Google Scholar] [CrossRef]
- Zeng, J.; Kasahara, N.; Xie, Z.; Louis, F.; Kang, D.; Dekishima, Y.; Kuwagaki, S.; Sakai, N.; Matsusaki, M. Comparative analysis of the residues of granular support bath materials on printed structures in embedded extrusion printing. Biofabrication 2023, 15, 035013. [Google Scholar] [CrossRef]
- Hirano, M.; Huang, Y.; Jarquin, D.V.; De la Garza Hernández, R.L.; Jodat, Y.A.; Cerón, E.L.; García-Rivera, L.E.; Shin, S.R. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks. Biofabrication 2021, 13, 035046. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, C.; Raymond, L.; Mitchell, K.; Wen, L.; Yang, Y.; Zhao, D.; Liu, S.; Jin, Y. 3D printing-based full-scale human brain for diverse applications. Brain-X 2023, 1, e5. [Google Scholar] [CrossRef]
- Daly, A.C.; Davidson, M.D.; Burdick, J.A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 2021, 12, 753. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jiang, Z.; Ma, L.; Yin, J.; Gao, Z.; Shen, L.; Yang, H.; Cui, Z.; Ye, H.; Zhou, H. A versatile embedding medium for freeform bioprinting with multi-crosslinking methods. Biofabrication 2022, 14, 035022. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Sun, Y.; Yang, J.; Mao, H.; Gu, Z. Hydrogels for 3D embedded bioprinting: A focused review on bioinks and support baths. J. Mater. Chem. B 2022, 10, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, J.; Wu, S.; Yan, S.; He, Y. Microgels for bioprinting: Recent advancements and challenges. Biomater. Sci. 2024, 12, 1950–1964. [Google Scholar] [CrossRef]
- Hinton, T.J.; Jallerat, Q.; Palchesko, R.N.; Park, J.H.; Grodzicki, M.S.; Shue, H.-J.; Ramadan, M.H.; Hudson, A.R.; Feinberg, A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015, 1, e1500758. [Google Scholar] [CrossRef] [PubMed]
- Patrício, S.G.; Sousa, L.R.; Correia, T.R.; Gaspar, V.M.; Pires, L.S.; Luís, J.L.; Oliveira, J.M.; Mano, J.F. Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication 2020, 12, 035017. [Google Scholar] [CrossRef]
- Compaan, A.M.; Song, K.; Chai, W.; Huang, Y. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. ACS Appl. Mater. Interfaces 2020, 12, 7855–7868. [Google Scholar] [CrossRef]
- Xie, Z.T.; Kang, D.H.; Matsusaki, M. Resolution of 3D bioprinting inside bulk gel and granular gel baths. Soft Matter 2021, 17, 8769–8785. [Google Scholar] [CrossRef]
- Xie, Z.; Zeng, J.; Kang, D.; Saito, S.; Miyagawa, S.; Sawa, Y.; Matsusaki, M. 3D Printing of Collagen Scaffold with Enhanced Resolution in a Citrate-Modulated Gellan Gum Microgel Bath. Adv. Healthc. Mater. 2023, 12, e2301090. [Google Scholar] [CrossRef]
- Lee, A.; Hudson, A.R.; Shiwarski, D.J.; Tashman, J.W.; Hinton, T.J.; Yerneni, S.; Bliley, J.M.; Campbell, P.G.; Feinberg, A.W. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019, 365, 482–487. [Google Scholar] [CrossRef]
- Noor, N.; Shapira, A.; Edri, R.; Gal, I.; Wertheim, L.; Dvir, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 2019, 6, 1900344. [Google Scholar] [CrossRef] [PubMed]
- Moxon, S.R.; Cooke, M.E.; Cox, S.C.; Smow, M.; Jeys, L.; Jones, S.W.; Grover, L.M.; Smith, A.M. Suspended Manufacture of Biological Structures. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Sreepadmanabh, M.; Ganesh, M.; Bhat, R.; Bhattacharjee, T. Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting. Biomed. Mater. 2023, 18, 045011. [Google Scholar] [CrossRef] [PubMed]
- Pal, V.; Singh, Y.P.; Gupta, D.; Alioglu, M.A.; Nagamine, M.T.; Kim, M.H.; Ozbolat, I.T. High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications. Biofabrication 2023, 15, 035001. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, X.; Gupta, D.; Alioglu, M.A.; Qin, M.; Ozbolat, V.; Li, Y.; Ozbolat, I.T. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting. Adv. Funct. Mater. 2024, 34, 202313088. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.A.; Zhu, Y.; Venkatesh, A.; Stark, C.J.; Lee, S.H.; Woo, Y.J. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Tissue Eng. Part C Methods 2023, 29, 85–94. [Google Scholar] [CrossRef]
- Zhang, B.; Xue, Q.; Li, J.; Ma, L.; Yao, Y.; Ye, H.; Cui, Z.; Yang, H. 3D bioprinting for artificial cornea: Challenges and perspectives. Med. Eng. Phys. 2019, 71, 68–78. [Google Scholar] [CrossRef]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef]
- McCafferty, S.J.; Schwiegerling, J.T.; Enikov, E.T. Corneal surface asphericity, roughness, and transverse contraction after uniform scanning excimer laser ablation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1296–1305. [Google Scholar] [CrossRef]
- Zhang, B.; Xue, Q.; Hu, H.-Y.; Yu, M.-F.; Gao, L.; Luo, Y.-C.; Li, Y.; Li, J.-T.; Ma, L.; Yao, Y.-F.; et al. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. J. Zhejiang Univ. Sci. B 2019, 20, 945–959. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Song, W.; Wang, Q.; Sun, X.; Zhao, Q.; Huang, Y.; Li, H.; Peng, Y.; Yuan, J.; et al. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. Adv. Sci. 2023, 10, e2205878. [Google Scholar] [CrossRef]
- Zhang, C.; Hua, W.; Mitchell, K.; Raymond, L.; Delzendehrooy, F.; Wen, L.; Do, C.; Chen, J.; Yang, Y.; Linke, G.; et al. Multiscale embedded printing of engineered human tissue and organ equivalents. Proc. Natl. Acad. Sci. USA 2024, 121, e2313464121. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Gu, Q.; Zheng, X. Vascularized organ bioprinting: From strategy to paradigm. Cell Prolif. 2023, 56, e13453. [Google Scholar] [CrossRef]
- Kjar, A.; McFarland, B.; Mecham, K.; Harward, N.; Huang, Y. Engineering of tissue constructs using coaxial bioprinting. Bioact. Mater. 2021, 6, 460–471. [Google Scholar] [CrossRef]
- Miller, J.S.; Stevens, K.R.; Yang, M.T.; Baker, B.M.; Nguyen, D.-H.T.; Cohen, D.M.; Toro, E.; Chen, A.A.; Galie, P.A.; Yu, X.; et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11, 768–774. [Google Scholar] [CrossRef]
- Cui, X.; Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009, 30, 6221–6227. [Google Scholar] [CrossRef]
- Afghah, F.; Altunbek, M.; Dikyol, C.; Koc, B. Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures. Sci. Rep. 2020, 10, 5257. [Google Scholar] [CrossRef]
- Sokmen, S.; Cakmak, S.; Oksuz, I. 3D printing of an artificial intelligence-generated patient-specific coronary artery segmentation in a support bath. Biomed. Mater. 2024, 19, 035038. [Google Scholar] [CrossRef]
- Kreimendahl, F.; Kniebs, C.; Sobreiro, A.M.T.; Schmitz-Rode, T.; Jockenhoevel, S.; Thiebes, A.L. FRESH bioprinting technology for tissue engineering—The influence of printing process and bioink composition on cell behavior and vascularization. J. Appl. Biomater. Funct. Mater. 2021, 19, 22808000211028808. [Google Scholar] [CrossRef]
- Machour, M.; Szklanny, A.A.; Levenberg, S. Fabrication of Engineered Vascular Flaps Using 3D Printing Technologies. J. Vis. Exp. JoVE 2022, 183, e63920. [Google Scholar]
- Szklanny, A.A.; Machour, M.; Redenski, I.; Chochola, V.; Goldfracht, I.; Kaplan, B.; Epshtein, M.; Yameen, H.S.; Merdler, U.; Feinberg, A.; et al. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. Adv. Mater. 2021, 33, e2102661. [Google Scholar] [CrossRef] [PubMed]
- Bilgen, B.; Jayasuriya, C.T.; Owens, B.D. Current Concepts in Meniscus Tissue Engineering and Repair. Adv. Healthc. Mater. 2018, 7, e1701407. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, M.E.; Heo, S.J.; Mauck, R.L.; Burdick, J.A. Suspension bath bioprinting and maturation of anisotropic meniscal constructs. Biofabrication 2023, 15, 035003. [Google Scholar] [CrossRef] [PubMed]
- Rathan, S.; Dejob, L.; Schipani, R.; Haffner, B.; Möbius, M.E.; Kelly, D.J. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering. Adv. Healthc. Mater. 2019, 8, e1801501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Luo, C.; Zhai, C.; Li, Z.; Zhang, Y.; Yuan, T.; Dong, S.; Zhang, J.; Fan, W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111388. [Google Scholar] [CrossRef]
- Terpstra, M.L.; Li, J.; Mensinga, A.; de Ruijter, M.; van Rijen, M.H.P.; Androulidakis, C.; Galiotis, C.; Papantoniou, I.; Matsusaki, M.; Malda, J.; et al. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication 2022, 14, 034104. [Google Scholar] [CrossRef]
- Yao, Y.; Coleman, H.A.; Meagher, L.; Forsythe, J.S.; Parkington, H.C. 3D Functional Neuronal Networks in Free-Standing Bioprinted Hydrogel Constructs. Adv. Healthc. Mater. 2023, 12, e2300801. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Gao, Y.; Mathivanan, S.; Kong, L.; Tao, Y.; Dong, Y.; Li, X.; Bhattacharyya, A.; Zhao, X.; et al. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 2024, 31, 260–274.e7. [Google Scholar] [CrossRef]
- Yao, Y.; Molotnikov, A.; Parkington, H.C.; Meagher, L.; Forsythe, J.S. Extrusion 3D bioprinting of functional self-supporting neural constructs using a photoclickable gelatin bioink. Biofabrication 2022, 14, 035014. [Google Scholar] [CrossRef]
- Wang, S.; Bai, L.; Hu, X.; Yao, S.; Hao, Z.; Zhou, J.; Li, X.; Lu, H.; He, J.; Wang, L.; et al. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Adv. Healthc. Mater. 2023, 12, e2300004. [Google Scholar] [CrossRef]
- Yeo, M.; Kim, G. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration. ACS Biomater. Sci. Eng. 2018, 4, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.; Kim, G. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Carbohydr. Polym. 2019, 223, 115041. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Seol, Y.-J.; Ko, I.K.; Kang, H.-W.; Lee, Y.K.; Yoo, J.J.; Atala, A.; Lee, S.J. 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci. Rep. 2018, 8, 12307. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, I.; Seol, Y.-J.; Ko, I.K.; Yoo, J.J.; Atala, A.; Lee, S.J. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat. Commun. 2020, 11, 1025. [Google Scholar] [CrossRef]
- Hassan, S.; Gomez-Reyes, E.; Enciso-Martinez, E.; Shi, K.; Campos, J.G.; Soria, O.Y.P.; Luna-Cerón, E.; Lee, M.C.; Garcia-Reyes, I.; Steakelum, J.; et al. Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs. ACS Appl. Mater. Interfaces 2022, 14, 51602–51618. [Google Scholar] [CrossRef]
- Yamada, T.; Osaka, M.; Uchimuro, T.; Yoon, R.; Morikawa, T.; Sugimoto, M.; Suda, H.; Shimizu, H. Three-Dimensional Printing of Life-Like Models for Simulation and Training of Minimally Invasive Cardiac Surgery. Innovations 2017, 12, 459–465. [Google Scholar]
- Mirdamadi, E.; Tashman, J.W.; Shiwarski, D.J.; Palchesko, R.N.; Feinberg, A.W. FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomater. Sci. Eng. 2020, 6, 6453–6459. [Google Scholar] [CrossRef]
- Yong, U.; Kang, B.; Jang, J. 3D bioprinted and integrated platforms for cardiac tissue modeling and drug testing. Essays Biochem. 2021, 65, 545–554. [Google Scholar]
- Esser, T.U.; Anspach, A.; Muenzebrock, K.A.; Kah, D.; Schrüfer, S.; Schenk, J.; Heinze, K.G.; Schubert, D.W.; Fabry, B.; Engel, F.B. Direct 3D-Bioprinting of hiPSC-Derived Cardiomyocytes to Generate Functional Cardiac Tissues. Adv. Mater. 2023, 35, e2305911. [Google Scholar] [CrossRef]
- Tan, W.S.; Shi, Q.; Chen, S.; Bin Juhari, M.A.; Song, J. Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber. Biomed. Eng. Lett. 2020, 10, 517–532. [Google Scholar] [CrossRef]
- Datta, P.; Ayan, B.; Ozbolat, I.T. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017, 51, 1–20. [Google Scholar] [CrossRef]
- Novosel, E.C.; Kleinhans, C.; Kluger, P.J. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 2011, 63, 300–311. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C. 3D printing of biomaterials for vascularized and innervated tissue regeneration. Int. J. Bioprinting 2023, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Alam, A.; Siddiqui, M.A.; Alam, M.S.; Rafat, Y.; Salik, N.; Al-Saidan, I. Real-time defect detection in 3D printing using machine learning. Mater. Today Proc. 2021, 42, 521–528. [Google Scholar] [CrossRef]
- Wang, D.D.; Qian, Z.; Vukicevic, M.; Engelhardt, S.; Kheradvar, A.; Zhang, C.; Little, S.H.; Verjans, J.; Comaniciu, D.; O’Neill, W.W.; et al. 3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease. JACC Cardiovasc. Imaging 2021, 14, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Pourmasoumi, P.; Moghaddam, A.; Mahand, S.N.; Heidari, F.; Moghaddam, Z.S.; Arjmand, M.; Kühnert, I.; Kruppke, B.; Wiesmann, H.-P.; Khonakdar, H.A. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. J. Biomater. Sci. Polym. Ed. 2023, 34, 108–146. [Google Scholar] [CrossRef]
Gel-Based Suspension Medium | Shear Rate (1/s) | Viscosity (Pa·s) | Ref. |
---|---|---|---|
Kappa-carrageenan (0.35%, w/v) | From 10−3 to 101 | ~From 104 to 101 | [27] |
Pluronic-F127 (25%, w/v) | From 10−3 to 103 | ~From 104 to 100 | [29] |
Gelatin (4.5%, w/v) | From 10−3 to 103 | ~From 103 to 10−1 | |
Carbopol (0.1%, w/v) | From 10−3 to 103 | ~From 103 to 10−1 | |
Alginate | From 10−1 to 100 | ~From 250 to 50 | [31] |
Agarose (0. 25 wt%) | From 10−2 to 102 | ~From 101 to 10−1 | [32] |
Methods | Advantages | Limitations |
---|---|---|
Mechanical blending | Simple operation and short preparation time | Microgels were prepared with random sizes and irregular shapes. The introduction of additives or the selection of gels with low crosslinking degrees were required. |
Coacervation | The microgels exhibit regular shapes, small particle sizes, and uniform distributions. | Long preparation time |
Flash-solidification | Short preparation time | The microgels have large and uneven particle sizes. |
Air-assisted co-axial jetting | Short preparation time | The size of the microgels is related to the air pressure; achieving small gel particles is challenging. |
Biomimetic Structures | Gel-Based Suspension Medium | Bioink | Significance | Ref. |
---|---|---|---|---|
Cornea | Nanoclay/PF-127 | GelMA | Eliminating surface roughness caused by layered morphology | [62] |
Vasculature | PF-127 | ALG/glucomannan | Customing vascularized grafts | [68] |
gelatin | fibrinogen-HA | Constructing vascular networks in vitro | [69] | |
gelatin | rhCollMA | Constructing transplantable vascular flaps | [70,71] | |
Menisci | agarose | GelMA/NorHA microfibers | Repairing meniscus tear | [73] |
GG | Fibrinogen/gelatin | Spatial control of the vascular network in menisci | [76] | |
Neuron networks | GelMA | Gelatin | Integrated into engineered tissue/organ equivalents | [39] |
Gelatin | ALG/Collagen, Collagen | Disease modeling/drug screening | [80] | |
Skeletal muscle | Gelatin | GelMA/ALG | Developing a combined approach of multi-material and embedded bioprinting | [85] |
Heart | Gelatin | ALG | Surgical modeling and training | [87] |
Gelatin/gum arabic | Collagen/HA | Drug screening/ organ repair | [89] | |
Brain | PEGDA/Nanoclay/PF-127 | Gelatin/ALG | Surgical modeling and training | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Xu, R.; Hu, Z.; Ni, R.; Zhu, T.; Zhang, H.; Zhu, Y. Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs. Gels 2024, 10, 644. https://doi.org/10.3390/gels10100644
Luo Y, Xu R, Hu Z, Ni R, Zhu T, Zhang H, Zhu Y. Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs. Gels. 2024; 10(10):644. https://doi.org/10.3390/gels10100644
Chicago/Turabian StyleLuo, Yang, Rong Xu, Zeming Hu, Renhao Ni, Tong Zhu, Hua Zhang, and Yabin Zhu. 2024. "Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs" Gels 10, no. 10: 644. https://doi.org/10.3390/gels10100644
APA StyleLuo, Y., Xu, R., Hu, Z., Ni, R., Zhu, T., Zhang, H., & Zhu, Y. (2024). Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs. Gels, 10(10), 644. https://doi.org/10.3390/gels10100644