Nanoparticle Air Filtration Using MXene-Coated Textiles
"> Figure 1
<p>Schematic illustration for the production of (<b>a</b>) Ti<sub>3</sub>C<sub>2</sub>- and (<b>b</b>) Ti<sub>3</sub>C<sub>2</sub>/Mg(II)-coated textile air filters.</p> "> Figure 2
<p>Scanning electron microscopy images of (<b>a</b>) uncoated textile, (<b>b</b>) Ti<sub>3</sub>C<sub>2</sub>-coated textile, (<b>c</b>) Ti<sub>3</sub>C<sub>2</sub>/Mg (II)-coated textile. (<b>d</b>) Elemental mappings collected on Ti<sub>3</sub>C<sub>2</sub>/Mg (II)-coated textile.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) Typical 2D cross-sectional Micro-CT images of Ti<sub>3</sub>C<sub>2</sub>-coated textile (MXene: gray; textile: fibrous lines). (<b>c</b>,<b>d</b>) Typical 2D cross-sectional Micro-CT images of Ti<sub>3</sub>C<sub>2</sub>/Mg(II)-coated textile (MXene/Mg(II): gray; textile: fibrous lines). (<b>e,f</b>) Three-dimensional Micro-CT images of Ti<sub>3</sub>C<sub>2</sub>-coated textile in unit space (gray). (<b>g,h</b>) Three-dimensional Micro-CT image of Ti<sub>3</sub>C<sub>2</sub>/Mg(II)-coated textile in unit space (green).</p> "> Figure 4
<p>(<b>a</b>) A schematic of the filtration testing setup, where the samples are sandwiched between two red clamps inside a vacuum chamber (bottom). Then, this is filled with an aerosol of NaCl particles entering from the aerosol inlet (left), and data are collected by a particle analyzer (FMPS, right). (<b>b</b>) The filtration efficiency (<span class="html-italic">η</span>) of the NaCl aerosol for the uncoated textile and Ti<sub>3</sub>C<sub>2</sub>-and Ti<sub>3</sub>C<sub>2</sub>/Mg(II)-coated textile within a particle range from 5.6 nm to 560 nm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ti3C2 MXene
2.2. Fabrication of Ti3C2- and Ti3C2/Mg(II)-Coated Textile
2.3. Multiscale Characterization of the Fabrics
2.3.1. Scanning Electron Microscopy/Electron Dispersive X-Ray Spectroscopy (SEM/EDS)
2.3.2. Micro-Computed Tomography (Micro-CT)
2.3.3. Efficiency Testing System
3. Results and Discussion
3.1. Morphological Characterization
3.2. Structural Analysis
3.3. Filtration Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chem. Health Saf. 2021, 28, 326–338. [Google Scholar] [CrossRef]
- Downes, M.; Shuck, C.E.; McBride, B.; Busa, J.; Gogotsi, Y. Comprehensive Synthesis of Ti3C2Tx from MAX Phase to MXene. Nat. Protoc. 2024, 19, 1807–1834. [Google Scholar] [CrossRef] [PubMed]
- Morales-García, Á.; Fernández-Fernández, A.; Viñes, F.; Illas, F. CO2 Abatement Using Two-Dimensional MXene Carbides. J. Mater. Chem. A 2018, 6, 3381–3385. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, A.; Chen, J.; Jia, J.; Zhou, W.; Wang, L.; Hu, Q. Preparation of Ti3C2 and Ti2C MXenes by Fluoride Salts Etching and Methane Adsorptive Properties. Appl. Surf. Sci. 2017, 416, 781–789. [Google Scholar] [CrossRef]
- Yuan, W.; Yang, K.; Peng, H.; Li, F.; Yin, F. A Flexible VOCs Sensor Based on a 3D MXene Framework with a High Sensing Performance. J. Mater. Chem. A 2018, 6, 18116–18124. [Google Scholar] [CrossRef]
- Liu, F.; Ma, Q.; Sabuj, M.M.A.; Yen, S.-H.; Govindan, D.; Gao, J.; Zhao, M.; Elimelech, M.; Zhang, W. Revolutionizing Airborne Virus Defense: Electromagnetic MXene-Coated Air Filtration for Superior Aerosol Viral Removal. ACS Appl. Mater. Interfaces 2024, 16, 10148–10157. [Google Scholar] [CrossRef]
- Gao, X.; Li, Z.-K.; Xue, J.; Qian, Y.; Zhang, L.-Z.; Caro, J.; Wang, H. Titanium Carbide Ti3C2Tx (MXene) Enhanced PAN Nanofiber Membrane for Air Purification. J. Membr. Sci. 2019, 586, 162–169. [Google Scholar] [CrossRef]
- Baskoy, M.H.; Cetin, O.; Koylan, S.; Khan, Y.; Tuncel, G.; Erguder, T.H.; Unalan, H.E. MXene-Decorated Nylon Mesh Filters for Improvement of Indoor Air Quality by PM2.5 Filtration. ACS Omega 2023, 8, 23465–23476. [Google Scholar] [CrossRef] [PubMed]
- Georgantas, Y.; Moissinac, F.P.; Bissett, M. MXenes-Mining: A Decade of Discovery. Graphene 2D Mater. 2024, 9, 5–26. [Google Scholar] [CrossRef]
- Dixit, F.; Zimmermann, K.; Alamoudi, M.; Abkar, L.; Barbeau, B.; Mohseni, M.; Kandasubramanian, B.; Smith, K. Application of MXenes for Air Purification, Gas Separation and Storage: A Review. Renew. Sustain. Energy Rev. 2022, 164, 112527. [Google Scholar] [CrossRef]
- Kim, J.T.; Lee, C.W.; Jung, H.J.; Choi, H.J.; Salman, A.; Padmajan Sasikala, S.; Kim, S.O. Application of 2D Materials for Adsorptive Removal of Air Pollutants. ACS Nano 2022, 16, 17687–17707. [Google Scholar] [CrossRef]
- Niu, C.; Yang, L.; Sun, H.; Zhu, Z.; Liang, W.; Li, J.; Li, A. Holey Ti3C2Tx Nanosheets Membrane with High PM Removal Efficiency for Air Pollution. J. Environ. Chem. Eng. 2023, 11, 111113. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine Particles in Cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef]
- Moreno-Ríos, A.L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, Characteristics, Toxicity, and Control of Ultrafine Particles: An Overview. Geosci. Front. 2022, 13, 101147. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Daiber, A.; Lelieveld, J. Luftverschmutzung und Herz-Kreislauf-Erkrankungen. Herz 2021, 46, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Künzli, N.; Hoffmann, B. Health Effects of Ultrafine Particles: A Systematic Literature Review Update of Epidemiological Evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef]
- Flood-Garibay, J.A.; Angulo-Molina, A.; Méndez-Rojas, M.Á. Particulate Matter and Ultrafine Particles in Urban Air Pollution and Their Effect on the Nervous System. Environ. Sci. Process. Impacts 2023, 25, 704–726. [Google Scholar] [CrossRef]
- Mathis, T.S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A.C.; Hantanasirisakul, K.; Shuck, C.E.; Stach, E.A.; Gogotsi, Y. Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Shang, T.; Wu, Z.; Tao, Y.; Luo, C.; Liang, J.; Han, D.; Lyu, R.; Qi, C.; Lv, W.; et al. Fast Gelation of Ti3C2Tx MXene Initiated by Metal Ions. Adv. Mater. 2019, 31, 1902432. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Goto, M.; Iigaki, K.; Iyoku, T.; Quan Ho, H.; Kawamoto, T.; Kondo, M.; Kunitomi, K.; Morita, K.; Nagasumi, S.; et al. Design of High Temperature Engineering Test Reactor (HTTR). In High Temperature Gas-Cooled Reactors; Takeda, T., Inagaki, Y., Eds.; JSME Series in Thermal and Nuclear Power Generation; Academic Press: Cambridge, MA, USA, 2021; Volume 5, pp. 17–177. ISBN 978-0-12-821031-4. [Google Scholar]
- Ávila, J.; Pagalo, J.; Espinoza-Andaluz, M. Evaluation of Geometric Tortuosity for 3D Digitally Generated Porous Media Considering the Pore Size Distribution and the A-Star Algorithm. Sci. Rep. 2022, 12, 19463. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Niculescu, V.-C. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef] [PubMed]
- Aromaa, J.; Kekkonen, M.; Mousapour, M.; Jokilaakso, A.; Lundström, M. The Oxidation of Copper in Air at Temperatures up to 100 °C. Corros. Mater. Degrad. 2021, 2, 625–640. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, P.; Ippolito, S.; Mohammadlou, B.S.; Waring, M.S.; Gogotsi, Y. Nanoparticle Air Filtration Using MXene-Coated Textiles. C 2025, 11, 13. https://doi.org/10.3390/c11010013
Upadhyay P, Ippolito S, Mohammadlou BS, Waring MS, Gogotsi Y. Nanoparticle Air Filtration Using MXene-Coated Textiles. C. 2025; 11(1):13. https://doi.org/10.3390/c11010013
Chicago/Turabian StyleUpadhyay, Prastuti, Stefano Ippolito, Bita Soltan Mohammadlou, Michael S. Waring, and Yury Gogotsi. 2025. "Nanoparticle Air Filtration Using MXene-Coated Textiles" C 11, no. 1: 13. https://doi.org/10.3390/c11010013
APA StyleUpadhyay, P., Ippolito, S., Mohammadlou, B. S., Waring, M. S., & Gogotsi, Y. (2025). Nanoparticle Air Filtration Using MXene-Coated Textiles. C, 11(1), 13. https://doi.org/10.3390/c11010013