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Abstract: Nanoparticles with aerodynamic diameters of less than 100 nm pose serious
problems to human health due to their small size and large surface area. Despite continuous
progress in materials science to develop air remediation technologies, efficient nanoparticle
filtration has appeared to be challenging. This study showcases the great promise of
MXene-coated polyester textiles to efficiently filter nanoparticles, achieving a high efficiency
of ~90% within the 15–30 nm range. Using alkaline earth metal ions to assist textile
coating drastically improves the filter performance by ca. 25%, with the structure–property
relationship thoroughly assessed by electron microscopy and X-ray computed tomography.
Such techniques confirm metal ions’ crucial role in obtaining fully coated and impregnated
textiles, which increases tortuosity and structural features that boost the ultimate filtration
efficiency. Our work provides a novel perspective on using MXene textiles for nanoparticle
filtration, presenting a viable alternative to produce high-performance air filters for real-
world applications.
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1. Introduction
Since their discovery in 2011, MXenes—the largest family of two-dimensional (2D)

materials—have been explored in many applications, including electronics, electromagnetic
interference shielding, energy storage, catalysis, sensing, and biomedicine [1]. MXenes
have the general formula Mn+1XnTx, where M represents an early transition metal, X is
carbon and/or nitrogen, Tx describes the surface terminations (mostly -O, -OH, -F, and -Cl),
and n ranges from 1 to 4 [2]. Such 2D materials are synthesized from their bulk MAX phase
precursors via wet chemical etching and delamination protocols. MXenes have unique
and versatile properties, such as metallic electrical conductivity, tunable electrochemical
and plasmonic properties, active redox surface, and high hydrophilicity [3]. Moreover,
the synthesis of MXenes is not only limited to small-scale synthesis; it can be expanded to
large-scale industrial applications capitalizing on established technologies using HF and
HCl, like in petroleum, and to semiconductor manufacturing industries, with best practices
as highlighted in the literature [4,5].

Over the last few years, the adsorption capacity of MXenes has been investigated for
gasses like CO2 [6], CH4 [7], and H2 and toxic species such as NO, CO, NO2, NH3, SO2,
and H2S, as well as different volatile organic compounds [8]. Besides their gas adsorption
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properties, MXenes have been explored for viral aerosol removal [9] and PM2.5 filtration
(particulate matter with an aerodynamic diameter smaller than 2.5 µm) using polyacryloni-
trile [10] and Nylon filters [11]. Despite a steady increase of ~10% in MXene-related studies
for environmental applications during 2018–2022 [12], works on MXenes for air filtration
appear sparse, only covering ~0.2% of the MXene literature. Still, there is an agreement
that MXenes show promise in air filtration and air quality control applications [13–15].

Here, we reported an unprecedented study using Ti3C2 MXene-coated textiles as air
filters for nanoparticles (NPs) with aerodynamic diameters smaller than 100 nm. Such
NPs are commonly produced in urban areas as a result of vehicular traffic and industrial
emissions [16,17], posing a serious threat to human health due to the increased risk of
developing respiratory and cardiovascular diseases [18,19], as well as neurological disor-
ders [20]. We developed a straightforward approach to producing Ti3C2-coated polyester
textiles as air filters, targeting NPs with sizes below 100 nm. Using metal ions to assist with
the MXene coating led to different morphological characteristics, as confirmed by electron
microscopy and X-ray tomography, thereby improving the ultimate filtration efficiency,
reaching ~90% in the 15–30 nm range. We also speculate that our systems could behave
like self-cleaning filters, taking advantage of Joule heating and, therefore, exploiting the
metallic conductivity of MXenes and their thermal properties.

2. Materials and Methods
2.1. Synthesis of Ti3C2 MXene

Ti3C2 MXene was synthesized by wet chemical etching, starting from the Ti3AlC2 MAX
precursor (Carbon-Ukraine, Kyiv, Ukraine) via the conventional HF/HCl method and using
LiCl as a delaminating agent, in agreement with the previously reported literature [21].
For 1 g of MAX phase, 6 mL of deionized (DI) water, 12 mL of 12 M HCl (Fisher Scientific,
Bridgewater, NJ, USA), and 2 mL of 50 wt.% HF (Acros Organics, Bridgewater, NJ, USA)
were used to prepare the etching solution, which was kept under stirring at 300 rpm
and 35 ◦C for 24 h. Then, the dispersion was neutralized using DI water and multiple
centrifugation steps at 3500 rpm for 5 min. After neutral pH was reached, multilayer Ti3C2

was delaminated using 1 g of LiCl (anhydrous ≥ 98%, Alfa Aesar, Ward Hill, MA, USA) in
50 mL of DI water at 35 ◦C for 24 h. Later, LiCl was removed via multiple centrifugation
steps at 3500 rpm for 15 min until a dark supernatant was obtained. The single-layer Ti3C2

flakes were collected, and the dispersion was concentrated to 10 mg/mL. This MXene is
hydrophilic and negatively charged in solution due to its O, OH and F surface terminations
(Tx). Its formula is often written as Ti3C2Tx, but we omit T for simplicity, as only one kind
of MXene was used.

2.2. Fabrication of Ti3C2- and Ti3C2/Mg(II)-Coated Textile

Hydrophilic MXenes strongly adhere to the fibers when coated on textiles, providing
excellent coatings over various substrates. First, we conducted a parametric study to select
the best concentration of Ti3C2 dispersion to be used to maximize the MXene loading on the
textile. We used non-woven polyester textile due to its low cost and lower filtration efficiency
compared to high-efficiency air filters for particulate matter below 0.3 µm. Small polyester
pieces (2.5 × 2.5 cm2) were dip-coated using 1, 5, 10, 15, and 20 mg/mL Ti3C2 aqueous
dispersion, soaking them for 5 min on each side. Then, the coated textiles were freeze-dried
for 2 days (Labconco Freezone 2.5 plus Freeze Dryer, at −85 ◦C at 0.10 mbar). Once completely
dried, we compared the mass of the fabric pieces before and after coating, recording the highest
loading for the MXene dispersion with a concentration equal to 10 mg/mL, then selected
for the following investigations and sample preparation steps [Figure S1a]. We attribute
the highest loading for 10 mg/mL MXene dispersion to its optimal rheological property,
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leading to the best impregnation of the textile fibers during the coating process. To further
improve the loading on textiles and their impregnation, we developed a protocol based on
metal ion-assisted coating using Mg-ions (henceforth Ti3C2/Mg(II)) contained in a MgCl2
aqueous solution where, after soaking the textile in MXene dispersion, we also soaked it in
Mg (II) solution before drying it for 15 min. By favoring the MXene–MXene and MXene–fiber
electrostatic interaction [22], this additional step improves the quality of coating as well as the
overall loading on the textile [Figure S1a].

At this point, for the filtration analysis, two different kinds of sample types were
prepared: (i) Ti3C2-coated [Figure 1a] and (ii) Ti3C2/Mg(II)-coated textiles [Figure 1b].
All samples were prepared starting from uncoated textiles (15 × 15 cm2) and using Ti3C2

dispersion at 10 mg/mL. In addition, the 0.5 M aqueous solution of MgCl2 was used for
sample (ii), following identical steps to those reported above for the parametric study.
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2.3. Multiscale Characterization of the Fabrics

The multiscale characterization of the coated textile was performed using the follow-
ing techniques.

2.3.1. Scanning Electron Microscopy/Electron Dispersive X-Ray Spectroscopy (SEM/EDS)

The textiles were analyzed using a Zeiss Supra 50 VP microscope operating at 10 kV.
The same SEM instrument was used for EDS investigations. Each spectrum was collected
at 10 kV, and three spots were collected at different locations for each sample. In all cases,
the recorded spectra contained more than 50,000 counts.

2.3.2. Micro-Computed Tomography (Micro-CT)

Micro-CT investigations were conducted using the Zeiss Xradia 620 Versa, performing
two sets of resolution scans to analyze coated textiles for air filtration applications. The
first set of scans was conducted on coated textiles at 50 kV using a 4X objective, resulting
in a pixel size of 2.12 µm. Additional information on the second set of scans is included
in Figure S3. All scans were performed in the air at ambient temperature, capturing
2401 projection images for each dataset.

The micro-CT data were reconstructed using Zeiss XRM Reconstructor software
(Version 16.5.13718.44212) to produce precise 3D volumetric datasets. Post-processing
was performed with ORS Dragonfly Pro software (Version 2022.2.0.1367), focusing on
qualitative and quantitative analysis to study the distribution of MXene coatings. This
detailed investigation provided valuable information for assessing fabrication quality and
textile coating differences for air filtration applications.

2.3.3. Efficiency Testing System

In the filtration setup the sodium chloride (NaCl) aerosol was emitted into a vacuum-
sealed chamber from a generation system consisting of a pump, filter, atomizer (TSI 3076),
diffusion dryer (TSI 3062), and (TSI 3077A). In the system, aerosols are charged positively
using a corona charger such that electron mobility is induced due to repulsion with a
positively charged electrode in the instrument. Each filter was clamped inside the chamber
between two torus-shaped clamps, where only the coated area was exposed to the aerosol.
The aerosol concentration, in terms of time and size-resolved particle number, was mea-
sured in variable size diameters from 5.6 nm to 560 nm using the Fast Mobility Particle
Sizer (TSI FMPS 3091). In all, 108 sets of data were collected during each testing cycle. The
filtration efficiency (η) was calculated using the ratio of the concentration of aerosol passing
through the filter (C1) over the concentration of the aerosol in the chamber (C0), following
Equation (1) [23]:

η =

(
1 − C1

C0

)
× 100% (1)

Data treatment and statistical analysis were performed using OriginPro software
(Version 2023).

3. Results and Discussion
3.1. Morphological Characterization

The SEM and EDS analysis of uncoated [Figure 2a] and coated textiles provided valu-
able insights into the sample morphology and homogeneity. Ti3C2-coated filters presented
2D flakes covering the randomly oriented polyester fibers [Figure 2b], showing no major
differences compared to Ti3C2/Mg(II)-coated textiles [Figure 2c]. In this regard, we mapped
the spatial elemental composition and distribution of the two different samples by looking
at carbon, titanium, fluorine, chlorine, oxygen, and magnesium spectra [Figure 2d]. The
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EDS data confirmed uniform elemental distribution and high sample homogeneity in both
kinds of textiles, which, combined with the SEM results, provided unambiguous evidence
about the similar surface morphology for both samples. In addition, our morphological
characterization demonstrated that any difference in filtration efficiency for the two systems
under investigation could not be due to surface effects in the filters but rather to internal
structural features.
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3.2. Structural Analysis

Following SEM and EDS characterization, we thoroughly investigated the internal
structural features of Ti3C2- and Ti3C2/Mg(II)-coated textiles using Micro-CT. Excellent ad-
herence and coverage throughout the substrate were observed for both systems. As shown
in the 2D cross-sectional images from Micro-CT, the Ti3C2-coated textiles [Figure 3a,b]
exhibited randomly scattered and sparsely distributed MXene flakes covering the fibers.
In contrast, the Ti3C2/Mg(II)-coated samples [Figure 3c,d] displayed a denser and more
uniform coating, with a higher degree of MXene aggregation around the textile fibers.
This suggests that adding Mg(II) enhances MXene distribution during the coating process,
potentially improving the filtration performance of these systems. Such structural charac-
teristics were further visualized through 3D Micro-CT images for both Ti3C2-coated textiles
[Figure 3e,f] and the denser Ti3C2/Mg(II) samples [Figure 3g,h]. To complement these qual-
itative 3D visualizations, the samples’ porosity and the loaded MXene volume were also
quantified. Ti3C2-coated textiles demonstrated an average porosity of about ~70%, while
the Ti3C2/Mg(II)-coated samples exhibited a slightly lower porosity of approximately 65%.
The reduced porosity indicates higher MXene loading in Ti3C2/Mg(II)-coated samples,
leading to a denser coating, which aligns with the data collected during the parametric
study. This reduction in porosity (viz., higher loading) and the improved MXene distribu-
tion within the filter highlight an enhanced geometric tortuosity in our air filters, a figure
of merit strongly influencing their filtration efficiency [24].
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3.3. Filtration Efficiency

We assessed the filtration efficiency (η) of three different types of samples: (i) uncoated
polyester textile, (ii) Ti3C2-coated textile, and (iii) Ti3C2/Mg(II)-coated textile. To this end,
we calculated η (Equation (1)) by using the data collected with a fast mobility particle sizer
(FMPS), measuring the concentration ratio between the NaCl aerosol passing through the
filter (C1) and the NaCl aerosol in the chamber air (C0), targeting particle sizes ranging
from 5.6 nm to 560 nm. The Ti3C2/Mg(II)-coated samples significantly outperformed the
other two sample types, reaching η ≈ 90% in the 15–30 nm range [Figure 4b]. A similar
trend was also observed in the other size ranges, such as 30–60 nm, 60–120 nm, 120–250 nm,
and 250–560 nm, where the Ti3C2/Mg(II) samples performed as the best filters, followed by
the Ti3C2-coated and uncoated textiles. The enhanced performance of Ti3C2/Mg(II)-coated
textiles could be likely linked to the resulting decrease in porosity as confirmed by micro-
CT investigations, which not only reduced pore sizes but increased the tortuosity of the
filter medium. In addition to their morphological and structural characteristics, improved
geometric tortuosity creates complex pathways for better particle capture, leading to higher
filtration efficiency. Finally, charged polar surfaces of MXenes may contribute to the capture
of nanoparticles. This agrees with the results collected by SEM and micro-CT investigations,
which showed that the MXene flake could cover the polyester fibers differently, depending
on the production steps. In particular, using metal ions to assist the coating enhanced the
geometric tortuosity within the filters, as pointed out by the higher MXene loading and
the better aggregation of flakes around the fibers. In addition, a possible contribution of
electrostatic interaction cannot be ruled out, as the presence of metal ions within the filter
structure could improve filtration efficiency, further supporting the data collected.
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two red clamps inside a vacuum chamber (bottom). Then, this is filled with an aerosol of NaCl
particles entering from the aerosol inlet (left), and data are collected by a particle analyzer (FMPS,
right). (b) The filtration efficiency (η) of the NaCl aerosol for the uncoated textile and Ti3C2-and
Ti3C2/Mg(II)-coated textile within a particle range from 5.6 nm to 560 nm.

Moreover, taking advantage of the unique and versatile MXene properties, includ-
ing high hydrophilicity and metallic conductivity, we speculate about the possibility of
producing high-efficiency and self-cleaning filters for gas and virus filtration. The latter
applications rely on systems with high filtration efficiency in the particle range considered
in our study. As displayed in Figure S5b, we tested the Joule heating of our MXene-coated
filters, reaching a temperature above 100 ◦C while applying a voltage bias of less than
15 V. In particular, Ti3C2/Mg(II)-coated textiles presented a less abrupt temperature rise
[Figure S5a], which could allow for a better fine-tuning of the temperature needed to clean
and thus regenerate the filter, thereby providing additional value to our work. We expect
our findings to stimulate additional research on using MXene textiles as air filters, further
expanding the range of applications of such a unique family of 2D materials.

4. Conclusions
In conclusion, we tested the air filtration efficiency of MXene-coated polyester textiles

and demonstrated superior performance for samples prepared through metal ion-assisted
coating. This enhanced efficiency results from the higher and better loading of MXene flakes
within the textile fibers, as confirmed by morphological and structural analyses performed
via SEM and Micro-CT. We reached an efficiency close to 90% for NPs in the 15–30 nm range,
achieving state-of-the-art performance using a straightforward, fast, and environmentally
friendly sample preparation protocol. While such results are encouraging regarding the use
of MXene-coated textiles for real-world applications concerning air filtration, it is worth
mentioning that our air filters could still be improved in future studies focused on the
optimization of the MXene structure, nature, and concentration of metal ions, as well as the
suitable choice of substrate to coat.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c11010013/s1, Figure S1: (a) A parametric study shows net
loading in Ti3C2-coated textile and Ti3C2/Mg(II)-coated textile. Pictures of (b) 1-layer and (c) 5-layer
uncoated textile. Five-layer (d) Ti3C2-coated textile and (e) Ti3C2/Mg(II)-coated textile. Figure S2:
Scanning electron microscopy images of Ti3C2-coated textile using Ti3C2 dispersions at (a) 5 mg/mL,
(b) 10 mg/mL, and (c) 15 mg/mL. The scale bar is 200 µm. (d) Elemental mappings for Ti3C2-coated
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textile at 10 mg/mL. The scale bar is 125 µm. Figure S3: (a,b) Two-dimensional cross-sectional
micro-CT images showing uncoated textiles (fibrous lines). (c,d) Two-dimensional cross-sectional
micro-CT images of Ti3C2-coated textile, showing Ti3C2 flake aggregations (gray) and textile (fibrous
lines). (e,f) Cross-sectional Micro-CT images of Ti3C2/Mg (II)-coated textile, showing Ti3C2/Mg(II)
flake aggregations (gray) and textile (fibrous lines). Figure S4: Comparison of filtration efficiency for
1-layer and 5-layer uncoated textiles. Figure S5: (a) Temperature increases with increasing voltage
bias for Ti3C2-coated textile (green) and Ti3C2/Mg(II)-coated textile (blue). (b) Experimental setup
for the Joule heating testing. (c) Picture collected by infrared camera showing Joule heating in
Ti3C2/Mg(II)-coated samples. Figure S6: Schematics show the possible regeneration mechanism via
Joule heating for Ti3C2-coated textiles for air purification (e.g., nanoparticle filtration). Refs. [25,26]
are cited in Supplementary Materials file.
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