Markedly Enhanced Photoluminescence of Carbon Dots Dispersed in Deuterium Oxide
"> Figure 1
<p>PL emission of the NHF-CDs dispersed in (<b>a</b>) water, (<b>b</b>) deuterium oxide.</p> "> Figure 2
<p>PL emission of the NHS-CDs dispersed in (<b>a</b>) water, (<b>b</b>) deuterium oxide.</p> "> Figure 3
<p>PL emission of the AW-CDs dispersed in (<b>a</b>) water, (<b>b</b>) deuterium oxide.</p> "> Figure 4
<p>PL emission of the Fe-CDs dispersed in (<b>a</b>) water, (<b>b</b>) deuterium oxide.</p> "> Figure 5
<p>Observed PL emission intensity of the NHF-CDs/monomer/crosslinker/photoinitiator/D<sub>2</sub>O mixture (<b>a</b>) prior and (<b>b</b>) post-polymerization.</p> "> Figure 6
<p>The typical time-resolved fluorescence decay profiles of the (<b>A</b>) NHF-CDs/H<sub>2</sub>O, (<b>B</b>) NHF-CDs D<sub>2</sub>O, (<b>C</b>) NHS-CDs/H<sub>2</sub>O, (<b>D</b>) NHS-CDs/D<sub>2</sub>O, (<b>E</b>) Fe-CDs/H<sub>2</sub>O, (<b>F</b>) Fe-CDs/D<sub>2</sub>O, (<b>G</b>) AW-CDs/H<sub>2</sub>O, and (<b>H</b>) AW-CDs/D<sub>2</sub>O samples.</p> "> Figure 6 Cont.
<p>The typical time-resolved fluorescence decay profiles of the (<b>A</b>) NHF-CDs/H<sub>2</sub>O, (<b>B</b>) NHF-CDs D<sub>2</sub>O, (<b>C</b>) NHS-CDs/H<sub>2</sub>O, (<b>D</b>) NHS-CDs/D<sub>2</sub>O, (<b>E</b>) Fe-CDs/H<sub>2</sub>O, (<b>F</b>) Fe-CDs/D<sub>2</sub>O, (<b>G</b>) AW-CDs/H<sub>2</sub>O, and (<b>H</b>) AW-CDs/D<sub>2</sub>O samples.</p> "> Figure 7
<p>Dimensional distribution of freshly prepared/1 week aged of (<b>a</b>) NHF-CDs, (<b>b</b>) NHS-CDs, (<b>c</b>) AW-CDs, and (<b>d</b>) Fe-CDs dispersed in D<sub>2</sub>O.</p> ">
Abstract
:1. Introduction
2. Materials and Methods and Preparation
2.1. Materials
2.2. Methods
2.3. Preparation
3. Results and Discussion
3.1. Photoluminescence Investigation
3.1.1. Steady-State Fluorescence Investigation
3.1.2. PLQY Measurements
3.1.3. Fluorescence Lifetime (LT) Measurements
3.2. Characterization of the D2O Dispersed CDs
Dimensional (DLS) Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ozyurt, D.; Al Kobaisi, M.; Hocking, R.K.; Fox, B. Properties, synthesis, and applications of carbon dots: A review. Carbon Trends 2023, 12, 100276. [Google Scholar] [CrossRef]
- Etefa, H.F.; Tessema, A.A.; Dejene, F.B. Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023). C 2024, 10, 60. [Google Scholar] [CrossRef]
- Ullah, M.; Awan, U.A.; Ali, H.; Wahab, A.; Khan, S.U.; Naeem, M.; Ruslin, M.; Mustopa, A.Z.; Hasan, N. Carbon Dots: New Rising Stars in the Carbon Family for Diagnosis and Biomedical Applications. J. Nanotheranostics 2025, 6, 1. [Google Scholar] [CrossRef]
- Majid, A.; Ahmad, K.; Tan, L.; Niaz, W.; Na, W.; Huiru, L.; Wang, J. The Advanced Role of Carbon Quantum Dots in Nano-Food Science: Applications, Bibliographic Analysis, Safety Concerns, and Perspectives. C 2025, 11, 1. [Google Scholar] [CrossRef]
- Ai, L.; Yang, Y.; Wang, B.; Chang, J.; Tang, Z.; Yang, B.; Lu, S. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021, 66, 839–856. [Google Scholar] [CrossRef]
- Wang, B.; Lu, S. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149. [Google Scholar] [CrossRef]
- Carbonaro, C.M.; Corpino, R.; Salis, M.; Mocci, F.; Thakkar, S.V.; Olla, C.; Ricci, P.C. On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. C 2019, 5, 60. [Google Scholar] [CrossRef]
- Hutchison, C.A.; Mangum, B.W. Effect of deuterium substitution on the lifetime of the phosphorescent triplet state of naphthalne. J. Chem. Phys. 1960, 32, 1261–1262. [Google Scholar] [CrossRef]
- Kučera, J.; Peš, O.; Janovič, T.; Hofr, C.; Kubinyiová, L.; Tóth, J.; Káňa, Š.; Táborský, P. Enhancement of luminescence signal by deuterated water—Practical implications. Sens. Actuators B Chem. 2022, 352, 131029. [Google Scholar] [CrossRef]
- Gamage, R.; Smith, B. Fluorescence imaging using deep-red Indocyanine Blue (ICB) a complementary partner for near infrared Indocyanine Green (ICG). Chem. Biomed. Imaging 2024, 2, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Sailer, B.L.; Nastasi, A.J.; Valdez, J.G.; Steinkamp, J.A.; Crissman, H.A. Differential Effects of Deuterium Oxide on the Fluorescence Lifetimes and Intensities of Dyes with Different Modes of Binding to DNA. J. Histochem. Cytochem. 1997, 45, 165–175. [Google Scholar] [CrossRef]
- Taborsky, P.; Kucera, J.; Jurica, J.; Pes, O. Heavy water enhancement of fluorescence signal in reversed-phase liquid chromatography. J. Chromatogr. B 2018, 1092, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Filer, C.N. Luminescence enhancement by deuterium. J. Label. Compd. Radiopharm. 2023, 66, 372–383. [Google Scholar] [CrossRef]
- Tong, C.C.; Hwang, K.C. Enhancement of OLED Efficiencies and High-Voltage Stabilities of Light-Emitting Materials by Deuteration. J. Phys. Chem. C 2007, 111, 3490–3494. [Google Scholar] [CrossRef]
- Jung, S.; Cheung, W.L.; Li, S.; Wang, M.; Li, W.; Wang, C.; Song, X.; Wei, G.; Song, Q.; Chen, S.S.; et al. Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds. Nat. Commun. 2023, 14, 6481. [Google Scholar]
- Yao, Z.; Wen, X.; Hong, X.; Tao, R.; Yin, F.; Cao, S.; Yan, J.; Wang, K.; Wang, J. Deuteration-Induced Energy Level Structure Reconstruction of Carbon Dots for Enhancing Photoluminescence. Adv. Sci. 2024, 11, 2308523. [Google Scholar] [CrossRef] [PubMed]
- Stan, C.S.; Horlescu, P.; Ursu, L.E.; Popa, M.; Albu, C. Facile preparation of highly luminescent composites by polymer embedding of carbon dots derived from N-hydroxyphthalimide. J. Mater. Sci. 2017, 52, 185–196. [Google Scholar] [CrossRef]
- Stan, C.S.; Albu, C.; Coroaba, A.; Popa, M.; Sutiman, D. One step synthesis of fluorescent Carbon Dots through pyrolysis of N-hydroxysuccinimide. J. Mater. Chem. C 2015, 3, 789–795. [Google Scholar] [CrossRef]
- Stan, C.S.; Elouakassi, N.; Albu, C.; Ania, C.O.; Coroaba, A.; Ursu, L.E.; Popa, M.; Kaddami, H.; Almaggoussi, A. Photoluminescence of Argan-Waste-Derived Carbon Nanodots Embedded in Polymer Matrices. Nanomaterials 2024, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Stan, C.S.; Coroaba, A.; Ursu, E.L.; Secula, M.S.; Simionescu, B.C. Fe(III) doped carbon nanodots with intense green photoluminescence and dispersion medium dependent emission. Sci. Rep. 2019, 9, 18893. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, N.; Marinovic, A.; Yoshizawa, N.; Goode, A.E.; Fay, M.; Khlobystov, A.; Titirici, M.M.; Sapelkin, A. Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Sci. Rep. 2018, 8, 6559. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, L.; Cui, Z.; Ai, X. Improving the Luminescence and Stability of Carbon-Centered Radicals by Kinetic Isotope Effect. Molecules 2023, 28, 4805. [Google Scholar] [CrossRef] [PubMed]
- Dobretsov, G.E.; Syrejschikova, T.I.; Smolina, N.V. On mechanisms of fluorescence quenching by water. Biophysics 2014, 59, 183–188. [Google Scholar] [CrossRef]
- Maillard, J.; Klehs, K.; Rumble, C.; Vauthey, E.; Heilemann, M.; Fürstenberg, A. Universal quenching of common fluorescent probes by water and alcohols. Chem. Sci. 2021, 12, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Hoshino, M.; Kerkeni, B.; Kerkeni, B.; García, G.; Limão-Vieira, P. Isotope Effect in D2O Negative Ion Formation in Electron Transfer Experiments: DO–D Bond Dissociation Energy. J. Phys. Chem. Lett. 2023, 14, 5362–5369. [Google Scholar] [CrossRef] [PubMed]
- Coroaba, A.; Al-Matarneh, C.; Vasiliu, T.; Ibanescu, S.-A.; Zonda, R.; Esanu, I.; Isac, D.-L.; Pinteala, M. Revealing the supramolecular interactions of the bis(azopyrenyl) dibenzo-18-crown-6-ether system. J. Mol. Liq. 2023, 374, 121298. [Google Scholar] [CrossRef]
- Magde, D.; Wong, R.; Seybold, P.G. Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields. Photochem. Photobiol. 2002, 75, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
Absolute PLQY | ||||
---|---|---|---|---|
Excitation (nm) | 330 | 350 | 370 | |
CNDs NHF | PLQY (%) | 13.37 | 30.13 | 34.05 |
H2O dispersed | abs. error (+/−) | 0.028 | 0.066 | 0.086 |
CIE 1931 coord. | x = 0.14588 | x = 0.15215 | x = 0.15235 | |
y = 0.10874 | y = 0.11844 | y = 0.11802 | ||
CNDs NHF | PLQY (%) | 41.48 | 71.27 | 70.97 |
D2O dispersed | abs. error (+/−) | 0.086 | 0.143 | 0.146 |
CIE 1931 coord. | x = 0.15165 | x = 0.15299 | x = 0.15285 | |
y = 0.11366 | y = 0.11746 | y = 0.11656 | ||
CNDs NHS | PLQY (%) | 11.92 | 12.31 | 12.46 |
H2O dispersed | abs. error (+/−) | 0.041 | 0.048 | 0.07 |
CIE 1931 coord. | x = 0.16148 | x = 0.16749 | x = 0.17203 | |
y = 0.14843 | y = 0.17764 | y = 0.20566 | ||
CNDs NHS | PLQY (%) | 21.41 | 22.26 | 25.47 |
D2O dispersed | abs. error (+/−) | 0.118 | 0.144 | 0.279 |
CIE 1931 coord. | x = 0.1580 | x = 0.16467 | x = 0.17064 | |
y = 0.13088 | y = 0.15574 | y = 0.19365 | ||
CNDs Fe doped | PLQY (%) | 12.2 | 10.43 | 5.38 |
H2O dispersed | abs. error (+/−) | 0.025 | 0.015 | 0.015 |
CIE 1931 coord. | x = 0.23316 | x = 0.24067 | x = 0.23791 | |
y = 0.55765 | y = 0.6311 | y = 0.58452 | ||
CNDs Fe doped | PLQY (%) | 29.1 | 17.09 | 10.29 |
D2O dispersed | abs. error (+/−) | 0.086 | 0.021 | 0.057 |
CIE 1931 coord. | x = 0.23471 | x = 0.23704 | x = 0.23234 | |
y = 0.55098 | y = 0.5814 | y = 0.55199 | ||
CNDs Argan | PLQY (%) | 15.94 | 19.93 | 23.67 |
H2O dispersed | abs. error (+/−) | 0.04 | 0.059 | 0.102 |
CIE 1931 coord. | x = 0.14839 | x = 0.15448 | x = 0.15723 | |
y = 0.08361 | y = 0.10221 | y = 0.12234 | ||
CNDs Argan | PLQY (%) | 16.24 | 21.77 | 30.17 |
D2O dispersed | abs. error (+/−) | 0.04 | 0.069 | 0.164 |
CIE 1931 coord. | x = 0.15136 | x = 0.15611 | x = 0.15501 | |
y = 0.09372 | y = 0.11137 | y = 0.1093 |
Sample Code | Φ (%) | kr * (ns−1) | knr * (ns−1) | τ1 (ns) | a1 (%) | f1 | τ2 (ns) | a2 (%) | f2 | τ3 (ns) | a3 (%) | f3 | χ2 | <τ> (ns) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NHF-CDs H2O dispersed | 34.05 | 0.042 | 0.082 | 8.38 | 81.43 | 0.952 | 2.09 | 16.33 | 0.048 | 0.11 | 2.24 | 0.000 | 1.04 | 8.07 |
NHF-CDs D2O dispersed | 70.97 | 0.086 | 0.035 | 8.22 | 100.00 | 1.000 | - | - | - | - | - | - | 1.09 | 8.22 |
NHS-CDs H2O dispersed | 12.46 | 0.014 | 0.101 | 10.68 | 44.22 | 0.698 | 4.20 | 46.42 | 0.289 | 0.95 | 9.36 | 0.013 | 1.11 | 8.68 |
NHS-CDs D2O dispersed | 25.47 | 0.024 | 0.071 | 12.72 | 47.40 | 0.744 | 4.39 | 45.47 | 0.246 | 1.04 | 7.13 | 0.009 | 1.13 | 10.56 |
NHS-CDs H2O dispersed | 5.38 | 0.005 | 0.089 | 12.98 | 17.83 | 0.222 | 9.99 | 81.00 | 0.778 | 0.09 | 1.17 | 0.000 | 1.10 | 10.66 |
Fe-CDs D2O dispersed | 10.29 | 0.007 | 0.061 | 14.65 | 100.00 | 1.000 | - | - | - | - | - | - | 1.07 | 14.65 |
AW-CDs H2O dispersed | 23.67 | 0.029 | 0.094 | 9.85 | 46.75 | 0.673 | 4.49 | 49.43 | 0.324 | 0.47 | 3.82 | 0.003 | 1.11 | 8.09 |
AW-CDs D2O dispersed | 30.17 | 0.028 | 0.066 | 12.88 | 47.32 | 0.713 | 5.09 | 46.97 | 0.280 | 1.12 | 5.17 | 0.007 | 1.14 | 10.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stan, C.S.; Coroaba, A.; Ania, C.O.; Albu, C.; Popa, M. Markedly Enhanced Photoluminescence of Carbon Dots Dispersed in Deuterium Oxide. C 2025, 11, 10. https://doi.org/10.3390/c11010010
Stan CS, Coroaba A, Ania CO, Albu C, Popa M. Markedly Enhanced Photoluminescence of Carbon Dots Dispersed in Deuterium Oxide. C. 2025; 11(1):10. https://doi.org/10.3390/c11010010
Chicago/Turabian StyleStan, Corneliu S., Adina Coroaba, Conchi O. Ania, Cristina Albu, and Marcel Popa. 2025. "Markedly Enhanced Photoluminescence of Carbon Dots Dispersed in Deuterium Oxide" C 11, no. 1: 10. https://doi.org/10.3390/c11010010
APA StyleStan, C. S., Coroaba, A., Ania, C. O., Albu, C., & Popa, M. (2025). Markedly Enhanced Photoluminescence of Carbon Dots Dispersed in Deuterium Oxide. C, 11(1), 10. https://doi.org/10.3390/c11010010