TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications
"> Figure 1
<p>Transmittance and reflectance spectra of TiO<sub>2</sub> and for SWCNTs/TiO<sub>2</sub> composites for different percentages, 5%, 10%, 20%, of SWCNTs.</p> "> Figure 2
<p>The absorption coefficient, α, spectra of TiO<sub>2</sub> and for 5%, 10%, 20% SWCNTs/TiO<sub>2</sub> composites.</p> "> Figure 3
<p>(αhν)<sup>1/2</sup> versus energy for (<b>a</b>) TiO<sub>2</sub>, (<b>b</b>) TiO<sub>2</sub>-(5%) SWCNTs, (<b>c</b>) TiO<sub>2</sub>-(10%) SWCNTs, and (<b>d</b>) TiO<sub>2</sub>-(20%) SWCNTs.</p> "> Figure 4
<p>The spectra of refractive index versus wavelength for pure TiO<sub>2</sub> and TiO<sub>2</sub>-SWCNTs composites.</p> "> Figure 5
<p>The (n<sup>2</sup> − 1)<sup>−1</sup> vs. (hν)<sup>2</sup> curve for pure TiO<sub>2</sub> and for 5%, 10%, 20% SWCNTs/TiO<sub>2</sub> composites.</p> "> Figure 6
<p>The relation between n<sup>2</sup> as a function of λ<sup>2</sup> of TiO<sub>2</sub> and for 5%, 10%, 20% SWCNTsTiO<sub>2</sub>.</p> "> Figure 7
<p>The variation in (<b>a</b>) real part, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>) imaginary part, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, of dielectric constant as a function of photon energy for TiO<sub>2</sub> and for 5%, 10%, 20% SWCNTs-TiO<sub>2</sub> composites.</p> "> Figure 8
<p>The spectra of (<b>a</b>) optical conductivity and (<b>b</b>) electrical conduction of TiO<sub>2</sub> and for 5%, 10%, 20% SWCNTs-TiO<sub>2</sub> composites.</p> "> Figure 9
<p>The variation in χ<sup>(1)</sup>, χ<sup>(3)</sup>, and n<sub>2</sub> as a function of concentration of SWCNTs.</p> "> Figure 10
<p>The XRD patterns of pure TiO<sub>2</sub> and 5%, 10%, 20% SWCNTs-TiO<sub>2</sub> composites.</p> "> Figure 11
<p>UV–vis absorption spectra showing the photocatalytic activity of TiO<sub>2</sub> and SWCNTs/TiO<sub>2</sub> composites regarding photocatalytic degradation of MB in water.</p> "> Figure 12
<p>The variation in photocatalytic efficiency of SWCNTs-TiO<sub>2</sub> composites.</p> "> Figure 13
<p>Mechanism of photocatalytic activity of SWCNTs/TiO<sub>2</sub> composites towards degradation of MB dye.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SWCNTs/TiO2 Composites
2.2. Characterization of SWCNTs/TiO2 Composites
2.3. Photocatalytic Analysis
3. Results and Discussion
3.1. Optical Characterizations of SWCNTs/TiO2 Composites
3.1.1. Linear Optical Analysis
3.1.2. Nonlinear Optical Analysis
3.2. X-Ray Diffraction Analysis
3.3. Photocatalytic Activity Tests
3.4. Mechanism of the Photocatalytic Activity of SWCNTs/TiO2 Composites
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanaor, D.A.H.; Triani, G.; Sorrell, C.C. Morphology and Photocatalytic Activity of Highly Oriented Mixed Phase Titanium Dioxide Thin Films. Surf. Coat. Technol. 2011, 205, 3659–3664. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [Google Scholar] [CrossRef]
- Hart, J.N.; Cutini, M.; Allan, N.L. Band gap modification of ZnO and ZnS through solid solution formation for applications in photocatalysis. Energy Procedia 2014, 60, 32–36. [Google Scholar] [CrossRef]
- Keskin, A.V.; Metin, G.; Sinem, B.; Melih, B.; Arvas Serap, G.; Yucel, S. Preparation of anatase form of TiO2 thin film at room temperature by electrochemical method as an alternative electron transport layer for inverted type organic solar cells. Thin Solid Films 2020, 706, 138093. [Google Scholar] [CrossRef]
- Liu, Q. Photovoltaic Performance Improvement of Dye-Sensitized Solar Cells Based on Mg-Doped TiO2 Thin Films. Electrochim. Acta 2014, 129, 459–462. [Google Scholar] [CrossRef]
- Weng, K.-W.; Huang, Y.-P. Preparation of TiO2 thin films on glass surfaces with self-cleaning characteristics for solar concentrators. Surf. Coat. Technol. 2013, 231, 201–204. [Google Scholar] [CrossRef]
- Darvish, S.M.; Ali, A.M.; Sani, S.R. Designed air purifier reactor for photocatalytic degradation of CO2 and NO2 gases using MWCNT/TiO2 thin films under visible light irradiation. Mater. Chem. Phys. 2020, 248, 122872. [Google Scholar] [CrossRef]
- Li, R.; Jin, Y.; Shiyin, X.; Yushun, Z.; Xuan, W.; Hailong, P.; Jun, D. Preparation of Gd-Doped TiO2 Nanotube Arrays by Anodization Method and Its Photocatalytic Activity for Methyl Orange Degradation. Catalysts 2020, 10, 298. [Google Scholar] [CrossRef]
- Lavorato, C.; Pietro, A.; Teresa, F.M.; Giuseppe, P.; Teresa, P.; Raffaele, M. Pd/TiO2 doped faujasite photocatalysts for acetophenone transfer hydrogenation in a photocatalytic membrane reactor. J. Catal. 2017, 353, 152–161. [Google Scholar] [CrossRef]
- Naceur, J.B.; Mechiakh, R.; Bousbih, F.; Chtourou, R. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol–gel spin coating. Appl. Surf. Sci. 2011, 257, 10699–10703. [Google Scholar] [CrossRef]
- Jemaa, I.B.; Chaabouni, F.; Ranguis, A. Cr doping effect on the structural, optoelectrical and photocatalytic properties of RF sputtered TiO2 thin films from a powder target. J. Alloys Compd. 2020, 825, 153988. [Google Scholar] [CrossRef]
- Lin, M.Z.; Chen, H.; Chen, W.F.; Nakaruk, A.; Koshy, P.; Sorrell, C.C. Effect of single-cation doping and codoping with Mn and Fe on the photocatalytic performance of TiO2 thin films. Int. J. Hydrogen Energy 2014, 39, 21500–21511. [Google Scholar] [CrossRef]
- Kothavale, V.; Patil, T.S.; Patil, P.B.; Bhosale, C.H. Photoelectrocatalytic degradation of Rhodamine B using N doped TiO2 thin Films. Mater. Today Proc. 2020, 23, 382–388. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, J.; Yan, T.; Han, Y. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants. Appl. Surf. Sci. 2018, 434, 633–642. [Google Scholar] [CrossRef]
- Gil, J.J.; Aguilar Martínez, O.; Piña-Pérez, Y.; Pérez-Hernández, R.; Santolalla-Vargas, C.E.; Gómez, R.; Tzompantzi, F. Efficient ZnSeZnO/ZnAl-LDH composite for H2 production by Photocatalysis. Renew. Energy 2020, 145, 124–132. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.; Martins, R. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water 2019, 11, 373. [Google Scholar] [CrossRef]
- Gammoudi, H.; Belkhiria, F.; Helali, S.; Assaker, I.B.; Gammoudi, I.; Morote, F.; Souissi, A.; Karyaoui, M.; Amlouk, M.; Cohen-Bouhacina, T.; et al. Chemically grafted of single-walled carbon nanotubes onto a functionalized silicon surface. J. Alloys Compd. 2017, 694, 1036–1044. [Google Scholar] [CrossRef]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube—A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Helali, S.; Bohli, N.; Mostafa, H.M.A.; Zina, H.B.; Al-Hartomy, O.A.; Abdelghani, A. Electrical Impedance Spectroscopy Using Single Wall Carbon Nanotubes Carboxlic Acid Functionalized: Detection of Copper in Tabuk-Kingdom of Saudi Arabia water. J. Nanomed. Nanotechnol. 2016, 7, 7396. [Google Scholar] [CrossRef]
- Naceur, J.B.; Gaidi, M.; Bousbih, F.; Mechiakh, R.; Chtourou, R. Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by sole gel technique. Curr. Appl. Phys. 2012, 12, 422–428. [Google Scholar] [CrossRef]
- Mechiakh, R.; NSedrine, B.; Naceur, J.B.; Chtourou, R. Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol–gel dip-coating. Surf. Coat. Technol. 2011, 206, 243–249. [Google Scholar] [CrossRef]
- Al Shammari, A.S.; Halim, M.M.; Yam, F.K.; Kaus, N.H.M. Synthesis of Titanium Dioxide (TiO2)/Reduced Graphene Oxide (rGO) thin film composite by spray pyrolysis technique and its physical properties. Mater. Sci. Semicond. Process. 2020, 116, 105140. [Google Scholar] [CrossRef]
- Darwish, A.A.A.; Helali, S.; Qashou, S.I.; Yahia, I.S.; El-Zaidia, E.F.M. Studying the surface morphology, linear and nonlinear optical properties of manganese (III) phthalocyanine chloride/FTO films. Phys. B Condens. Matter 2021, 622, 413355. [Google Scholar] [CrossRef]
- AlAbdulaal, T.H.; Yahia, I.S. Analysis of optical linearity and nonlinearity of Fe3+- doped PMMA/FTO polymeric films: New trend for optoelectronic polymeric devices. Phys. B Condens. Matter 2021, 601, 412628. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Abd El-sadek, M.S.; Yahia, I.S. Optical linearity and bandgap analysis of RhB-doped PMMA/FTO polymeric composites films: A new designed optical system for laser power attenuation. Opt. Laser Technol. 2020, 121, 105823. [Google Scholar] [CrossRef]
- Cabuk, M.; Gündüz, B. Change of optoelectronic parameters of the boric acid-doped polyaniline conducting polymer with concentration. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 263–269. [Google Scholar] [CrossRef]
- El-Zaidia, E.F.M. Studies structure, surface morphology, linear and nonlinear optical properties of nanocrystalline thin films of manganese (III) phthalocyanine chloride for photodetectors application. Sens. Actuators A Phys. 2021, 330, 112828. [Google Scholar] [CrossRef]
- Gaml, E.A. Spectroscopic studies on the influence of UV irradiation on linear and nonlinear optical properties of 8-hydroxy quinoline based azo dye. J. Mater. Sci. Mater. Electron. 2018, 29, 12959–12971. [Google Scholar] [CrossRef]
- Attia, A.A.; El-Barry, A.M.A.; EL-Shazly, E.A.A.; El-Deen, L.M.D. Studies on structural and optical properties of thermally evaporated nanocrystalline thin films of meso -Tetraphenylporphyrin manganese (III) chloride. J. Lumin. 2018, 199, 391–399. [Google Scholar] [CrossRef]
- Yahia, I.S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Zahran, H.Y.; Algarni, H.; Abutali, M.M.; Al-Ghamdi, A.A.; El-Naggar, A.M.; AlBassam, A.M. An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications. Phys. B Condens. Matter 2016, 496, 9–14. [Google Scholar] [CrossRef]
- Allaf, R.M.; Riveroa, I.V.; Spearman, S.S.; Hope-Weeks, L.J. On the preparation of as-produced and purified single-walled carbon nanotube samples for standardized X-ray diffraction characterization. Mater. Charact. 2011, 62, 857–864. [Google Scholar] [CrossRef]
- Lephuthing, S.S.; Okoro, A.M.; Ige, O.O.; Olubambi, P.A. Comparison of dispersion methods of multi-walled carbon nanotubes in titanium oxide. Mater. Today Proc. 2019, 28, 704–709. [Google Scholar] [CrossRef]
- Mechiakh, R.; Sedrine, N.B.; Chtourou, R.; Bensaha, R. Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol–gel dip coating. Appl. Surf. Sci. 2010, 257, 670–676. [Google Scholar] [CrossRef]
- Lin, L.; Yiwen, M.; Zettsu, N.; Vequizo, J.J.M.; Gu, C.; Yamakata, A.; Hisatomi, T.; Takata, T.; Domen, K. Carbon Nanotubes as a Solid-State Electron Mediator for VisibleLight-Driven Z-Scheme Overall Water Splitting. J. Am. Chem. Soc. 2024, 146, 14829–14834. [Google Scholar] [CrossRef]
- Rej, S.; Hejazi, S.M.H.; Badura, Z.; Zoppellaro, G.; Kalytchuk, S.; Kment, Š.; Fornasiero, P.; Naldoni, A. Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H2 Production in 2D TiO2-Bronze Nanosheets. ACS Sustain. Chem. Eng. 2022, 10, 17286–17296. [Google Scholar] [CrossRef]
- Zarhri, Z.; Avilés Cardos, M.Á.; Ziat, Y.; Hammi, M.; El Rhazouani, O.; Cruz Argüello, J.C.; Avellaneda, D.A. Synthesis, structural and crystal size effect on the optical properties of sprayed TiO2 thin films: Experiment and DFT TB-mbj. J. Alloys Compd. 2020, 819, 153010. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Singh, J.; Khan, S.A.; Shah, J.; Kotnala, R.K.; Mohapatra, S. Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl. Surf. Sci. 2017, 422, 953–961. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, F.; Oh, W. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater. 2009, 24, 159–166. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.C.; Yu, J.-G.; Kwok, Y.-C.; Che, Y.-K.; Zhao, J.-C.; Ding, L.; Ge, W.-K.; Wong, P.-K. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A Gen. 2005, 289, 186–196. [Google Scholar] [CrossRef]
Samples | Volume of TiO2 (mL) | Volume of SWCNTs (mL) |
---|---|---|
S1 (pure TiO2) | 10 | 0 |
S2 (5% SWCNTs) | 9.5 | 0.5 |
S3 (10% SWCNTs) | 9 | 1 |
S4 (20% SWCNTs) | 8 | 2 |
Egind allowed | Ed | Eo | εoo | εL | N/m* ×(1047 gm−1cm−3) | ||
---|---|---|---|---|---|---|---|
Eg1 (eV) | Eph (meV) | ||||||
Pure TiO2 | 3.23 | 325 | 14.36 | 2.02 | 6.96 | 10.65 | 5.7 |
TiO2 + 5% SWCNTs | 3.43 | 180 | 12.78 | 1.96 | 7.49 | 10.05 | 6.16 |
TiO2 + 10% SWCNTs | 3.4 | 175 | 10.67 | 1.79 | 6.96 | 9.65 | 5.63 |
TiO2 + 20% SWCNTs | 3.36 | 118 | 8.16 | 1.6 | 5.88 | 8.42 | 5.39 |
L (nm) | |
---|---|
Pure TiO2 | 39.6 |
TiO2 + 5% SWCNTs | 38.32 |
TiO2 + 10% SWCNTs | 38.25 |
TiO2 + 20% SWCNTs | 36.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helali, S. TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications. C 2025, 11, 11. https://doi.org/10.3390/c11010011
Helali S. TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications. C. 2025; 11(1):11. https://doi.org/10.3390/c11010011
Chicago/Turabian StyleHelali, Saloua. 2025. "TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications" C 11, no. 1: 11. https://doi.org/10.3390/c11010011
APA StyleHelali, S. (2025). TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications. C, 11(1), 11. https://doi.org/10.3390/c11010011