Hysteretic Behavior Study on the RBS Connection of H-Shape Columns with Middle-Flanges or Wide-Flange H-Shape Beams
<p>RBS connection details [<a href="#B19-buildings-15-00147" class="html-bibr">19</a>].</p> "> Figure 2
<p>Calculation diagram and model boundary conditions. (<b>a</b>) Diagram; (<b>b</b>) boundary conditions.</p> "> Figure 3
<p>Mesh of a specimen model (3000 mm × 3600 mm).</p> "> Figure 4
<p>Stress–strain model.</p> "> Figure 5
<p>SP5 specimen. (<b>a</b>) Schematic diagram of dimensions; (<b>b</b>) FE model.</p> "> Figure 6
<p>P–Δ curves of SP5 specimen. (<b>a</b>) Test; (<b>b</b>) ABAQUS.</p> "> Figure 7
<p>SPS-2 specimen. (<b>a</b>) Schematic diagram of dimensions; (<b>b</b>) FE model.</p> "> Figure 8
<p>P–Δ curves of SPS-2 specimen. (<b>a</b>) Test; (<b>b</b>) ABAQUS.</p> "> Figure 9
<p>Failure modes of SPS-2 specimen. (<b>a</b>) Test; (<b>b</b>) ABAQUS.</p> "> Figure 10
<p>Stress contour plot of A series joints at failure time.</p> "> Figure 11
<p>M-θ hysteretic curve and skeleton curve of A series specimens.</p> "> Figure 11 Cont.
<p>M-θ hysteretic curve and skeleton curve of A series specimens.</p> "> Figure 12
<p>Stress contour plot of B series joints at failure time.</p> "> Figure 13
<p>M-θ hysteretic curve and skeleton curve of B series specimens.</p> "> Figure 14
<p>Stress contour plot of C series joints at failure time.</p> "> Figure 15
<p>M-θ hysteretic curve and skeleton curve of C series specimens.</p> ">
Abstract
:1. Introduction
2. Design Standard for an RBS Connection
3. Numerical Analysis Methods
3.1. Numerical Modeling
3.2. Material Property
3.3. Validation
3.3.1. Validation Example 1
3.3.2. Validation Example 2
4. Design of Analysis Specimens with Middle-Flange or Wide-Flange H-Shape Beams
4.1. Specimens with Middle-Flange H-Shape Beams
4.2. Specimens with Wide-Flange H-Shape Beams
5. Analysis Results and Discussion
5.1. A Series Joints
5.2. B Series Joints
5.3. C Series Joints
5.4. Discussion
- Parameter a (Unweakened Beam Flange Extension Length):
- 2.
- Parameter b (Weakened Beam Flange Length):
- 3.
- Parameter c (Weakened Beam Flange Depth):
6. Conclusions
- Increasing “a” slightly enhanced the initial rotational stiffness and load-carrying capacity but significantly decreased plastic rotation capacity and ductility. Therefore, lower “a” values near the minimum (0.5bf) are recommended for enhanced ductility, especially for wide-flange beams (WRA specimens).
- Higher values of “b” led to slightly reduced rotational stiffness and load capacity but with minimal impact (less than 1%). Conversely, plastic rotation capacity and ductility improved with an increasing “b” value. Thus, a “b” value close to the upper limit (0.85bf) is recommended to achieve optimal plastic behavior, particularly in WRA specimens.
- As “c” increased, rotational stiffness and load-carrying capacity decreased while plastic rotation capacity and ductility improved. However, increasing “c” was less significant in wide-flange beams. A lower “c” value (0.20bf) is preferable for balanced structural performance.
- Widening the beam flange generally enhanced plastic rotation capacity and ductility but decreased rotational stiffness. This study’s insights can inform design decisions to optimize RBS connections for seismic resilience, achieving a balance between stiffness, load capacity, and ductility in mid- and wide-flange H-shaped beam connections.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, D.K. Lessons learned from the Northridge earthquake. Eng. Struct. 1998, 20, 249–260. [Google Scholar] [CrossRef]
- Mahin, S.A. Lessons from damage to steel buildings during the Northridge earthquake. Eng. Struct. 1998, 20, 261–270. [Google Scholar] [CrossRef]
- Tsai, K.C.; Wu, S.; Popov, E.P. Cyclic performance of steel beam-column moment joints. Eng. Struct. 1995, 17, 596–602. [Google Scholar] [CrossRef]
- Chen, S.J.; Yeh, C.H.; Chu, J.M. Ductile steel beam-to-column connections for seismic resistance. J. Struct. Eng. 1996, 122, 1292–1299. [Google Scholar] [CrossRef]
- Popov, E.P.; Yang, T.S.; Chang, S.P. Design of steel MRF connections before and after 1994 Northridge earthquake. Eng. Struct. 1998, 20, 1030–1038. [Google Scholar] [CrossRef]
- Engelhardt, M.D.; Sabol, T.A. Reinforcing of steel moment connections with cover plates: Benefits and limitations. Eng. Struct. 1998, 20, 510–520. [Google Scholar] [CrossRef]
- Rezaifar, O.; Younesi, A. Finite element study the seismic behavior of connection to replace the continuity plates in (NFT/CFT) steel columns. Steel Compos. Struct. 2016, 21, 73–91. [Google Scholar] [CrossRef]
- Zahrai, S.M.; Mirghaderi, S.R.; Saleh, A. Increasing plastic hinge length using two pipes in a proposed web reduced beam section, an experimental and numerical study. Steel Compos. Struct. 2017, 23, 421–433. [Google Scholar] [CrossRef]
- Lu, L.; Xu, Y.; Liu, J.; Lim, J. Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection. Steel Compos. Struct. 2018, 27, 337–353. [Google Scholar]
- Lignos, D.G.; Kolios, D.; Miranda, E. Fragility assessment of reduced beam section moment connections. J. Struct. Eng. 2010, 136, 1140–1150. [Google Scholar] [CrossRef]
- Crisan, A.; Dubina, D. Bending–shear interaction in short coupling steel beams with reduced beam section. J. Constr. Steel Res. 2016, 122, 190–197. [Google Scholar] [CrossRef]
- Cimagala, J.P. Optimization of Reduced Beam Sections (RBS) for Ductile Detailing of Seismic Joint Connections Using Finite Element Analysis (FEA). Comput. Eng. Phys. Model. 2021, 4, 43–54. [Google Scholar]
- Qi, L.; Leon, R.T.; Eatherton, M.R.; Paquette, J.L. Parametric investigation on the design of RBS moment connections with jumbo beams and columns. J. Constr. Steel Res. 2021, 177, 106436. [Google Scholar] [CrossRef]
- Bompa, D.V.; Elghazouli, A.Y.; Bogdan, T.; Eatherthon, M.R.; Leon, R.T. Inelastic cyclic response of RBS connections with jumbo sections. Eng. Struct. 2023, 281, 115758. [Google Scholar] [CrossRef]
- Ghassemieh, M.; Mirghaderi, S.R. Cyclic dependency assessment of RBS moment connection in box-column. J. Constr. Steel Res. 2021, 177, 106472. [Google Scholar] [CrossRef]
- Horton, T.A.; Hajirasouliha, I.; Davison, B.; Ozdemir, Z.; Abuzayed, I. Development of more accurate cyclic hysteretic models to represent RBS connections. Eng. Struct. 2021, 245, 112899. [Google Scholar] [CrossRef]
- Indupriya, G.; Anupriya, B. Simulation of RBS moment connections using the Finite Element Method for Indian profiles. Mater. Today Proc. 2022, 64, 1023–1028. [Google Scholar] [CrossRef]
- Gemechu, T.D.; Lu, L. Analysis of Factors Affecting the Seismic Performance of Widened Flange Connections in Mid-Flange H-Beams and Box Columns. Buildings 2024, 14, 3170. [Google Scholar] [CrossRef]
- ANSI/AISC 358-16; Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplements No. 1 and No. 2 Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 2016.
- JGJ99-2015; Technical Specification for Steel Structures of Tall Buildings. China Architecture & Building Press: Beijing, China, 2015.
- BS EN 1998-3; Eurocode 8: Design of Structures for Earthquake Resistance Part 3: Assessment and Retrofitting of Buildings. British Standards Institution: London, UK, 11 January 2006.
- JGJ 82-2011; Technical Specification for High Strength Bolt Connections of Steel Structures. China Architecture & Building Press: Beijing, China, 2011.
- Lu, L.; Zhu, P.; Ding, S.; Ma, Z.; Li, R.; Nie, S.; Wang, W.; Raftery, G.M. Impact of anti-corrosion coatings and maintenance on high-strength bolt friction connections in C4 marine environment. Structures 2024, 68, 107098. [Google Scholar] [CrossRef]
- Nie, W.; Lu, L.; Li, R.; Hao, H.; Luo, T. Global buckling investigation of T-shaped built-up columns composed of two hot-rolled H-shapes. Structures 2023, 58, 105485. [Google Scholar] [CrossRef]
- Katiana, K.; Apostolos, K.; Olympia, P. Numerical investigation of weak axis I profile connections. In Proceedings of the 9th Hellenic National Conference on Steel Structures, Larissa, Thessaly, Greece, 5–7 October 2017. [Google Scholar]
- Song, Z.; Gu, Q.; Guo, B. Cyclic-loading Performance of Steel Beam-to-column Moment Connections. J. Build. Struct. 2001, 22, 53–57. [Google Scholar]
- ANSI/AISC 341-05; Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 2005.
- Gao, P. Experimental Evaluation on the Behavor of Side-Plate Reinforced Section and Widen Flange Section of Steel Frame. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2009. [Google Scholar]
- FEMA-350; Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA: Washington, DC, USA, 2000.
Material Samples | E/MPa | σy/MPa | εy | σu/MPa | εu | σst/MPa | εst |
---|---|---|---|---|---|---|---|
Q235 steel | 197,000 | 320 | 0.001748 | 451.667 | 0.14361 | 360.643 | 0.19653 |
8.8 grade M20 bolt | 161,000 | 645.0 | 0.004 | 793.5 | 0.025 | 636.9 | 0.121 |
Specimen No. | a (mm) | b (mm) | c (mm) | |||
---|---|---|---|---|---|---|
MRA-1 | 0.5bf | 125 | 0.75db | 255 | 0.20bf | 50 |
MRA-2 | 0.65bf | 162.5 | 0.75db | 255 | 0.20bf | 50 |
MRA-3 | 0.75bf | 187.5 | 0.75db | 255 | 0.20bf | 50 |
MRB-1 | 0.65bf | 162.5 | 0.65db | 221 | 0.20bf | 50 |
MRB-2 | 0.65bf | 162.5 | 0.75db | 255 | 0.20bf | 50 |
MRB-3 | 0.65bf | 162.5 | 0.85db | 289 | 0.20bf | 50 |
MRC-1 | 0.65bf | 162.5 | 0.75db | 255 | 0.20bf | 50 |
MRC-2 | 0.65bf | 162.5 | 0.75db | 255 | 0.225bf | 56.25 |
MRC-3 | 0.65bf | 162.5 | 0.75db | 255 | 0.25bf | 62.5 |
WRA-1 | 0.5bf | 175 | 0.75db | 262.5 | 0.20bf | 70 |
WRA-2 | 0.65bf | 227.5 | 0.75db | 262.5 | 0.20bf | 70 |
WRA-3 | 0.75bf | 262.5 | 0.75db | 262.5 | 0.20bf | 70 |
WRB-1 | 0.65bf | 227.5 | 0.65db | 227.5 | 0.20bf | 70 |
WRB-2 | 0.65bf | 227.5 | 0.75db | 262.5 | 0.20bf | 70 |
WRB-3 | 0.65bf | 227.5 | 0.85db | 297.5 | 0.20bf | 70 |
WRC-1 | 0.65bf | 227.5 | 0.75db | 262.5 | 0.20bf | 70 |
WRC-2 | 0.65bf | 227.5 | 0.75db | 262.5 | 0.225bf | 78.75 |
WRC-3 | 0.65bf | 227.5 | 0.75db | 262.5 | 0.25bf | 87.5 |
Joint Number | Rki /kN·m·rad−1 | My /kN·m | θy /rad | Mmax /kN·m | θmax /rad | Mu /kN·m | θu /rad | θp /rad | μ |
---|---|---|---|---|---|---|---|---|---|
MRA-1 | 7537.78 | 168 | 0.048 | 201.48 | 0.0904 | 171.30 | 0.1058 | 0.0999 | 2.20 |
MRA-2 | 7554.80 | 172 | 0.052 | 206.71 | 0.0910 | 175.70 | 0.1069 | 0.0981 | 2.06 |
MRA-3 | 7566.02 | 178 | 0.050 | 209.53 | 0.0938 | 178.10 | 0.1082 | 0.0995 | 2.16 |
WRA-1 | 12,815.30 | 315 | 0.054 | 369.61 | 0.0936 | 314.17 | 0.1353 | 0.1264 | 2.51 |
WRA-2 | 12,845.50 | 310 | 0.055 | 376.89 | 0.0937 | 320.36 | 0.1283 | 0.1195 | 2.33 |
WRA-3 | 12,866.20 | 319 | 0.056 | 380.29 | 0.0939 | 323.25 | 0.1335 | 0.1246 | 2.38 |
Joint Number | Rki /kN·m·rad−1 | My /kN·m | θy /rad | Mmax /kN·m | θmax /rad | Mu /kN·m | θu /rad | θp /rad | μ |
---|---|---|---|---|---|---|---|---|---|
MRB-1 | 7594.83 | 173 | 0.048 | 207.30 | 0.0940 | 176.21 | 0.1010 | 0.0960 | 2.10 |
MRB-2 | 7554.80 | 172 | 0.052 | 206.70 | 0.0910 | 175.70 | 0.1110 | 0.0981 | 2.13 |
MRB-3 | 7520.65 | 170 | 0.052 | 205.11 | 0.0937 | 174.06 | 0.1120 | 0.1017 | 2.15 |
WRB-1 | 12,890.95 | 318 | 0.053 | 375.92 | 0.0938 | 319.50 | 0.1223 | 0.1035 | 2.31 |
WRB-2 | 12,845.49 | 317 | 0.055 | 374.70 | 0.0937 | 317.40 | 0.1296 | 0.1123 | 2.36 |
WRB-3 | 12,792.21 | 317 | 0.056 | 374.11 | 0.0931 | 316.70 | 0.1334 | 0.1186 | 2.38 |
Joint Number | Rki /kN·m·rad−1 | My /kN·m | θy /rad | Mmax /kN·m | θmax /rad | Mu /kN·m | θu /rad | θp /rad | μ |
---|---|---|---|---|---|---|---|---|---|
MRC-1 | 7554.80 | 172 | 0.052 | 206.71 | 0.0939 | 175.70 | 0.1070 | 0.0981 | 2.06 |
MRC-2 | 7439.26 | 174 | 0.046 | 195.75 | 0.0933 | 166.4 | 0.1110 | 0.1016 | 2.41 |
MRC-3 | 7310.81 | 145 | 0.037 | 183.92 | 0.0931 | 156.33 | 0.113 | 0.1042 | 3.05 |
WRC-1 | 12,845.49 | 310 | 0.055 | 376.89 | 0.0937 | 320.36 | 0.1283 | 0.1195 | 2.33 |
WRC-2 | 12,610.51 | 305 | 0.051 | 354.39 | 0.0920 | 301.23 | 0.1330 | 0.1224 | 2.61 |
WRC-3 | 12,341.15 | 275 | 0.047 | 327.82 | 0.0913 | 278.65 | 0.1388 | 0.1245 | 2.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saeedi, S.M.A.A.; Lu, L.; Al-Ansi, O.Z.Y.; Ali, S. Hysteretic Behavior Study on the RBS Connection of H-Shape Columns with Middle-Flanges or Wide-Flange H-Shape Beams. Buildings 2025, 15, 147. https://doi.org/10.3390/buildings15010147
Al-Saeedi SMAA, Lu L, Al-Ansi OZY, Ali S. Hysteretic Behavior Study on the RBS Connection of H-Shape Columns with Middle-Flanges or Wide-Flange H-Shape Beams. Buildings. 2025; 15(1):147. https://doi.org/10.3390/buildings15010147
Chicago/Turabian StyleAl-Saeedi, Saleem Mohammed Ali Ahmed, Linfeng Lu, Osama Zaid Yahya Al-Ansi, and Saddam Ali. 2025. "Hysteretic Behavior Study on the RBS Connection of H-Shape Columns with Middle-Flanges or Wide-Flange H-Shape Beams" Buildings 15, no. 1: 147. https://doi.org/10.3390/buildings15010147
APA StyleAl-Saeedi, S. M. A. A., Lu, L., Al-Ansi, O. Z. Y., & Ali, S. (2025). Hysteretic Behavior Study on the RBS Connection of H-Shape Columns with Middle-Flanges or Wide-Flange H-Shape Beams. Buildings, 15(1), 147. https://doi.org/10.3390/buildings15010147