Achieving On-Site Trustworthy AI Implementation in the Construction Industry: A Framework Across the AI Lifecycle
Abstract
:1. Introduction
- Based on regulation documents published by international organisations and governments, we have identified and defined 13 principles for the design of an AI system to make it trustworthy and responsible.
- We proposed an operation framework to ensure the trustworthy and responsible implementation of AI throughout the entire system lifecycle in the construction industry.
2. Literature Review
2.1. AI Applications in Construction
2.2. Trustworthy and Responsible AI Frameworks
- Proportionality (P): The AI system should have clearly defined purposes and applicable scopes. Any processes related to its lifecycle must not exceed what is necessary to achieve legitimate purposes or objectives.
- Reliability and Robustness (RR): The AI system should function reliably as intended and demonstrate robustness in unexpected situations.
- Safety (S): The system should be resilient against attempts to alter its use or performance by third parties and minimise unintended harm.
- Explainability (E): It should enable relevant parties to access, interpret, and understand its decision-making processes.
- Transparency (T): The AI system should inform the relevant stakeholders of its capabilities and limitations and inform affected persons about their rights.
- Accountability (A): It should set clear lines of accountability across the life cycle.
- Contestability and Redress (CR): Participants in the AI life cycle should be able to contest an AI decision or outcome and provide feedback.
- Oversight (O): The supply and operation of the AI system should be appropriately controlled and overseen by humans.
- Human Agency (HA): The AI system should serve people while respecting human dignity and personal autonomy.
- Harmlessness (H): It should share the same values as humans, adhere to ethical standards, and prevent harms that can have material impact on people’s lives.
- Privacy and Data Management (PD): The system should be used in accordance with privacy and data protection regulations.
- Fairness (F): It should promote equal access, gender equality, and cultural diversity while avoiding discriminatory impacts and unfair biases.
- Environmental Well-being (EW): The AI lifecycle should be sustainable and environmentally friendly, benefiting all human beings.
3. Framework
3.1. Planning Phase
3.1.1. Stakeholder Engagement
3.1.2. Scope of the System
3.1.3. Societal Impact
3.1.4. Project Management
3.2. Data Collection Phase
3.2.1. Pre-Collection
3.2.2. Data Management
3.2.3. Data Quality
3.2.4. Data Preprocessing
3.3. Algorithm Development Phase
3.3.1. Algorithm Design
3.3.2. Model Generalisation
3.3.3. Misuse and System Security
3.3.4. Logging and Feedback System
3.4. Deployment Phase
3.4.1. End-User Interaction
3.4.2. On-Site Security
3.4.3. Environmental Impact
3.5. Maintenance Phase
3.5.1. Daily Performance Monitoring and Failure Analysis
3.5.2. Handling User Feedback and System Updates
3.6. Archive Phase
3.6.1. Data Protection
3.6.2. System Decommissioning and Preventing Misuse
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. Population Division (2024). World Population Prospects 2024: Summary of Results; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2024. [Google Scholar]
- United Nations Environment Programme and Yale Center for Ecosystems + Architecture. Building Materials and the Climate: Constructing a New Future; United Nations Environment Programme and Yale Center for Ecosystems + Architecture: Yale, CT, USA, 2023. [Google Scholar]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Datta, S.D.; Islam, M.; Rahman Sobuz, M.H.; Ahmed, S.; Kar, M. Artificial Intelligence and Machine Learning Applications in the Project Lifecycle of the Construction Industry: A Comprehensive Review. Heliyon 2024, 10, e26888. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, A.B.K.; Jeelani, I. AI Integration in Construction Safety: Current State, Challenges, and Future Opportunities in Text, Vision, and Audio Based Applications. Autom. Constr. 2024, 164, 105443. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajayi, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep Learning in the Construction Industry: A Review of Present Status and Future Innovations. J. Build. Eng. 2020, 32, 101827. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.; Piroozfar, P. An Overall Review of Research on Prefabricated Construction Supply Chain Management. Eng. Constr. Archit. Manag. 2023, 30, 5160–5195. [Google Scholar] [CrossRef]
- Yin, D.; Chen, Y.; Jia, H.; Wang, Q.; Chen, Z.; Xu, C.; Li, Q.; Wang, W.; Yang, Y.; Fu, G.; et al. Sponge City Practice in China: A Review of Construction, Assessment, Operational and Maintenance. J. Clean. Prod. 2021, 280, 124963. [Google Scholar] [CrossRef]
- Zhao, X. Construction Risk Management Research: Intellectual Structure and Emerging Themes. Int. J. Constr. Manag. 2024, 24, 540–550. [Google Scholar] [CrossRef]
- Eber, W. Potentials of Artificial Intelligence in Construction Management. Organ. Technol. Manag. Constr. 2020, 12, 2053–2063. [Google Scholar] [CrossRef]
- Zou, Y.; Kiviniemi, A.; Jones, S.W. Retrieving Similar Cases for Construction Project Risk Management Using Natural Language Processing Techniques. Autom. Constr. 2017, 80, 66–76. [Google Scholar] [CrossRef]
- Hatami, M.; Franz, B.; Paneru, S.; Flood, I. Using Deep Learning Artificial Intelligence to Improve Foresight Method in the Optimization of Planning and Scheduling of Construction Processes. In Proceedings of the Computing in Civil Engineering 2021—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021. [Google Scholar]
- Wu, Z.; Chen, C.; Cai, Y.; Lu, C.; Wang, H.; Yu, T. BIM-Based Visualization Research in the Construction Industry: A Network Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3473. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, L. Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Arch. Comput. Methods Eng. 2023, 30, 1081–1110. [Google Scholar] [CrossRef]
- Hunhevicz, J.J.; Hall, D.M. Do You Need a Blockchain in Construction? Use Case Categories and Decision Framework for DLT Design Options. Adv. Eng. Inform. 2020, 45, 101094. [Google Scholar] [CrossRef]
- Chen, L.; Huang, L.; Hua, J.; Chen, Z.; Wei, L.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Dong, L.; Yap, P.S. Green Construction for Low-Carbon Cities: A Review. Environ. Chem. Lett. 2023, 21, 1627–1657. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Yang, L.; Thirunavukarasu, A.; Evison, C.; Zhao, Y. Fast Personal Protective Equipment Detection for Real Construction Sites Using Deep Learning Approaches. Sensors 2021, 21, 3478. [Google Scholar] [CrossRef]
- Jeelani, I.; Asadi, K.; Ramshankar, H.; Han, K.; Albert, A. Real-Time Vision-Based Worker Localization & Hazard Detection for Construction. Autom. Constr. 2021, 121, 103448. [Google Scholar] [CrossRef]
- Hung, P.D.; Su, N.T. Unsafe Construction Behavior Classification Using Deep Convolutional Neural Network. Pattern Recognit. Image Anal. 2021, 31, 271–284. [Google Scholar] [CrossRef]
- Huang, H.; Hu, H.; Xu, F.; Zhang, Z.; Tao, Y. Skeleton-Based Automatic Assessment and Prediction of Intrusion Risk in Construction Hazardous Areas. Saf. Sci. 2023, 164, 106150. [Google Scholar] [CrossRef]
- Choi, H.W.; Kim, H.J.; Kim, S.K.; Na, W.S. An Overview of Drone Applications in the Construction Industry. Drones 2023, 7, 515. [Google Scholar] [CrossRef]
- Choi, W.; Na, S.; Heo, S. Integrating Drone Imagery and AI for Improved Construction Site Management through Building Information Modeling. Buildings 2024, 14, 1106. [Google Scholar] [CrossRef]
- Mihail, S.I.; Oana, T.; Magdalena, C.; Radu, P.L.; Cristina, S.-G.; Ruxandra, S.A.; Alexandros, M. Aspects of the Use of Drone Photogrammetry in Construction Equipment Management Using Artificial Intelligence AI. Rom. J. Transp. Infrastruct. 2023, 12, 1–18. [Google Scholar] [CrossRef]
- Xiao, B.; Chen, C.; Yin, X. Recent Advancements of Robotics in Construction. Autom. Constr. 2022, 144, 104591. [Google Scholar] [CrossRef]
- Kayhani, N.; Taghaddos, H.; Mousaei, A.; Behzadipour, S.; Hermann, U. Heavy Mobile Crane Lift Path Planning in Congested Modular Industrial Plants Using a Robotics Approach. Autom. Constr. 2021, 122, 103508. [Google Scholar] [CrossRef]
- Ali, A.K.; Lee, O.J.; Song, H. Robot-Based Facade Spatial Assembly Optimization. J. Build. Eng. 2021, 33, 101556. [Google Scholar] [CrossRef]
- Nguyen, S.T.; La, H.M. A Climbing Robot for Steel Bridge Inspection. J. Intell. Robot. Syst. Theory Appl. 2021, 102, 1–21. [Google Scholar] [CrossRef]
- Attalla, A.; Attalla, O.; Moussa, A.; Shafique, D.; Raean, S.B.; Hegazy, T. Construction Robotics: Review of Intelligent Features. Int. J. Intell. Robot. Appl. 2023, 7, 535–555. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 1–15. [Google Scholar] [CrossRef]
- Iyer, L.S. AI Enabled Applications towards Intelligent Transportation. Transp. Eng. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Sharma, S. Benefits or Concerns of AI: A Multistakeholder Responsibility. Futures 2024, 157, 103328. [Google Scholar] [CrossRef]
- Hendrycks, D.; Mazeika, M.; Woodside, T. An Overview of Catastrophic AI Risks. arXiv 2023, arXiv:2306.12001. [Google Scholar]
- Dehghani, F.; Dibaji, M.; Anzum, F.; Dey, L.; Basdemir, A.; Bayat, S.; Boucher, J.-C.; Drew, S.; Eaton, S.E.; Frayne, R.; et al. Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems. arXiv 2024, arXiv:2408.15550. [Google Scholar]
- OECD. Tools for Trustworthy AI; OECD Digital Economy Papers; OECD: Paris, France, 2021; Volume 312. [Google Scholar]
- Tabassi, E. Artificial Intelligence Risk Management Framework (AI RMF 1.0); NIST: Gaithersburg, MD, USA, 2023. [Google Scholar]
- Tahri Sqalli, M.; Aslonov, B.; Gafurov, M.; Nurmatov, S. Humanizing AI in Medical Training: Ethical Framework for Responsible Design. Front. Artif. Intell. 2023, 6, 1189914. [Google Scholar] [CrossRef] [PubMed]
- Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions. IEEE Access 2024, 12, 101603–101625. [Google Scholar] [CrossRef]
- Kanaparthi, V. AI-Based Personalization and Trust in Digital Finance. arXiv 2024, arXiv:2401.15700. [Google Scholar]
- Barmpounakis, S.; Demestichas, P. Framework for Trustworthy AI/ML in B5G/6G. In Proceedings of the 2022 1st International Conference on 6G Networking, 6GNet 2022, Paris, France, 6–8 July 2022. [Google Scholar]
- Stefani, T.; Deligiannaki, F.; Berro, C.; Jameel, M.; Hunger, R.; Bruder, C.; Kruger, T. Applying the Assessment List for Trustworthy Artificial Intelligence on the Development of AI Supported Air Traffic Controller Operations. In Proceedings of the AIAA/IEEE Digital Avionics Systems Conference—Proceedings, Barcelona, Spain, 1–5 October 2023. [Google Scholar]
- Maathuis, C. Human Centered Explainable AI Framework for Military Cyber Operations. In Proceedings of the MILCOM 2023–2023 IEEE Military Communications Conference: Communications Supporting Military Operations in a Contested Environment, Boston, MA, USA, 30 October–3 November 2023. [Google Scholar]
- Zhang, Q.; Zhong, H.; Shi, W.; Liu, L. A Trusted and Collaborative Framework for Deep Learning in IoT. Comput. Netw. 2021, 193, 108055. [Google Scholar] [CrossRef]
- Xu, X.; Yu, A.; Jonker, T.R.; Todi, K.; Lu, F.; Qian, X.; Evangelista Belo, J.M.; Wang, T.; Li, M.; Mun, A.; et al. XAIR: A Framework of Explainable AI in Augmented Reality. In Proceedings of the Conference on Human Factors in Computing Systems—Proceedings, Hamburg, Germany, 23–28 April 2023. [Google Scholar]
- Laux, J.; Wachter, S.; Mittelstadt, B. Trustworthy Artificial Intelligence and the European Union AI Act: On the Conflation of Trustworthiness and Acceptability of Risk. Regul. Gov. 2024, 18, 3–32. [Google Scholar] [CrossRef]
- Li, B.; Qi, P.; Liu, B.; Di, S.; Liu, J.; Pei, J.; Yi, J.; Zhou, B. Trustworthy AI: From Principles to Practices. ACM Comput. Surv. 2023, 55, 1–46. [Google Scholar] [CrossRef]
- Sharma, S. Trustworthy Artificial Intelligence: Design of AI Governance Framework. Strateg. Anal. 2023, 47, 443–464. [Google Scholar] [CrossRef]
- Department for Science Innovation and Technology. A Pro-Innovation Approach to AI Regulation; Dandy Booksellers Ltd.: London, UK, 2023. [Google Scholar]
- European Parliament The Artificial Intelligence Act of the EU. Off. J. Eur. Union. 2024. Available online: https://artificialintelligenceact.eu/ai-act-explorer/ (accessed on 20 December 2024).
- Expert Group on How Ai Principles Should Be Implemented. AI Governance in Japan Ver. 1.1; Japan’s Ministry of Economy, Trade and Industry: Tokyo, Japan, 2021. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization. Recommendation on the Ethics of Artificial Intelligence; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2022. [Google Scholar]
- Lucic, A.; Srikumar, M.; Bhatt, U.; Xiang, A.; Taly, A.; Liao, Q.V.; de Rijke, M. A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms. arXiv 2021, arXiv:2103.14976. [Google Scholar]
- Thomas, R.L.; Uminsky, D. Reliance on Metrics Is a Fundamental Challenge for AI. Patterns 2022, 3, 100476. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Siau, K.L.; Nah, F.F. Societal Impacts of Artificial Intelligence: Ethical, Legal, and Governance Issues. Soc. Impacts 2024, 3, 100040. [Google Scholar] [CrossRef]
- Vial, G.; Cameron, A.F.; Giannelia, T.; Jiang, J. Managing Artificial Intelligence Projects: Key Insights from an AI Consulting Firm. Inf. Syst. J. 2023, 33, 669–691. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, B.; Wang, C.; Wang, Z.; Liu, B.; Fang, T. Computer Vision-Based Construction Process Sensing for Cyber–Physical Systems: A Review. Sensors 2021, 21, 5468. [Google Scholar] [CrossRef]
- Daniel, E.I.; Oshodi, O.S.; Nwankwo, N.; Emuze, F.A.; Chinyio, E. Barriers to the Application of Digital Technologies in Construction Health and Safety: A Systematic Review. Buildings 2024, 14, 2386. [Google Scholar] [CrossRef]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.-G. Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective. VLDB J. 2023, 32, 791–813. [Google Scholar] [CrossRef]
- Schwabe, D.; Becker, K.; Seyferth, M.; Klaß, A.; Schaeffter, T. The METRIC-Framework for Assessing Data Quality for Trustworthy AI in Medicine: A Systematic Review. npj Digit. Med. 2024, 7, 203. [Google Scholar] [CrossRef]
- Li, F.; Laili, Y.; Chen, X.; Lou, Y.; Wang, C.; Yang, H.; Gao, X.; Han, H. Towards Big Data Driven Construction Industry. J. Ind. Inf. Integr. 2023, 35, 100483. [Google Scholar] [CrossRef]
- Reaño, C.; Riera, J.V.; Romero, V.; Morillo, P.; Casas-Yrurzum, S. A Cloud-Edge Computing Architecture for Monitoring Protective Equipment. J. Cloud Comput. 2024, 13, 82. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, C.; Skitmore, M.; Li, H.; Deng, Y. Exploring Edge Computing for Sustainable CV-Based Worker Detection in Construction Site Monitoring: Performance and Feasibility Analysis. Buildings 2024, 14, 2299. [Google Scholar] [CrossRef]
- Tao, X.; Das, M.; Liu, Y.; Cheng, J.C.P. Distributed Common Data Environment Using Blockchain and Interplanetary File System for Secure BIM-Based Collaborative Design. Autom. Constr. 2021, 130, 103851. [Google Scholar] [CrossRef]
- Zheng, C.; Tao, X.; Dong, L.; Zukaib, U.; Tang, J.; Zhou, H.; Cheng, J.C.P.; Cui, X.; Shen, Z. Decentralized Artificial Intelligence in Construction Using Blockchain. Autom. Constr. 2024, 166, 105669. [Google Scholar] [CrossRef]
- Tawakuli, A.; Engel, T. Make Your Data Fair: A Survey of Data Preprocessing Techniques That Address Biases in Data towards Fair AI. J. Eng. Res. 2024, in press. [CrossRef]
- Breuniq, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. ACM SIGMOD Rec. 2000, 29, 93–104. [Google Scholar] [CrossRef]
- Smiti, A. A Critical Overview of Outlier Detection Methods. Comput. Sci. Rev. 2020, 38, 100306. [Google Scholar] [CrossRef]
- Flovik, V. Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications. arXiv 2024, arXiv:2405.01978. [Google Scholar]
- Maharana, K.; Mondal, S.; Nemade, B. A Review: Data Pre-Processing and Data Augmentation Techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y.; Xiao, C.; Oyamada, M. Large Language Models as Data Preprocessors. arXiv 2023, arXiv:2308.16361. [Google Scholar]
- Tahaei, M.; Constantinides, M.; Quercia, D.; Muller, M. A Systematic Literature Review of Human-Centered, Ethical, and Responsible AI. arXiv 2023, arXiv:2302.05284. [Google Scholar]
- Pavlin, G.; De Villiers, J.P.; Ziegler, J.; Jousselme, A.L.; Costa, P.; Laskey, K.; De Waal, A.; Blasch, E.; Jansen, L. Relations between Explainability, Evaluation and Trust in AI-Based Information Fusion Systems. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion, Sun City, South Africa, 1–4 November 2021. [Google Scholar]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The Role of Explainability in Creating Trustworthy Artificial Intelligence for Health Care: A Comprehensive Survey of the Terminology, Design Choices, and Evaluation Strategies. J. Biomed. Inform. 2021, 113, 103655. [Google Scholar] [CrossRef]
- Emaminejad, N.; Akhavian, R. Trustworthy AI and Robotics: Implications for the AEC Industry. Autom. Constr. 2022, 139, 104298. [Google Scholar] [CrossRef]
- Le-Khac, P.H.; Healy, G.; Smeaton, A.F. Contrastive Representation Learning: A Framework and Review. IEEE Access 2020, 8, 193907–193934. [Google Scholar] [CrossRef]
- Song, Y.; Wang, T.; Cai, P.; Mondal, S.K.; Sahoo, J.P. A Comprehensive Survey of Few-Shot Learning: Evolution, Applications, Challenges, and Opportunities. ACM Comput. Surv. 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Hou, X.; Li, C.; Fang, Q. Computer Vision-Based Safety Risk Computing and Visualization on Construction Sites. Autom. Constr. 2023, 156, 105129. [Google Scholar] [CrossRef]
- Li, J.; Miao, Q.; Zou, Z.; Gao, H.; Zhang, L.; Li, Z.; Wang, N. A Review of Computer Vision-Based Monitoring Approaches for Construction Workers’ Work-Related Behaviors. IEEE Access 2024, 12, 7134–7155. [Google Scholar] [CrossRef]
- Baniecki, H.; Biecek, P. Adversarial Attacks and Defenses in Explainable Artificial Intelligence: A Survey. Inf. Fusion. 2024, 107, 102303. [Google Scholar] [CrossRef]
- Upreti, R.; Lind, P.G.; Elmokashfi, A.; Yazidi, A. Trustworthy Machine Learning in the Context of Security and Privacy. Int. J. Inf. Secur. 2024, 23, 2287–2314. [Google Scholar] [CrossRef]
- Więckowski, A. “JA-WA”—A Wall Construction System Using Unilateral Material Application with a Mobile Robot. Autom. Constr. 2017, 83, 19–28. [Google Scholar] [CrossRef]
- Dörfler, K.; Sandy, T.; Giftthaler, M.; Gramazio, F.; Kohler, M.; Buchli, J. Mobile Robotic Brickwork. In Robotic Fabrication in Architecture, Art. and Design 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Jud, D.; Kerscher, S.; Wermelinger, M.; Jelavic, E.; Egli, P.; Leemann, P.; Hottiger, G.; Hutter, M. HEAP—The Autonomous Walking Excavator. Autom. Constr. 2021, 129, 103783. [Google Scholar] [CrossRef]
- Koemle, D.; Zinngrebe, Y.; Yu, X. Highway Construction and Wildlife Populations: Evidence from Austria. Land. Use Policy 2018, 73, 447–457. [Google Scholar] [CrossRef]
- Sangarya, V.; Bradford, R.; Kim, J.-E. Estimating Environmental Cost Throughout Model’s Adaptive Life Cycle. arXiv 2024, arXiv:2408.01446. [Google Scholar] [CrossRef]
- Fang, W.; Ding, L.; Love, P.E.D.; Luo, H.; Li, H.; Peña-Mora, F.; Zhong, B.; Zhou, C. Computer Vision Applications in Construction Safety Assurance. Autom. Constr. 2020, 110, 103013. [Google Scholar] [CrossRef]
- Colavizza, G.; Blanke, T.; Jeurgens, C.; Noordegraaf, J. Archives and AI: An Overview of Current Debates and Future Perspectives. J. Comput. Cult. Herit. 2022, 15, 1–15. [Google Scholar] [CrossRef]
- Sartor, G.; Lagioia, F. The Impact of the General Data Protection Regulation (GDPR) on Artificial Intelligence; European Parliament: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Zheng, J.; Fischer, M. BIM-GPT: A Prompt-Based Virtual Assistant Framework for BIM Information Retrieval. arXiv 2023, arXiv:2304.09333. [Google Scholar]
- Fuchs, S.; Witbrock, M.; Dimyadi, J.; Amor, R. Using Large Language Models for the Interpretation of Building Regulations. arXiv 2024, arXiv:2407.21060. [Google Scholar]
- Prieto, S.A.; Mengiste, E.T.; García de Soto, B. Investigating the Use of ChatGPT for the Scheduling of Construction Projects. Buildings 2023, 13, 857. [Google Scholar] [CrossRef]
Area | P | RR | S | E | T | A | CR | O | HA | H | PD | F | EW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Medical training [37] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Automated driving [38] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Digital finance [39] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
B5G/6G [40] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Air traffic control [41] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Military cyber operation [42] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
IoT [43] | ✓ | ✓ | ✓ | ✓ | |||||||||
AR [44] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Public institution [45] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Practice framework [46] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Governance framework [47] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Government | P | RR | S | E | T | A | CR | O | HA | H | PD | F | EW |
UK regulation [48] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
EU AI act [49] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
USA framework [36] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Japan governance [50] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
UNESCO recommendation [51] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Allen, G.; Zhang, Z.; Zhao, Y. Achieving On-Site Trustworthy AI Implementation in the Construction Industry: A Framework Across the AI Lifecycle. Buildings 2025, 15, 21. https://doi.org/10.3390/buildings15010021
Yang L, Allen G, Zhang Z, Zhao Y. Achieving On-Site Trustworthy AI Implementation in the Construction Industry: A Framework Across the AI Lifecycle. Buildings. 2025; 15(1):21. https://doi.org/10.3390/buildings15010021
Chicago/Turabian StyleYang, Lichao, Gavin Allen, Zichao Zhang, and Yifan Zhao. 2025. "Achieving On-Site Trustworthy AI Implementation in the Construction Industry: A Framework Across the AI Lifecycle" Buildings 15, no. 1: 21. https://doi.org/10.3390/buildings15010021
APA StyleYang, L., Allen, G., Zhang, Z., & Zhao, Y. (2025). Achieving On-Site Trustworthy AI Implementation in the Construction Industry: A Framework Across the AI Lifecycle. Buildings, 15(1), 21. https://doi.org/10.3390/buildings15010021