BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues
<p>(<b>a</b>) UV-vis absorption and fluorescence spectra of MOBDP-I (10 μM) in PBS (10 mM, pH = 7.4, 0.1% DMSO). (<b>b</b>) Normalized absorption spectra of MOBDP-I (10 μM) in various solvents, including DCM, THF, EA, Me<sub>2</sub>CO, EtOH, MeCN, DMSO, PBS. (<b>c</b>) Absorption spectra of MOBDP-I (10 μM) with and without ONOO<sup>−</sup> (10 μM) in PBS (pH = 7.4). Inset: − (without ONOO<sup>−</sup>), + (with ONOO<sup>−</sup>). (<b>d</b>) The response time of MOBDP-I (10 μM) to ONOO<sup>−</sup> (10 μM) in PBS (pH 7.4), λ<sub>ex</sub> = 460 nm.</p> "> Figure 2
<p>(<b>a</b>) Fluorescence spectra of MOBDP-I (10 μM) in response to ONOO<sup>−</sup> (0~10 μΜ) in PBS (pH = 7.4), λ<sub>ex</sub> = 460 nm. (<b>b</b>) Linear relationship between the fluorescence intensity ratio (I<sub>510</sub>/I<sub>596</sub>) and ONOO<sup>−</sup> concentration from 0 to 10 μM. (<b>c</b>) Fluorescence spectra of MOBDP-I (10 μM) in the presence of 10 μM of ONOO<sup>−</sup> or 50 μM of other relevant analytes. (<b>d</b>) The fluorescence response intensity (I<sub>510</sub>/I<sub>596</sub>) of MOBDP-I to ONOO<sup>−</sup> (10 μM) and other relevant analytes (50 μM). Analytes: <sup>1</sup>O<sub>2</sub>, ClO<sup>−</sup>, H<sub>2</sub>O<sub>2</sub>, ROO<sup>−</sup>, ·OH, NO<sub>3</sub><sup>−</sup>, NO<sub>2</sub><sup>−</sup>, H<sub>2</sub>S, SO<sub>3</sub><sup>2−</sup>, HSO<sub>3</sub><sup>−</sup>, GSH, Cys, K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Zn<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>. Samples were measured in PBS (pH = 7.4) at room temperature with λ<sub>ex</sub> = 460 nm. The error bars represent ± standard deviation (SD) (n = 3).</p> "> Figure 3
<p>Co-localization imaging in HeLa cells with probe MOBDP-I (10 μM) and Rhodamine 123 (5 μM). Green channel: λ<sub>ex</sub> = 488, λ<sub>em</sub> = 510–540 nm. Red channel: λ<sub>ex</sub> = 543, λ<sub>em</sub> = 580–650 nm, scale bar: 75 μm.</p> "> Figure 4
<p>(<b>a</b>) Fluorescence imaging of exogenous ONOO<sup>−</sup> (0, 2, 4, 6, 8, and 10 μM) in HeLa cells stained with MOBDP-I (10 μM). scale bar: 50 μm. (<b>b</b>) Relative fluorescence intensities corresponding to panel (<b>a</b>) in both the green and red channels. (<b>c</b>) Fluorescence intensity ratio corresponding to panel (<b>a</b>). Green channel: λ<sub>ex</sub> = 488 nm, λ<sub>em</sub> = 510–540 nm. Red channel: λ<sub>ex</sub> = 543 nm, λ<sub>em</sub> = 580–650 nm. The error bars represent ± standard deviation (SD) (n = 3).</p> "> Figure 5
<p>Fluorescence imaging of endogenous ONOO<sup>−</sup> in HeLa cells. (<b>a</b>) The cells were treated with LPS (1 μg/mL) for different times and then incubated with MOBDP-I (10 μM). Green channel: λ<sub>ex</sub> = 488 nm, λ<sub>em</sub> = 510–540 nm. Red channel: λ<sub>ex</sub> = 543 nm, λ<sub>em</sub> = 580–650 nm, scale bar: 50 μm. (<b>b</b>) Fluorescence intensity ratio corresponding to panel (<b>a</b>). (<b>c</b>) The cells were treated with different concentrations of LPS for 6 h and then incubated with MOBDP-I (10 μM). Green channel: λ<sub>ex</sub> = 488 nm, λ<sub>em</sub> = 510–540 nm. Red channel: λ<sub>ex</sub> = 543 nm, λ<sub>em</sub> = 580–650 nm, scale bar: 10 μm; (<b>d</b>) Fluorescence intensity ratio corresponding to panel (<b>c</b>). The error bars represent ± standard deviation (SD) (n = 3).</p> "> Figure 6
<p>(<b>a</b>) Fluorescence imaging of MOBDP-I in a mouse model of rheumatoid arthritis. Control group: the left hind limb of mice, in situ injection of PBS (50 μL, 10 mM, pH = 7.0); experimental group: the right hind limb of mice, in situ injection of λ-carr (50 μL, 5 mg/mL) or λ-carr (50 μL, 5 mg/mL) + NAC (50 μL, 30 mg/kg). (<b>b</b>) Relative fluorescence intensities corresponding to panel (<b>a</b>); (<b>c</b>) Fluorescence imaging of MOBDP-I in a mouse model of peritonitis. Control group: intraperitoneal injection of PBS (50 μL, 10 mM, pH = 7.0); experimental group: intraperitoneal injection of LPS (50 μL, 2 mg/mL) or LPS (50 μL, 2 mg/mL) + NAC (50 μL, 30 mg/kg). (<b>d</b>) Relative fluorescence intensities corresponding to panel (<b>c</b>). Green channel, λ<sub>ex</sub> = 460 nm, λ<sub>em</sub> = 510–550 nm. Red channel, λ<sub>ex</sub> = 570 nm, λ<sub>em</sub> = 650–700 nm.</p> "> Figure 7
<p>(<b>a</b>) Fluorescence imaging of MOBDP-I in mouse model of brain inflammation. Control group (left): tail vein injection of PBS (50 μL, 10 mM, pH = 7.0), and then MOBDP-I (20 μM, 100 μL in 1:9 DMSO/PBS <span class="html-italic">v</span>/<span class="html-italic">v</span>); experimental group (right): tail vein injection of LPS (100 μL, 2 mg/mL, 8 h), and then MOBDP-I (20 μM, 100 μL in 1:9 DMSO/PBS <span class="html-italic">v</span>/<span class="html-italic">v</span>). (<b>b</b>) Relative fluorescence intensities corresponding to the LPS-treated group in panel (<b>a</b>). Red channel, λ<sub>ex</sub> = 570 nm, λ<sub>em</sub> = 650–700 nm. (<b>c</b>) Fluorescence imaging of the dissected mouse brains. (<b>d</b>) Relative fluorescence intensities corresponding to panel (<b>c</b>). Green channel, λ<sub>ex</sub> = 460 nm, λ<sub>em</sub> =510–550 nm. Red channel, λ<sub>ex</sub> = 570 nm, λ<sub>em</sub> = 650–700 nm. The error bars represent ± standard deviation (SD) (n = 3).</p> "> Scheme 1
<p>The response mechanism of MOBDP-I to ONOO<sup>−</sup> and the fluorescence imaging of MOBDP-I in various inflammatory mouse models.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of MOBDP
2.2. Synthesis of MOBDP-CHO
2.3. Synthesis of MOBDP-I
3. Result and Discussion
3.1. Design and Synthesis of Fluorescent Probe
3.2. Photophysical Properties and Responses to ONOO−
3.3. Mitochondrial Localization
3.4. Cell Imaging of Exogenous and Endogenous ONOO−
3.5. Fluorescent Imaging of ONOO− in Inflamed Mouse Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Radi, R. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019, 87, 83–89. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Kolodziejczyk-Czepas, J.; Rutkowska, M.; Magiera, A.; Michel, P.; Rejman, M.W.; Nowak, P.; Owczarek, A. The Effect of Standardised Flower Extracts of Sorbus aucuparia L. on Proinflammatory Enzymes, Multiple Oxidants, and Oxidative/Nitrative Damage of Human Plasma Components In Vitro. Oxid. Med. Cell Longev. 2019, 2019, 9746358. [Google Scholar] [CrossRef]
- De Armas, M.I.; Esteves, R.; Viera, N.; Reyes, A.M.; Mastrogiovanni, M.; Alegria, T.G.P.; Netto, L.E.S.; Tortora, V.; Radi, R.; Trujillo, M. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radic. Biol. Med. 2019, 130, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, X.; Luo, Y.; Shen, J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic. Res. 2018, 52, 1220–1239. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Gao, Y.; Song, M.; Cao, W.; Sun, X. Peroxynitrite is a novel risk factor and treatment target of glaucoma. Nitric Oxide 2020, 99, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Kim, H.; Li, H.; Yoon, J. Reasonably constructed NIR fluorescent probes based on dicyanoisophorone skeleton for imaging ONOO− in living cells. Dye. Pigment. 2021, 195, 109665. [Google Scholar] [CrossRef]
- Yang, R.; He, X.; Niu, G.; Meng, F.; Lu, Q.; Liu, Z.; Yu, X. A Single Fluorescent pH Probe for Simultaneous Two-Color Visualization of Nuclei and Mitochondria and Monitoring Cell Apoptosis. ACS Sens. 2021, 6, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Kim, J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Appl. Mater. Interfaces 2022, 14, 23002–23021. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, H.; Wang, Z.; Ding, J.; Wang, S.; Huang, B.; Ke, S.; Gao, C. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J. Mater. Chem. B 2019, 7, 5019–5037. [Google Scholar] [CrossRef]
- Chen, X.; Jaiswal, A.; Costliow, Z.; Herbst, P.; Creasey, E.A.; Oshiro-Rapley, N.; Daly, M.J.; Carey, K.L.; Graham, D.B.; Xavier, R.J. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat. Immunol. 2022, 23, 1063–1075. [Google Scholar] [CrossRef]
- Chen, B.; Li, C.; Zhang, J.; Kan, J.; Jiang, T.; Zhou, J.; Ma, H. Sensing and imaging of mitochondrial viscosity in living cells using a red fluorescent probe with a long lifetime. Chem. Commun. 2019, 55, 7410–7413. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, Y.; Huo, F.; Yin, C. Fast-Specific Fluorescent Probes to Visualize Norepinephrine Signaling Pathways and Its Flux in the Epileptic Mice Brain. J. Am. Chem. Soc. 2023, 145, 3229–3237. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Gu, Q.S.; Jiang, W.L.; Tan, M.; Tan, Z.K.; Mao, G.J.; Xu, F.; Li, C.Y. Near-Infrared Fluorescent Probe with Large Stokes Shift for Imaging of Hydrogen Sulfide in Tumor-Bearing Mice. Anal. Chem. 2022, 94, 5514–5520. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.Q.; Song, Q.; Wang, Z.Q.; Chao, J.J.; Zhang, H.; Mao, G.J.; Chen, D.H.; Li, C.Y. Long-Term Imaging of Cys in Cells and Tumor Mice by a Solid-State Fluorescence Probe. Anal. Chem. 2023, 95, 17559–17567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.; Lin, W. Construction of a bi-functional ratiometric fluorescent probe for detection of endoplasmic reticulum viscosity and ONOO- in cells and zebrafish. Sens. Actuators B Chem. 2022, 373, 132742. [Google Scholar] [CrossRef]
- Chen, Z.J.; Ren, W.; Wright, Q.E.; Ai, H.W. Genetically encoded fluorescent probe for the selective detection of peroxynitrite. J. Am. Chem. Soc. 2013, 135, 14940–14943. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lim, C.S.; Kim, G.; Kim, H.M.; Yoon, J. Highly Selective and Sensitive Two-Photon Fluorescence Probe for Endogenous Peroxynitrite Detection and Its Applications in Living Cells and Tissues. Anal. Chem. 2017, 89, 8496–8500. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Feng, W.; Gong, S.; Feng, G. Near-infrared fluorescent probe with rapid response and large Stokes shift for imaging peroxynitrite in living cells, zebrafish and mice. Dye. Pigment. 2020, 172, 107820. [Google Scholar] [CrossRef]
- Cao, J.; An, W.; Reeves, A.G.; Lippert, A.R. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction. Chem. Sci. 2018, 9, 2552–2558. [Google Scholar] [CrossRef]
- Mao, Z.; Xiong, J.; Wang, P.; An, J.; Zhang, F.; Liu, Z.; Seung Kim, J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coord. Chem. Rev. 2022, 454, 214356. [Google Scholar] [CrossRef]
- Han, R.; Ma, X.; Wang, J.; Zhang, B.; Ruan, M.; Jiao, J.; Zhao, W.; Zhang, J. Novel BODIPY-based NIR fluorescent probe with appropriate Stokes shift for diagnosis and treatment evaluation of epilepsy via imaging ONOO− fluctuation. Sens. Actuators B Chem. 2025, 423, 136766. [Google Scholar] [CrossRef]
- Lei, Y.; Ren, W.; Wang, C.K.; Tao, R.R.; Xiang, H.J.; Feng, L.L.; Gao, Y.P.; Jiang, Q.; Li, X.; Hu, Y.; et al. Visualizing Autophagic Flux during Endothelial Injury with a Pathway-Inspired Tandem-Reaction Based Fluorogenic Probe. Theranostics 2019, 9, 5672–5680. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jia, T.; Tang, M.; Yin, Q.; Zhu, W.; Zhang, C.; Yang, Y.; Jia, N.; Xu, Y.; Qian, X. Selective and ratiometric fluorescent trapping and quantification of protein vicinal dithiols and in situ dynamic tracing in living cells. J. Am. Chem. Soc. 2014, 136, 14237–14244. [Google Scholar] [CrossRef]
- Jun, Y.W.; Wang, T.; Hwang, S.; Kim, D.; Ma, D.; Kim, K.H.; Kim, S.; Jung, J.; Ahn, K.H. A Ratiometric Two-Photon Fluorescent Probe for Tracking Lysosomal ATP: Direct In Cellulo Observation of Lysosomal Membrane Fusion Processes. Angew. Chem. Int. Ed. Engl. 2018, 57, 10142–10147. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, I.C.; DuFort, C.C.; Carlson, M.A.; Wu, X.; Chen, L.; Kuo, C.T.; Qin, Y.; Yu, J.; Hingorani, S.R.; et al. Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. J. Am. Chem. Soc. 2017, 139, 6911–6918. [Google Scholar] [CrossRef]
- Huo, Y.; Miao, J.; Fang, J.; Shi, H.; Wang, J.; Guo, W. Aromatic secondary amine-functionalized fluorescent NO probes: Improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chem. Sci. 2019, 10, 145–152. [Google Scholar] [CrossRef]
- Qin, S.; Lu, H.; Zhang, J.; Ji, X.; Wang, N.; Liu, J.; Zhao, W.; Wang, J. An activatable reporter for fluorescence imaging drug-induced liver injury in diverse cell lines and in vivo. Dye. Pigment. 2022, 203, 110345. [Google Scholar] [CrossRef]
- Wang, N.; Wang, H.; Zhang, J.; Ji, X.; Su, H.; Liu, J.; Wang, J.; Zhao, W. Endogenous peroxynitrite activated fluorescent probe for revealing anti-tuberculosis drug induced hepatotoxicity. Chin. Chem. Lett. 2022, 33, 1584–1588. [Google Scholar] [CrossRef]
- Yudhistira, T.; Mulay, S.V.; Lee, K.J.; Kim, Y.; Park, H.S.; Churchill, D.G. Thiomaleimide Functionalization for Selective Biological Fluorescence Detection of Peroxynitrite as Tested in HeLa and RAW 264.7 Cells. Chem. Asian J. 2017, 12, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Nie, H.; Zhang, R.; Xin, F.; Tian, Y.; Jing, J.; Zhang, X. An ESIPT based naphthalimide chemosensor for visualizing endogenous ONOO(-) in living cells. RSC Adv. 2018, 8, 1826–1832. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, K.; Kang, X.; Guo, X.; Du, L.; Chen, X.; Yu, L.; Yue, J.; Ge, H.; Liu, Y.; et al. Sensitive detection and imaging of endogenous peroxynitrite using a benzo[d]thiazole derived cyanine probe. Talanta 2019, 196, 345–351. [Google Scholar] [CrossRef]
- Lu, J.; Li, Z.; Zheng, X.; Tan, J.; Ji, Z.; Sun, Z.; You, J. A rapid response near-infrared ratiometric fluorescent probe for the real-time tracking of peroxynitrite for pathological diagnosis and therapeutic assessment in a rheumatoid arthritis model. J. Mater. Chem. B 2020, 8, 9343–9350. [Google Scholar] [CrossRef]
- Zhang, J.; Kan, J.; Sun, Y.; Won, M.; Kim, J.H.; Zhang, W.; Zhou, J.; Qian, Z.; Kim, J.S. Nanoliposomal Ratiometric Fluorescent Probe toward ONOO(-) Flux. ACS Appl. Bio Mater. 2021, 4, 2080–2088. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yang, S.; Ma, Y.; Chen, Y.; Wang, Z.; James, T.D.; Wang, X.; Wang, Z. Benzothiazolium Derivative-Capped Silica Nanocomposites for beta-Amyloid Imaging In Vivo. Anal. Chem. 2021, 93, 12617–12627. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, Z.; Meng, Q.; Jia, H.; Wang, Y.; Zhang, R. Rapid Response Fluorescence Probe Enabled In Vivo Diagnosis and Assessing Treatment Response of Hypochlorous Acid-Mediated Rheumatoid Arthritis. Adv. Sci. 2018, 5, 1800397. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhang, X.; Wang, Y.; Liu, Q.; Yu, F.; Huang, Y.; Ding, C.; Chen, L. Sequential Detection of Superoxide Anion and Hydrogen Polysulfides under Hypoxic Stress via a Spectral-Response-Separated Fluorescent Probe Functioned with a Nitrobenzene Derivative. Anal. Chem. 2019, 91, 7774–7781. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, J.; Pang, Q.; You, J. Construction of a near-infrared fluorescent probe for ratiometric imaging of peroxynitrite during tumor progression. Analyst 2021, 146, 5204–5211. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.J.; Wang, Y.Y.; Dong, W.P.; Meng, H.M.; Wang, Q.Q.; Luo, X.F.; Li, Y.; Zhang, G. A lysosome-targetable two-photon excited near-infrared fluorescent probe for visualizing hypochlorous acid-involved arthritis and its treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119326. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhu, Y.; Chen, L.; Tian, Y.; Xiong, H. A Fast-Responsive OFF-ON Near-Infrared-II Fluorescent Probe for In Vivo Detection of Hypochlorous Acid in Rheumatoid Arthritis. Anal. Chem. 2021, 93, 13014–13021. [Google Scholar] [CrossRef]
- Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int. J. Mol. Sci. 2019, 20, 2293. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, S.J.; Singha, S.; Yang, Y.J.; Park, S.K.; Ahn, K.H. Ratiometric Detection of Hypochlorous Acid in Brain Tissues of Neuroinflammation and Maternal Immune Activation Models with a Deep-Red/Near-Infrared Emitting Probe. ACS Sens. 2021, 6, 3253–3261. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Zhang, X.F.; Dong, H.; Chen, Q.; Cao, X.Q.; Shen, S.L. Activatable near-infrared fluorescent probe triggered by nitroreductase for in vivo ulcerative colitis hypoxia imaging. Anal. Chim. Acta 2022, 1221, 340107. [Google Scholar] [CrossRef] [PubMed]
- Yasukawa, K.; Hirago, A.; Yamada, K.; Tun, X.; Ohkuma, K.; Utsumi, H. In vivo redox imaging of dextran sodium sulfate-induced colitis in mice using Overhauser-enhanced magnetic resonance imaging. Free Radic. Biol. Med. 2019, 136, 1–11. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Q.; Zeng, J.; Tan, L.; Zhou, L.; Peng, L.; Zhou, Y.; Xie, C.; Luo, K.; Zhang, Z. A biomarker (ONOO−)-activated multicolor fluorescent probe for early detection and assessment of arthritis. Sens. Actuators B Chem. 2022, 359, 131565. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Wang, P.; Song, X.; Mao, Z.; Liu, Z. Highly Sensitive Near-Infrared Imaging of Peroxynitrite Fluxes in Inflammation Progress. Anal. Chem. 2021, 93, 3035–3041. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tang, X.; Li, X.; Kong, X.; Tian, M.; Wang, Y.; Dong, B. PET-ESIPT-based fluorescent probes for revealing the fluctuation of peroxynitrite (ONOO−) in living cells, zebrafishes and brain tissues. Sens. Actuators B Chem. 2022, 353, 131121. [Google Scholar] [CrossRef]
- Qin, S.; Ran, Y.; He, Y.; Lu, X.; Wang, J.; Zhao, W.; Zhang, J. Near-Infrared Fluorescence Probe for Visualizing Fluctuations of Peroxynitrite in Living Cells and Inflammatory Mouse Models. Chemosensors 2023, 11, 316. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Li, Y.; Jiang, W.L.; Tian, Y.; Fei, J.; Li, C.Y. A ratiometric fluorescent probe for peroxynitrite prepared by de novo synthesis and its application in assessing the mitochondrial oxidative stress status in cells and in vivo. Chem. Commun. 2018, 54, 11590–11593. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cheng, Z.; Wang, R.; Yu, F. Indication of Dynamic Peroxynitrite Fluctuations in the Rat Epilepsy Model with a Near-Infrared Two-Photon Fluorescent Probe. Anal. Chem. 2021, 93, 2490–2499. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Hu, Z.; Zhang, G.; Jin, Y.; Wang, Z. BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues. Biosensors 2024, 14, 638. https://doi.org/10.3390/bios14120638
Wu Q, Hu Z, Zhang G, Jin Y, Wang Z. BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues. Biosensors. 2024; 14(12):638. https://doi.org/10.3390/bios14120638
Chicago/Turabian StyleWu, Qian, Ziwei Hu, Guoyang Zhang, Yulong Jin, and Zhuo Wang. 2024. "BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues" Biosensors 14, no. 12: 638. https://doi.org/10.3390/bios14120638
APA StyleWu, Q., Hu, Z., Zhang, G., Jin, Y., & Wang, Z. (2024). BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues. Biosensors, 14(12), 638. https://doi.org/10.3390/bios14120638