Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs
"> Figure 1
<p>Simple metal-chelating moieties (listed in alphabetical order) which are often encountered in molecules used or proposed for the metal chelation therapy in Parkinson’s disease.</p> "> Figure 1 Cont.
<p>Simple metal-chelating moieties (listed in alphabetical order) which are often encountered in molecules used or proposed for the metal chelation therapy in Parkinson’s disease.</p> ">
Abstract
:1. Introduction
2. Parkinson’s Disease and Metal Ions
3. Metal Chelation Therapy in Parkinson’s Disease
4. The Measurement of the Stability of Metal–Ligand Complexes
5. The Metal–Ligand Speciation of Anti-Parkinson Drugs
6. Possible Usages of Speciation Data for Metal Chelation Therapy against Parkinson’s Disease
7. Concluding Remarks
Supplementary Materials
Funding
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E.; Shulman, G. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Tan, S.H.; Karri, V.; Tay, N.W.R.; Chang, K.H.; Ah, H.Y.; Ng, P.Q.; Ho, H.S.; Keh, H.W.; Candasamy, M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease and Parkinson’s disease. Biomed. Pharmacother. 2019, 111, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected, number of people with Parkinson disease in the most populous, nations, 2005 through 2030. Neurology 2007, 68, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study. Lancet Neurol. 2015, 16, 877–897. [Google Scholar]
- Dorsey, E.R.; Bloem, B. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018, 75, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Grossardt, B.R.; Bower, J.H.; Ahlskog, J.E.; Rocca, W.A. Time Trends in the Incidence of Parkinson Disease. JAMA Neurol. 2016, 73, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Scheperjans, F.; Pekkonen, E.; Kaakkola, S.; Auvinen, P. Linking smoking, coffee, urate, and Parkinson’s disease—A role for gut microbiota? J. Park. Dis. 2015, 5, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S. Environmental toxins and Parkinson’s disease. Ann. Rev. Pharmacol. Toxicol. 2014, 54, 141–164. [Google Scholar] [CrossRef]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and Race/Ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Stejskal, V.; Urbina, M.A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes. Curr. Med. Chem. 2018, 25, 2198–2214. [Google Scholar] [CrossRef] [PubMed]
- Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem. Rev. 2019, 119, 1221–1322. [Google Scholar] [CrossRef]
- Lhermitte, J.; Kraus, W.M.; McAlpine, D. On the occurrence of abnormal deposits of iron in the brain in parkinsonism with special reference to its localisation. J. Neurol. Psychopathol. 1924, 5, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb. Perspect. Med. 2012, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sofic, E.; Paulus, W.; Jellinger, K.; Riederer, P.; Youdim, M.B.H. Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. J. Neurochem. 1991, 56, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.; Paulus, W.; Grundke-Iqbal, I.; Riederer, P.; Youdim, M.B.H. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J. Neural Transm. Park. Dis. Dement. Sec. 1990, 2, 327–340. [Google Scholar] [CrossRef]
- Dexter, D.T.; Wells, F.R.; Lees, A.J.; Agid, F.; Agid, Y.; Jenner, P.; Marsden, C.D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J. Neurochem. 1989, 52, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Sofic, E.; Riederer, P.; Heinsen, H.; Beckmann, H.; Reynolds, G.P.; Hebenstreit, G.; Youdim, M.B. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transm. 1988, 74, 199–205. [Google Scholar] [CrossRef]
- Drayer, B.P.; Burger, P.; Darwin, R.; Riederer, S.; Herfkens, R.; Johnson, G.A. Magnetic resonance imaging of brain iron. Am. J. Neuroradiol. 1986, 7, 373–380. [Google Scholar]
- Friedman, A.; Galazka-Friedman, J.; Koziorowski, D. Iron as a cause of Parkinson disease-a myth or a well established hypothesis? Park. Relat. Disord. 2009, 15, S212–S214. [Google Scholar] [CrossRef]
- Ryvlin, P.; Broussolle, E.; Piollet, H.; Viallet, F.; Khalfallah, Y.; Chazot, G. Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Arch. Neurol. 1995, 52, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Q.; Chen, Y.T.; Zhang, Y.; Wang, F.R.; Yu, H.C.; Zhang, C.Y.; Jian, Z.; Luo, W.F. Iron deposition in Parkinson’s disease by quantitative susceptibility mapping. BMC Neurosci. 2019, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Dashtipour, K.; Liu, M.; Kani, C.; Dalaie, P.; Obenaus, A.; Simmons, D.; Gatto, N.M.; Zarifi, M. Iron Accumulation Is Not Homogenous among Patients with Parkinson’s Disease. Park. Dis. 2015, 2015, 324843. [Google Scholar] [CrossRef] [PubMed]
- Gumienna-Kontecka, E.; Pyrkosz-Bulska, M.; Szebesczyk, A.; Ostrowska, M. Iron Chelating Strategies in Systemic Metal Overload, Neurodegeneration and Cancer. Curr. Med. Chem. 2014, 21, 3741–3767. [Google Scholar] [CrossRef] [PubMed]
- Ayton, S.; Lei, P.; Duce, J.A.; Wong, B.X.W.; Sedjahtera, A.; Adlard, P.A.; Bush, A.I.; Finkelstein, D.I. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann. Neurol. 2013, 73, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.P. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr. Neuropharmacol. 2019, 17, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Ayton, S.; Finkelstein, D.I.; Spoerri, L.; Ciccotosto, G.D.; Wright, D.K.; Wong, B.X.W.; Adlard, P.A.; Cherny, R.A.; Lam, L.Q.; et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med. 2012, 18, 291–295. [Google Scholar] [CrossRef]
- McCarthy, R.C.; Park, Y.H.; Kosman, D.J. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep. 2014, 15, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Zecca, L.; Zucca, F.A.; Albertini, A.; Rizzio, E.; Fariello, R.G. A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 2006, 67, S8–S11. [Google Scholar] [CrossRef]
- Genoud, S.; Roberts, B.R.; Gunn, A.P.; Halliday, G.M.; Lewis, S.J.G.; Ball, H.J.; Hare, J.; Double, K.L. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics 2017, 9, 1447–1455. [Google Scholar] [CrossRef]
- Davies, K.M.; Mercer, J.F.B.; Chen, N.; Double, K.L. Copper dyshomoeostasis in Parkinson’s disease: Implications for pathogenesis and indications for novel therapeutics. Clin. Sci. 2016, 130, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Mcleary, F.A.; Rcom-H’cheo, A.N.; Goulding, M.; Radford, R.A.W.; Okita, Y.; Faller, P.; Chung, R.S.; Pountney, D.L. Switching on Endogenous Metal Binding Proteins in Parkinson’s Disease. Cells 2019, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.M.; Bohic, S.; Carmona, A.; Ortega, R.; Cottam, V.; Hare, D.J.; Finberg, J.P.M.; Reyes, S.; Halliday, G.M.; Mercer, J.F.B.; et al. Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol. Aging 2014, 35, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Torsdottir, G.; Kristinsson, J.; Sveinbjornsdottir, S.; Snaedal, J.; Johannesson, T. Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacol. Toxicol. 1999, 85, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Dexter, D.T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991, 114, 1953–1975. [Google Scholar] [CrossRef] [PubMed]
- Forsleff, L.; Schauss, A.G.; Bier, I.D.; Stuart, S. Evidence of functional zinc deficiency in Parkinson’s disease. J. Altern. Complement. Med. 1999, 5, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Falup-Pecurariu, C.; Ferreira, J.; Martinez-Martin, P.; Chaudhuri, K.R. Toxic-Induced Parkinsonism. In Movement Disorders Curricula; Springer: Vienna, Austria, 2017. [Google Scholar]
- Caudle, W.M. Occupational Metal Exposure and Parkinsonism. Adv. Neurobiol. 2017, 18, 143–158. [Google Scholar] [PubMed]
- Masaldan, S.; Bush, A.I.; Devos, D.; Rolland, A.S.; Moreau, C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic. Biol. Med. 2019, 133, 221–233. [Google Scholar] [CrossRef]
- Aschner, M.; Erikson, K.M.; Herrero-Hernández, E.; Tjalkens, R. Manganese and its Role in Parkinson’s Disease: From Transport to Neuropathology. Neuromol. Med. 2009, 11, 252–266. [Google Scholar] [CrossRef]
- Barnham, K.J.; Bush, A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6727–6749. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Totten, M.; Zhang, Z.Y.; Bucinca, H.; Erikson, K.; Santamaria, A.; Bowman, A.B.; Aschner, M. Iron and manganese-related CNS toxicity: Mechanisms, diagnosis and treatment. Exp. Rev. Neurother. 2019, 19, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, M.C.; Soong, T.W. Nitric Oxide, Iron and Neurodegeneration. Front. Neurosci. 2019, 18, 114. [Google Scholar] [CrossRef] [PubMed]
- Dusek, P.; Litwin, T.; Czlonkowska, A. Neurologic impairment in Wilson disease. Ann. Transl. Med. 2019, 7, S64. [Google Scholar] [CrossRef] [PubMed]
- Piloni, N.E.; Perazzo, J.C.; Fernandez, V.; Videla, L.A.; Puntarulo, S. Sub-chronic iron overload triggers oxidative stress development in rat brain: Implications for cell protection. Biometals 2016, 29, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Kakhlon, O.; Cabantchik, Z.I. The labile iron pool: Characterization, measurement, and participation in cellular processes. Free Radic. Biol. Med. 2002, 33, 1037–1046. [Google Scholar] [CrossRef]
- Sian, J.; Dexter, D.T.; Lees, A.J.; Daniel, S.; Agid, Y.; JavoyAgid, F.; Jenner, P.; Marsden, C.D. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 1994, 36, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.W.; Koh, J.Y. Zinc and brain injury. Annu. Rev. Neurosci. 1998, 21, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Waksmundzka-hajnos, M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer’s and Parkinson’s diseases. Biomed. Pharmacother. 2019, 111, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J. Neurochem. 2007, 103, 17–37. [Google Scholar] [PubMed]
- Uversky, V.N.; Li, J.; Fink, A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J. Biol. Chem. 2001, 276, 44284–44296. [Google Scholar] [CrossRef] [PubMed]
- Norris, E.H.; Giasson, B.I.; Ischiropoulos, H.; Lee, V.M. Effects of oxidative and nitrative challenges on alpha-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. J. Biol. Chem. 2003, 278, 27230–27240. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.M.; Giasson, B.I.; Chen, Q.; Lee, V.M.Y.; Ischiropoulos, H. Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 2000, 275, 18344–18349. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.; Pountney, D.L.; Jensen, P.H.; Gai, W.P.; Voelcker, N.H. Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci. 2004, 13, 3245–3252. [Google Scholar] [CrossRef] [PubMed]
- Yamin, G.; Glaser, C.B.; Uversky, V.N.; Fink, A.L. Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J. Biol. Chem. 2003, 278, 27630–27635. [Google Scholar] [CrossRef] [PubMed]
- Friedlich, A.L.; Tanzi, R.E.; Rogers, J.T. The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Mol. Psychiatry 2007, 12, 222–223. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.T.; Mikkilineni, S.; Cantuti-Castelvetri, I.; Smith, D.H.; Huang, X.D.; Bandyopadhyay, S.; Cahill, C.M.; Maccecchini, M.L.; Lahiri, D.K.; Greig, N. The alpha-synuclein 5′untranslated region targeted translation blockers: Anti-alpha synuclein efficacy of cardiac glycosides and Posiphen. Neural Transm. 2011, 118, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Duce, J.A.; Wong, B.X.; Durham, H.; Devedjian, J.C.; Smith, D.P.; Devos, D. Post translational changes to alpha-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson’s disease. Mol. Neurodegener. 2017, 12, 45. [Google Scholar] [CrossRef]
- Baksi, S.; Singh, N. α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: Implications for retinal iron dyshomeostasis in Parkinson’s disease. Sci. Rep. 2017, 7, 12843. [Google Scholar] [CrossRef]
- Carboni, E.; Lingor, P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics 2015, 7, 395–404. [Google Scholar] [CrossRef]
- Atrián-Blasco, E.; Gonzalez, P.; Santoro, A.; Alies, B.; Faller, P.; Hureau, C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord. Chem. Rev. 2018, 371, 38–55. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Homma, T.; Fujii, J. Application of Glutathione as Anti-Oxidative and Anti-Aging Drugs. Curr. Drug Metab. 2015, 16, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Filograna, R.; Beltramini, M.; Bubacco, L.; Bisaglia, M. Anti-Oxidants in Parkinson’s Disease Therapy: A Critical Point of View. Curr. Neuropharmacol. 2016, 14, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, O.; Amit, T.; Mandel, S.; Kupershmidt, L. Neuroprotective Multifunctional Iron Chelators: From Redox-Sensitive Process to Novel Therapeutic Opportunities. Antioxid. Redox Signal. 2010, 13, 919–949. [Google Scholar] [CrossRef] [PubMed]
- Giampietro, R.; Spinelli, F.; Contino, M.; Colabufo, N.A.; Farmaco, F.; Aldo, B.; Orabona, V.; Farmaco, F.; Aldo, B.; Orabona, V. The Pivotal Role of Copper in Neurodegeneration: A New Strategy for the Therapy of Neurodegenerative Disorders. Mol. Pharm. 2018, 15, 806–820. [Google Scholar] [CrossRef]
- Bouabid, S.; Tinakoua, A.; Nouria-Ghazal, L.; Benazzouz, A. Manganese neurotoxicity: Behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J. Neurochem. 2016, 136, 677–691. [Google Scholar] [CrossRef]
- Ndayisaba, A.; Kaindlstorfer, C.; Wenning, G.K. Iron in Neurodegeneration—Cause or Consequence? Front. Neurosci. 2019, 13, 180. [Google Scholar] [CrossRef]
- Joksić, A.Š.; Katz, S.A. Chelation therapy for treatment of systemic intoxication with uranium: A review. J. Environ. Sci. Health 2015, 50, 1479–1488. [Google Scholar] [CrossRef]
- Crisponi, G.; Dean, A.; di Marco, V.; Lachowicz, J.I.; Nurchi, V.M.; Remelli, M.; Tapparo, A. Different approaches to the study of chelating agents for iron and aluminium overload pathologies. Anal. Bioanal. Chem. 2013, 405, 585–601. [Google Scholar] [CrossRef]
- Kontoghiorghe, C.N.; Kontoghiorghes, G.J. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des. Dev. Ther. 2016, 10, 465–481. [Google Scholar] [CrossRef]
- Borgna-Pignatti, C.; Cappellini, M.D.; de Stefano, P.; del Vecchio, G.C.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R.; Piga, A.; Romeo, M.A.; Zhao, H.Q.; et al. Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood 2006, 107, 3733–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nicola, M.; Barteselli, G.; Dell’Arti, L.; Ratiglia, R.; Viola, F. Functional and Structural Abnormalities in Deferoxamine Retinopathy: A Review of the Literature. BioMed Res. Int. 2015, 2015, 249617. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.A.; Brunskill, S.J.; Doree, C.; Gooding, S.; Chowdhury, O.; Roberts, D.J. Desferrioxamine mesylate for managing transfusional iron overload in people with transfusion-dependent thalassaemia. Cochrane Database Syst. Rev. 2013, CD004450. [Google Scholar] [CrossRef] [PubMed]
- Kontoghiorghes, G. A record number of fatalities in many categories of patients treated with deferasirox: Loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Exp. Opin. Drug Saf. 2013, 12, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Hedera, P. Clinical management of Wilson disease. Ann. Transl. Med. 2019, 7, S66. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Kim, Y.S.; Kumar, V.J. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Ward, R.J.; Dexter, D.T.; Crichton, R.R. Chelating Agents for Neurodegenerative Diseases. Curr. Med. Chem. 2012, 19, 2760–2772. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, M.T.; Chana-Cuevas, P. New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals 2018, 11, 109. [Google Scholar] [CrossRef]
- Mot, A.I.; Wedd, A.G.; Sinclair, L.; Brown, D.R.; Collins, S.J.; Brazier, M.W. Metal attenuating therapies in neurodegenerative disease. Expert Rev. Neurother. 2011, 11, 1717–1745. [Google Scholar] [CrossRef]
- Portbury, S.D.; Yévenes, L.F.; Adlard, P.A. Novel zinc-targeted therapeutic options for cognitive decline. Future Neurol. 2015, 10, 537–546. [Google Scholar] [CrossRef]
- Poujois, A.; Devedjian, J.C.; Moreau, C.; Devos, D.; Chaine, P.; Woimant, F.; Duce, J.A. Bioavailable Trace Metals in Neurological Diseases. Curr. Treat. Opt. Neurol. 2016, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Zekavat, O.R.; Bahmanjahromi, A.; Haghpanah, S.; Ebrahimi, S.; Cohan, N. The Zinc and Copper Levels in Thalassemia Major Patients, Receiving Iron Chelation Therapy. J. Pediatr. Hematol. Oncol. 2018, 40, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Kontoghiorghes, G.J.; Kolnagou, A.; Peng, C.T.; Shah, S.V.; Aessopos, A. Safety issues of iron chelation therapy in patients with normal range iron stores including thalassaemia, neurodegenerative, renal and infectious diseases. Exp. Opin. Drug Saf. 2010, 9, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Lanza, V.; Milardi, D.; Natale, G.D.; Pappalardo, G. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases. Curr. Med. Chem. 2018, 25, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, V.; Vecchio, G. Prochelator strategies for site-selective activation of metal chelators. J. Inorg. Biochem. 2016, 162, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Sangchot, P.; Sharma, S.; Chetsawang, B.; Porter, J.; Govitrapong, P.; Ebadi, M. Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alphasynuclein translocation in SK-N-SH cells in culture. Dev. Neurosci. 2002, 24, 143–153. [Google Scholar] [CrossRef]
- Guo, C.; Hao, L.J.; Yang, Z.H.; Chai, R.; Zhang, S.; Gao, H.L.; Zhong, M.L.; Wang, T.; Li, J.Y.; Wang, Z.Y. Deferoxamine-mediated upregulation of HIF-1alpha prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp. Neurol. 2016, 280, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.P.; Pandey, A.; Vishwakarma, S.; Modi, G. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol. Divers. 2018, 23, 509–526. [Google Scholar] [CrossRef]
- Devos, D.; Moreau, C.; Devedjian, J.C.; Kluza, J.; Petrault, M.; Laloux, C.; Jonneaux, A.; Ryckewaert, G.; Garcon, G.; Rouaix, N.; et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 2014, 21, 195–210. [Google Scholar] [CrossRef]
- Kaur, D.; Yantiri, F.; Rajagopalan, S.; Kumar, J.; Mo, J.Q.; Boonplueang, R.; Viswanath, V.; Jacobs, R.; Yang, L.; Beal, M.F.; et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson’s disease. Neuron 2003, 37, 899–909. [Google Scholar] [CrossRef]
- Tardiff, D.F.; Tucci, M.L.; Caldwell, K.A.; Caldwell, G.A.; Lindquist, S. Different 8-hydroxyquinolines protect models of tdp-43 protein, alpha-synuclein, and polyglutamine proteotoxicity through distinct mechanisms. J. Biol. Chem. 2012, 287, 4107–4120. [Google Scholar] [CrossRef] [PubMed]
- Shachar, D.B.; Kahana, N.; Kampel, V.; Warshawsky, A.; Youdim, M.B.H. Neuroprotection by a novel brain permeable iron chelator, vk-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 2004, 46, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Gal, S.; Zheng, H.; Fridkin, M.; Youdim, M.B. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J. Neurochem. 2005, 95, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Lannfelt, L.; Blennow, K.; Zetterberg, H.; Batsman, S.; Ames, D.; Harrison, J.; Masters, C.L.; Targum, S.; Bush, A.I.; Murdoch, R.; et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: A phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008, 7, 779–786. [Google Scholar] [CrossRef]
- Mena, N.P.; García-Beltrán, O.; Lourido, F.; Urrutia, P.J.; Mena, R.; Castro-Castillo, V.; Cassels, B.K.; Núñez, M.T. The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem. Biophys. Res. Commun. 2015, 463, 787–792. [Google Scholar] [CrossRef]
- Cabantchik, Z.I.; Munnich, A.; Youdim, M.B.; Devos, D. Regional siderosis: A new challenge for iron chelation therapy. Front. Pharmacol. 2013, 4, 167. [Google Scholar] [CrossRef]
- Connor, J.R.; Ponnuru, P.; Wang, X.S.; Patton, S.M.; Allen, R.P.; Earley, C.J. Profile of altered brain iron acquisition in restless legs syndrome. Brain 2011, 134, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, M.M.; Erxlebenb, A.; Ochockia, J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013, 7, 1157–1178. [Google Scholar] [CrossRef]
- Jakusch, T.; Dean, A.; Oncsik, T.; Benyei, A.C.; di Marco, V.; Kiss, T. Vanadate complexes in serum: A speciation modeling study. Dalton Trans. 2010, 39, 212–220. [Google Scholar] [CrossRef]
- Kiss, T.; Jakusch, T.; Gyurcsik, B.; Lakatos, A.; Anna, É.; Sija, É. Application of modeling calculations in the description of metal ion distribution of bioactive compounds in biological systems. Coord. Chem. Rev. 2012, 256, 125–132. [Google Scholar] [CrossRef]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Pettit, L.D. Critical survey of formation constants of complexes of histidine, phenylalanine, tyrosine, L-DOPA and tryptophan. Pure Appl. Chem. 1984, 56, 247–292. [Google Scholar] [CrossRef]
- Stayte, S.; Vissel, B. Advances in non-dopaminergic treatments for Parkinson’s disease. Front. Neurosci. 2014, 8, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Charvin, D.; Medori, R.; Hauser, R.A.; Rascol, O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat. Rev. Drug Discov. 2018, 17, 804–822. [Google Scholar] [CrossRef]
- Reddy, D.H.; Misra, S.; Medhi, B. Advances in Drug Development for Parkinson’s Disease: Present Status. Pharmacology 2014, 93, 260–271. [Google Scholar] [CrossRef]
- McBean, G.J.; López, M.G.; Wallner, F.K. Redox-based therapeutics in neurodegenerative disease. Br. J. Pharmacol. 2017, 174, 1750–1770. [Google Scholar] [CrossRef]
- Ellis, J.M.; Fell, M.J. Current approaches to the treatment of Parkinson’s Disease. Bioorg. Med. Chem. Lett. 2017, 27, 4247–4255. [Google Scholar] [CrossRef]
- Oertel, W.; Schulz, J.B. Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J. Neurochem. 2016, 139, 325–337. [Google Scholar] [CrossRef]
- Silva, A.R.; Grosso, C.; Cristina, D.; Rocha, J.M. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur. J. Med. Chem. 2019, 174, 87–115. [Google Scholar] [CrossRef]
- Aguirre, P.; Mena, N.P.; Carrasco, C.M.; Muñoz, Y.; Pérez-Henríquez, P. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons. PLoS ONE 2015, 10, e0144848. [Google Scholar] [CrossRef] [PubMed]
- Benvenutti, R.; Marcon, M.; Reis, C.G.; Nery, L.R.; Miguel, C.; Herrmann, A.P.; Vianna, M.R.M.; Piato, A. N-acetylcysteine protects against motor, optomotor and morphological deficits induced by 6-OHDA in zebrafish larvae. PeerJ 2018, 6, e4957. [Google Scholar] [CrossRef] [PubMed]
- Botsakis, K.; Theodoritsi, S.; Grintzalis, K.; Angelatou, F.; Antonopoulos, I.; Georgiou, C.D.; Margarity, M.; Matsokis, N.A.; Panagopoulos, N.T. 17β-estradiol/N-acetylcysteine interactions enhances the neuroprotective effect on dopaminergic neurons in the weaver model of dopamine deficency. Neuroscience 2016, 320, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Jantas, D.; Greda, A.; Golda, S.; Korostynski, M.; Grygier, B.; Roman, A.; Pilc, A.; Lason, W. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: The impact of cell differentiation state. Neuropharmacology 2014, 83, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Ponnazhagan, R.; Harms, A.S.; Thome, A.D.; Jurkuvenaite, A.; Gogliotti, R.; Niswenden, C.M.; Conn, P.J.; Standaert, D.G. The Metabotropic Glutamate Receptor 4 Positive Allosteric Modulator ADX88178 Inhibits Inflammatory Responses in Primary Microglia. J. Neuroimmune Pharmacol. 2016, 11, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Bai, L.; He, J.; Zhong, L.; Duan, X.; Ouyang, L.; Zhu, Y.; Wang, T.; Zhang, Y.; Shi, J. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur. J. Med. Chem. 2017, 141, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhao, G.; Fang, J.; Yuan, T.; Liu, A.; Du, G. Discovery of the neuroprotective effects of alvespimycin by computational prioritization of potential anti-parkinson agents. FEBS J. 2014, 281, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Agar, E. The role of cannabinoids and leptin in neurological diseases. Neurol. Scand. 2015, 132, 371–380. [Google Scholar] [CrossRef] [PubMed]
- More, S.V.; Choi, D. Promising cannabinoid-based therapies for Parkinson’s disease: Motor symptoms to neuroprotection. Mol. Neurodegener. 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Mishra, A.; Pratap, L.; Kumar, S. Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson’s disease symptoms. Biochem. Pharmacol. 2018, 155, 479–493. [Google Scholar] [CrossRef]
- Ishay, Y.; Zimran, A.; Szer, J.; Dinur, T.; Ilan, Y.; Arkadir, D. Combined beta-glucosylceramide and ambroxol hydrochloride in patients with Gaucher related Parkinson disease: From clinical observations to drug development. Blood Cells Mol. Dis. 2018, 68, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Redenti, S.; Marcovich, I.; de Vita, T.; Zorzi, R.D.; Demitri, N.; Perez, D.I.; Bottegoni, G.; Bisignano, P.; Bissaro, M.; Moro, S.; et al. A Triazolotriazine-Based Dual GSK-3 beta/CK-1 delta Ligand as a Potential Neuroprotective Agent Presenting Two Different Mechanisms of Enzymatic Inhibition. ChemMedChem 2019, 14, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Krajnak, K.; Dahl, R. Small molecule SUMOylation activators are novel neuroprotective agents. Bioorg. Med. Chem. Lett. 2018, 28, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Hee, T.; Hyo, K.; Kim, K.; Sook, E. Novel anti-adipogenic activity of anti-malarial amodiaquine through suppression of PPAR c activity. Arch. Pharm. Res. 2017, 40, 1336–1343. [Google Scholar]
- Gay, M.; Carato, P.; Coevoet, M.; Renault, N.; Larchanché, P.; Barczyk, A.; Yous, S.; Buée, L.; Sergeant, N.; Melnyk, P. New phenylaniline derivatives as modulators of amyloid protein precursor metabolism. Bioorg. Med. Chem. 2018, 26, 2151–2164. [Google Scholar] [CrossRef]
- Tian, S.; Wang, X.; Li, L.; Zhang, X.; Li, Y.; Zhu, F.; Hou, T.; Zhen, X. Discovery of Novel and Selective Adenosine A2A Receptor Antagonists for Treating Parkinson’s Disease through Comparative Structure-Based Virtual Screening. J. Chem. Inf. Model. 2017, 57, 1474–1487. [Google Scholar] [CrossRef] [PubMed]
- Putteeraj, M.; Lim, W.L.; Teoh, S.L.; Yahaya, M.F. Flavonoids and its Neuroprotective Effects on Brain Ischemia and Neurodegenerative Diseases. Curr. Drug Targets 2018, 19, 1710–1720. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Khan, H.; D’Onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res. 2018, 128, 359–365. [Google Scholar] [CrossRef]
- Anusha, C.; Sumathi, T.; Leena, D.J. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact. 2017, 269, 67–79. [Google Scholar] [CrossRef]
- Ali, F.; Naz, F.; Jyoti, S.; Siddique, Y.H. Health Functionality of Apigenin: A Review. Int. J. Food Prop. 2017, 20, 1197–1238. [Google Scholar] [CrossRef]
- Mack, J.M.; Moura, T.M.; Lanznaster, D.; Bobinski, F.; Massari, C.M.; Sampaio, T.B.; Schmitz, A.E.; Souza, L.F.; Walz, R.; Tasca, C.I.; et al. Intranasal administration of sodium dimethyldithiocarbamate induces motor deficits and dopaminergic dysfunction in mice. Neurotoxicology 2018, 66, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Kaidoh, K.; Hiratochi, M. Duration of drug action of dopamine D2 agonists in mice with 6-hydroxydopamine-induced lesions. Neuroreport 2015, 26, 1126–1132. [Google Scholar]
- Hami, J.; Hosseini, M.; Shahi, S.; Lotfi, N.; Talebi, A.; Afshar, M. Effects of L-arginine pre-treatment in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s diseases in Balb/c mice. Iran. J. Neurol. 2015, 14, 195–203. [Google Scholar] [PubMed]
- Yang, H.; Ehm, G.; Eun, Y.; Young, J.; Lee, W.; Kim, A.; Kim, H.; Jeon, B. Liquid levodopa-carbidopa in advanced Parkinson’s disease with motor complications. J. Neurol. Sci. 2017, 377, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, I.; Lee, S.W.; Lee, H.; Lee, G.; Kim, S.; Lee, S.W.; Yoon, D.S. Quantifying L-Ascorbic Acid-Driven Inhibitory Effect on Amyloid Fibrillation. Macromol. Res. 2016, 24, 868–873. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Sun, M.F.; Jia, X.B.; Cheng, K.; Xu, Y.D.; Zhou, Z.L.; Zhang, P.H.; Qiao, C.M.; Cui, C.; Chen, X.; et al. Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int. Immunopharmacol. 2019, 66, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Ou, Z.; Jiang, T.; Tian, Y.; Zhou, J.; Wu, L. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic parkinsonian behaviors in a rat model of Parkinson’s disease. Oncotarget 2017, 8, 24099–24109. [Google Scholar]
- Aliakbari, F.; Akbar, A.; Bardania, H.; Akbar, A.; Christiansen, G.; Otzen, D.E.; Morshedi, D. Biointerfaces Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. Colloids Surf. B Biointerfaces 2018, 161, 578–587. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. Baicalein as a potent neuroprotective agent: A review. Biomed. Pharmacother. 2017, 95, 1021–1032. [Google Scholar] [CrossRef]
- Chen, T.K.; Li, Y.; Li, C.W.; Yi, X.; Wang, R.B.; Lee, S.M.Y.; Zheng, Y. Pluronic P85/F68 Micelles of Baicalein Could Interfere with Mithochondria to Overcome MRP2-Mediated Efflux and Offer Improved antiParkinsonian Activity. Mol. Pharm. 2014, 14, 3331–3342. [Google Scholar] [CrossRef]
- Ilm, T.; Masroor, A.; Khursheed, M.; Ahmad, I.; Jahan, I.; Ali, M.; Nayeem, S.M.; Uversky, V.N.; Hasan, R. Molecular basis of the inhibition and disaggregation of thermally-induced amyloid fibrils of human serum albumin by an anti-Parkinson’s drug, benserazide hydrochloride. J. Mol. Liq. 2019, 278, 553–567. [Google Scholar]
- Ilm, T.; Zaidi, N.; Zaman, M.; Jahan, I.; Masroor, A.; Ahmad, I.; Nayeem, S.M.; Ali, M.; Uversky, V.N. A multiparametric analysis of the synergistic impact of anti-Parkinson’s drugs on the fibrillation of human serum albumin. BBA Proteins Proteom. 2019, 1867, 275–285. [Google Scholar]
- Bacho, M.; Coelho-Cerqueira, E.; Follmer, C.; Nabavi, S.M.; Rastrelli, L.; Uriarte, E.; Sobarzo-Sanchez, E. A Medical Approach to the Monoamine Oxidase Inhibition by Using 7Hbenzo, perimidin-7-one Derivatives. Curr. Top. Med. Chem. 2017, 17, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Mathew, G.E.; Petzer, J.P.; Anel, P. Structural Exploration of Synthetic Chromones as Selective MAO-B Inhibitors: A Mini Review. J. Mater. Chem. B 2017, 20, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Brunschweiger, A.; Koch, P.; Schlenk, M.; Rafehi, M.; Radjainia, H.; Küppers, P.; Hinz, S.; Pineda, F.; Wiese, M.; Hockemeyer, J.; et al. 8-Substituted 1,3-dimethyltetrahydropyrazino[2,1-f]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors. Bioorg. Med. Chem. 2016, 24, 5462–5480. [Google Scholar] [CrossRef]
- Fonseca-Fonseca, L.A.; Nuñez-Figueredo, Y.; Sánchez, J.R.; Guerra, M.W.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Hernádez, R.D.; Menezes-Filho, N.J.; Costa, T.C.S.; de Santana, W.A.; et al. Neuroprotective Effects of Bikaverin on H2O2 -Induced Oxidative Stress Mediated Neuronal Damage in SH-SY5Y Cell Line. Cell. Mol. Neurobiol. 2014, 34, 973–985. [Google Scholar]
- Modi, G.; Antonio, T.; Reith, M.; Dutta, A. Structural Modifications of Neuroprotective Anti.Parkinsonian (-)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): An Effort toward the Improvement of in Vivo Efficacy of the Parent Molecule. J. Med. Chem. 2014, 57, 1557–1572. [Google Scholar] [CrossRef]
- Cao, X.; Jin, Y.; Zhang, H.; Yu, L.; Bao, X.; Li, F.; Xu, Y. The Anti-inflammatory Effects of 4-((5-Bromo-3-chloro-2-hydroxybenzyl)amino)-2-hydroxybenzoic Acid in Lipopolysaccharide-Activated Primary Microglial Cells. Inflammation 2018, 41, 530–540. [Google Scholar] [CrossRef]
- Hu, W.; Guan, L.; Dang, X.; Ren, P.; Zhang, Y. Small-molecule inhibitors at the PSD-95/nNOS interface attenuate MPP+-induced neuronal injury through Sirt3 mediated inhibition of mitochondrial dysfunction. Neurochem. Int. 2014, 79, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Dugan, L.L.; Tian, L.; Quick, K.L.; Hardt, J.I.; Karimi, M.; Brown, C.; Loftin, S.; Flores, H.; Moerlein, S.M.; Polich, J.; et al. Carboxyfullerene Neuroprotection Postinjury in Parkinsonian Nonhuman Primates. Ann. Neurol. 2014, 76, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhao, J.; Cheng, Y.; Lee, S.M.; Rong, J. N-Propargyl Caffeamide (PACA) Ameliorates Dopaminergic Neuronal Loss and Motor Dysfunctions in MPTP Mouse Model of Parkinson’s Disease and in MPP+-Induced Neurons via Promoting the Conversion of proNGF to NGF. Mol. Neurobiol. 2018, 55, 2258–2267. [Google Scholar] [CrossRef]
- Moosavi, F.; Hosseini, R.; Rajaian, H.; Silva, T.; Magalhães, D.; Saso, L.; Edraki, N.; Miri, R.; Borges, F.; Firuzi, O. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorg. Med. Chem. 2017, 25, 3235–3246. [Google Scholar] [CrossRef] [PubMed]
- Taram, F.; Winter, A.N.; Linseman, D.A. Neuroprotection Comparison of Rosmarinic Acid and Carnosic Acid in Primary Cultures of Cerebellar Granule Neurons. Molecules 2018, 23, 2956. [Google Scholar] [CrossRef] [PubMed]
- Fazili, N.A.; Naeem, A. Anti-fibrillation potency of caffeic acid against an antidepressant induced fi brillogenesis of human α-synuclein: Implications for Parkinson’ s disease. Biochimie 2015, 108, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Reith, M.E.A.; Dutta, A.K. Design, Synthesis, and Pharmacological Characterization of Carbazole Based Dopamine Agonists as Potential Symptomatic and Neuroprotective Therapeutic Agents for Parkinson’s Disease. ACS Chem. Neurosci. 2018, 10, 396–411. [Google Scholar]
- Beata, G.; Nishigaya, Y.; Hirsz-wiktorzak, K.; Rybczy, A. Interference of carbidopa and other catechols with reactions catalyzed by peroxidases. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1626–1634. [Google Scholar]
- Oliveira, M.R.; Ferreira, G.C.; Schuck, P.F. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway. Toxicol. Vitr. 2016, 32, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Yimer, E.M.; Hishe, H.Z.; Tuem, K.B. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front. Neurosci. 2019, 26, 236. [Google Scholar] [CrossRef] [PubMed]
- Reglodi, D.; Renaud, J.; Tamas, A.; Tizabi, Y.; Socı, S.B.; Del-bel, E.; Raisman-vozari, R. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Prog. Neurobiol. 2017, 155, 120–148. [Google Scholar] [CrossRef]
- Ruzza, P.; Siligardi, G.; Hussain, R.; Marchiani, A.; Islami, M.; Bubacco, L.; Delogu, G.; Fabbri, D.; Dettori, M.A.; Sechi, M.; et al. Ceftriaxone Blocks the Polymerization of α-Synuclein and Exerts Neuroprotective E ff ects in Vitro. ACS Chem. Neurosci. 2013, 5, 30–38. [Google Scholar] [CrossRef]
- Venkatesha, S.H.; Moudgil, K.D. Celastrol and Its Role in Controlling Chronic Diseases. In Anti-Inflammatory Nutraceuticals and Chronic Diseases; Springer: Cham, Switzerland, 2016; pp. 267–289. [Google Scholar]
- Choi, B.S.; Kim, H.; Lee, H.J.; Sapkota, K.; Park, S.E.; Kim, S.; Kim, S.J. Celastrol from “Thunder God Vine” Protects SH-SY5Y Cells through the preservation of mithochondrial function and inhibition of p38 MAPK in rotenone model of Parkinson’s disease. Neurochem. Res. 2014, 39, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Min, H.; Wang, D.; Gao, R.; Chang, Y.C.; Hu, F.; Meng, X. Marine-derived protein kinase inhibitors for neuroinflammatory diseases. Biomed. Eng. Online 2018, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Takeda, H.; Sakaki, H.; Kuramoto, K. Repositioning CEP-1347, a chemical agent originally developed for the treatment of Parkinson’s disease, as an anti-cancer stem cell drug. Oncotarget 2017, 8, 94872–94882. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, J.; Kang, K.S.; Lee, K.T.; Yang, H.O. Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells. Biomol. Ther. 2014, 22, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.M.; Li, X.Z.; Zhang, S.N.; Yang, Z.M.; Wang, K.X.; Lu, F.; Wang, C.Z.; Yuan, C.S. Acanthopanax senticosus Protects Structure and Function of Mesencephalic Mitochondria in A Mouse Model of Parkinson’s Disease. Chin. J. Integr. Med. 2018, 24, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Skandík, M.; Ra, L.; Kuniakov, M. Modulation of BV-2 microglia functions by novel quercetin pivaloyl a. Neurochem. Int. 2015, 90, 246–254. [Google Scholar]
- Wang, J.; Song, Y.; Chen, Z.; Leng, S.X. Connection between Systemic Inflammation and Neuroinflammation Underlies Neuroprotective Mechanism of Several Phytochemicals in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 1972714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, G.; Szeto, S.S.W.; Meng, C.; Quan, Q.; Huang, C.; Cui, W.; Guo, B.; Wang, Y.; Han, Y.; et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic. Biol. Med. 2015, 84, 331–343. [Google Scholar] [CrossRef]
- Cheng, X.R.; Kerman, K. Electrochemical Detection of Interaction Between α-Synuclein and Clioquinol. Electroanalysis 2015, 27, 1436–1442. [Google Scholar] [CrossRef]
- Lei, P.; Ayton, S.; Appukuttan, A.T.; Volitakis, I.; Adlard, P.A.; Finkelstein, D.I.; Bush, A. Clioquinol rescues parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiol. Dis. 2015, 81, 168–175. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Lv, X.; Wang, B.; Lin, J.; Zhang, X. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinson’s disease agents in vitro and in vivo. Bioorg. Med. Chem. Lett. 2019, 29, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Bachhawat, P.; Chu, M.L.; Wood, M.; Ceska, T.; Sands, Z.A.; Mercier, J. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc. Natl. Acad. Sci. USA 2017, 114, 2066–2071. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Sharma, H.; Yedlapudi, D.; Antonio, T.; Reith, M.E.A.; Dutta, A.K. Novel multifunctional dopamine D2/D3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties. Bioorg. Med. Chem. 2016, 24, 5088–5510. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, J.; Zheng, J.; Ma, H.; Zhang, H.; Zhen, X.; Zheng, L.T.; Zhang, X. Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors. Int. Immunopharmacol. 2015, 25, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, X.; Xu, S.; Yu, W.; Cao, S.; Hu, J.; Li, Y.; Wang, X.; Zhang, D.; Yu, S. A Novel Parkinson’s Disease Drug Candidate with Potent Anti-neuroinflammatory Effects through the Src Signaling Pathway. J. Med. Chem. 2016, 59, 9062–9079. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Vedachalam, S.; Luo, D.; Antonio, T.; Reith, M.E.A.; Dutta, A.K. Development of a Highly Potent D2/D3 Agonist and a Partial Agonist from Structure–Activity Relationship Study of N6-(2-(4-(1H-Indol-5yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Implication in the Treatment. J. Med. Chem. 2015, 58, 9179–9195. [Google Scholar] [CrossRef]
- Attia, A.; Ahmed, H.; Gadelkarim, M.; Morsi, M.; Awad, K.; Elnenn, M.; Ghanem, E.; El-Jaafar, S.; Negida, A. Meta-Analysis of Creatine for Neuroprotection Against Parkinson’s Disease. CNS Neurol. Disord. Drug Targets 2017, 16, 169–175. [Google Scholar] [CrossRef]
- Shafaroodi, H.; Shahbek, F.; Faizi, M.; Ebrahimi, F.; Moezi, L. Creatine Revealed Anticonvulsant Properties on Chemically and Electrically Induced Seizures in Mice. Iran. J. Pharm. Res. 2016, 15, 843–850. [Google Scholar]
- Lee, D.; Ko, W.; Kim, D.; Kim, Y.; Jeong, G. Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways. Molecules 2014, 19, 10818–10831. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, M.; Farrokhi, M.R.; Tafreshi, N. The effect of curcumin against 6-hydroxydopamine induced cell death and Akt/GSK disruption in human neuroblastoma cells. Physiol. Pharmacol. 2018, 22, 163–171. [Google Scholar]
- Maiti, P.; Dunbar, G.L. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. Int. J. Mol. Sci. 2018, 19, 1637. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’ s disease model. Inflammopharmacology 2017, 26, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.I.; Kim, M.O. Anthocyanins Improve Hippocampus-Dependent Memory Function and Prevent Neurodegeneration via JNK/Akt/GSK3 β Signaling in LPS-Treated Adult Mice. Mol. Neurobiol. 2019, 56, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, J. Cyanidin Protects SH-SY5Y Human Neuroblastoma Cells from 1-Methyl-4-Phenylpyridinium-induced Neurotoxicity. Pharmacology 2018, 102, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Lindenbach, D.; Das, B.; Conti, M.M.; Dutta, S.M.M.A.K.; Bishop, C. D-512, a novel dopamine D2/D3 receptor agonist, demonstrates superior anti-parkinsonian efficacy over ropinirole in parkinsonian rats. Br. J. Pharmacol. 2017, 174, 3058–3071. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Rajagopalan, S.; Joshi, G.S.; Xu, L.; Luo, D.; Andersen, J.K.; Todi, S.V.; Dutta, A.K. A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses α-syn- and MPTP-induced toxicities in vivo. Neuropharmacology 2017, 123, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Kandegedara, A.; Xu, L.; Antonio, T.; Stemmler, T.L.; Reith, M.E.A.; Dutta, A.K. A Novel Iron ( II ) Preferring Dopamine Agonist Chelator as Potential Symptomatic and Neuroprotective Therapeutic agent for Parkinson’s Disease. ACS Chem. Neurosci. 2017, 8, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.A.; Sayed, R.H.; Ahmed, L.A.; Abd, M.A.; Fattah, E. Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson’s Disease in Rats. Mol. Neurobiol. 2017, 55, 4078–4089. [Google Scholar] [CrossRef] [PubMed]
- Uenaka, T.; Satake, W.; Cha, P.; Hayakawa, H.; Baba, K.; Jiang, S.; Kobayashi, K.; Kanagawa, M.; Okada, Y.; Mochizuki, H.; et al. In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson’s disease. Hum. Mol. 2018, 27, 3974–3985. [Google Scholar] [CrossRef]
- Tseng, W.; Hsu, Y.; Pan, T. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells. Pharm. Biol. 2016, 54, 1434–1444. [Google Scholar] [CrossRef]
- Freyssin, A.; Page, G.; Fauconneau, B.; Bilan, A.R. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen. Res. 2018, 13, 955–961. [Google Scholar] [PubMed]
- Kujawska, M.; Jodynis-Liebert, J. Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients 2018, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, M.; Rajasankar, S.; Gobi, V.V.; Dhanalakshmi, C. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells. Complement. Altern. Med. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Karthivashan, G.; Ko, H.M.; Cho, D.; Kim, J.; Cho, D.J.; Ganesan, P.; Su-kim, I.; Choi, D. Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson’s Mouse Model. Oxid. Med. Cell. Longev. 2018, 2018, 3175214. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; De Jesus-Cortes, H.; Huntington, P.; Estill, S.; Morlock, L.K.; Starwalt, R.; Mangano, T.J.; Williams, N.S.; Pieper, A.A.; Ready, J.M. Discovery of a Neuroprotective Chemical, (S)-N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine[(−)-P7C3-S243], with Improved Druglike Properties. J. Med. Chem. 2014, 57, 3746–3754. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Qiao, J.B.; Hu, Z.X. Caffeoylquinic Acid Derivatives Protect SH-SY5Y Neuroblastoma Cells from Hydrogen Peroxide-Induced Injury Through Modulating Oxidative Status. Cell. Mol. Neurobiol. 2017, 37, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhao, Y.; Cao, T.; Zhen, X. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharmacol. Sin. 2016, 37, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Fonseca, L.A.; Nuñez-Figueredo, Y.; Sánchez, J.R.; Guerra, M.W.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Hernádez, R.D.; Menezes-Filho, N.J.; Cristina, T.; Costa, S.; et al. KM-34, a Novel Antioxidant Compound, Protects against 6-Hydroxydopamine-Induced Mitochondrial Damage and Neurotoxicity. In Neurotoxicity Research; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Kim, N.; Yoo, H.; Ju, Y.; Oh, M.S.; Lee, K.; Inn, K.; Kim, N.; Lee, J.K. Synthetic 3′,4′-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model Namkwon. Biomol. Ther. 2018, 26, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.K.; Sun, K.; Sun, M.K.; Lee, M.; Tan, Y.; Chen, G.Q. 7,8-Dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Park. Dis. 2019, 2019, 9193534. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xiang, Z.; Zhu, X.; Ai, Z.; Shen, J. Neuroprotective Effects of 7,8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci. Rep. 2016, 6, 34339. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Joo, Y.; Shin, M.; Kim, H.; Jae, M.; Hun, S.; Pil, S.; Kwon, S. Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg. Med. Chem. Lett. 2017, 27, 5207–5212. [Google Scholar]
- Ning, X.; Yuan, M.; Guo, Y.; Tian, C.; Wang, X.; Ning, X.; Yuan, M.; Guo, Y.; Tian, C.; Wang, X. Neuroprotective effects of (E)-3, 4-diacetoxystyryl sulfone and sulfoxide derivatives in vitro models of Parkinson’s disease. J. Enzym. Inhib. Med. Chem. 2016, 31, 464–469. [Google Scholar]
- Lee, D.; Lee, M.; Hyun, S.; Saeng, G. Involvement of heme oxygenase-1 induction in the cytoprotective and neuroinflammatory activities of Siegesbeckia Pubescens isolated from 5,3′-dihydroxy-3,7,4′-trimethoxyflavone in HT22 cells and BV2 cells. Int. Immunopharmacol. 2016, 40, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, F.; Zhang, T.; Gu, J.; Li, C. Tetramethylpyrazine Nitrone Improves Neurobehavioral Functions and Confers Neuroprotection on Rats with Traumatic Brain Injury. Neurochem. Res. 2016, 41, 2948–2957. [Google Scholar] [CrossRef] [PubMed]
- Kunisawa, N.; Shimizu, S.; Kato, M.; Iha, H.A.; Iwai, C.; Hashimura, M.; Ogawa, M.; Kawaji, S.; Kawakita, K.; Abe, K.; et al. Pharmacological characterization of nicotine-induced tremor: Responses to anti-tremor and anti-epileptic agents. J. Pharmacol. Sci. 2018, 137, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, B.M.; Martini, A.; Aversa, D.; Piccinino, D.; Botta, L.; Berretta, N. Tyrosinase mediated oxidative functionalization in the synthesis of DOPA-derived peptidomimetics with anti-Parkinson activity. RSC Adv. 2017, 7, 20502–20509. [Google Scholar] [CrossRef] [Green Version]
- Malmlöf, T.; Feltmann, K.; Konradsson-Geuken, Å.; Schneider, F.; Alken, R.G.; Svensson, T.H.; Schilström, B. Deuterium-substituted L-DOPA displays increased behavioral potency and dopamine output in an animal model of Parkinson’s disease: Comparison with the effects produced by L-DOPA and an MAO-B inhibitor. J. Neural Transm. 2015, 122, 259–272. [Google Scholar] [CrossRef] [PubMed]
- González-lizárraga, F.; Socías, S.B.; Ávila, C.L.; Torres-Bugeau, C.M.; Barbosa, L.R.S.; Binolfi, A.; Sepúlveda-Díaz, J.E.; Del-Bel, E.; Fernandez, C.O.; Papy-Garcia, D.; et al. Repurposing doxycycline for synucleinopathies: Remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci. Rep. 2017, 7, 41755. [Google Scholar] [CrossRef]
- Santa-Cecılia, F.V.; Socia, B.; Ouidja, M.O.; Sepulveda-Diaz, J.E.; Silva, R.L.; Michel, P.P.; Del-Bal, E.; Cunha, T.M.; Raisman-Vozari, R. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotox. Res. 2016, 29, 447–459. [Google Scholar] [CrossRef]
- Chen, C.; Xia, B.; Tang, L.; Wu, W.; Tang, J.; Liang, Y.; Yang, H.; Zhang, Z. Echinacoside protects against MPTP/MPP+ -induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab. Brain Dis. 2019, 34, 203–212. [Google Scholar] [CrossRef]
- Bello, M.; Morales-González, J.A. Molecular recognition between potential natural inhibitors of the Keap1-Nrf2 complex. Int. J. Biol. Macromol. 2017, 105, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Azab, S.M.; Ave, P. Glycine and Glod nanoparticles for the electrochemical determination of an anti-Parkinson’s drug in a tertiary mixture. Int. J. Pharm. Sci. Res. 2017, 8, 4839–4847. [Google Scholar]
- Vadlamudi, H.C.; Yalavarthi, P.R.; Rao, V.M.B.; Thanniru, J.; Vandana, K.R.; Sundaresan, C.R. Potential of microemulsified entacapone drug delivery systems in the management of acute Parkinson’s disease. J. Acute Dis. 2016, 5, 315–325. [Google Scholar] [CrossRef]
- Renaud, J.; Nabavi, S.F.; Daglia, M.; Nabavi, S.M.; Martinoli, M.G. Epigallocatechin-3-gallate, a promising molecule for Parkinson’s disease? Rejuvenation Res. 2015, 18, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, L.; Hu, X.; Cao, S.; Yang, J. Effects and mechanism of epigallocatechin-3-gallate on apoptosis and mTOR/AKT/GSK-3 β pathway in substantia nigra neurons in Parkinson rats. Eur. J. Med. Chem. 2019, 30, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hui, Y.C.; Guogang, W.; Zhuo, R. Neuroprotective Effects of Etidronate and 2, 3, 3-Trisphosphonate Against Glutamate-Induced Toxicity in PC12 Cells. Neurochem. Res. 2016, 41, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.T.; Varney, M.A.; McCreary, A.C. Effects of the Serotonin 5-HT 1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l -DOPA Administration in Hemi-Parkinsonian Rats. Neurochem. Res. 2018, 43, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Huot, P.; Johnston, T.H.; Fox, S.H.; Newman-tancredi, A.; Brotchie, J.M. The highly-selective 5-HT 1A agonist F15599 reduces L -DOPA-induced dyskinesia without compromising anti-parkinsonian bene fi ts in the MPTP-lesioned macaque. Neuropharmacology 2015, 97, 306–311. [Google Scholar] [CrossRef]
- Cui, B.; Guo, X.; You, Y.; Fu, R. Farrerol attenuates MPP+-induced inflammatory response by TLR4 signaling in a microglia cell line. Phyther. Res. 2019, 33, 1134–1141. [Google Scholar] [CrossRef]
- Watanabe, R.; Kurose, T.; Morishige, Y.; Fujimori, K. Protective Effects of Fisetin Against 6-OHDA-Induced Apoptosis by Activation of PI3K-Akt Signaling in Human Neuroblastoma SH-SY5Y. Neurochem. Res. 2018, 43, 488–499. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Habtemariam, S.; Sureda, S.; Manayu, A. Neuroprotective effects of fisetin in Alzheimer’s and Parkinson’s Diseases: From chemistry to medicine. Curr. Top. Med. Chem. 2016, 16, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Sudhandiran, G. Dietary flavonoid fisetin regulates Aluminium chloride induced neuronal apoptosis in cortex and hippocampus of mice brain. J. Nutr. Biochem. 2015, 26, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, P.; Na, J.; Jung, I.; Cho, J.; Lee, J. Anti-neuroinflammatory effects of galangin in LPS-stimulated BV-2 microglia through regulation of IL-1 production and the NF-B signaling pathways. Mol. Cell. Biochem. 2019, 451, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Phani, Y.C.G.; Ramya, K.E.M. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem. Res. 2018, 43, 1150–1160. [Google Scholar]
- Minhas, S.T.; Al-tel, T.H.; Al-hayani, A.A.; Haque, M.E.; Eliezer, D.; El-agnaf, O.M.A. Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity. Front. Aging Neurosci. 2014, 6, 197. [Google Scholar]
- Khairujjaman, M.; Nivedita, M.; Anupom, B. Garcinol prevents hyperhomocysteinemia and enhances bioavailability of L-DOPA by inhibiting catechol-O-methyltransferase: An in silico approach. Med. Chem. Res. 2015, 25, 116–122. [Google Scholar]
- Wu, H.; Hu, Q.; Zhang, S.; Wang, Y.; Jin, Z.; Lv, L.; Zhang, S.; Liu, Z. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural 2018, 13, 1375–1383. [Google Scholar]
- Zarmouh, N.O.; Messeha, S.S.; Elshami, F.M.; Soliman, K.F.A. Evaluation of the Isoflavone Genistein as Reversible Human Monoamine Oxidase-A and -B Inhibitor. Evid. Based Complement. Altern. Med. 2016, 2016, 1423052. [Google Scholar] [CrossRef]
- Wang, H.; Tang, C.; Jiang, Z.; Zhou, X.; Chen, J.; Na, M.; Shen, H.; Lin, Z. Glutamine promotes Hsp70 and inhibits α -Synuclein accumulation in pheochromocytoma PC12 cells. Exp. Ther. Med. 2017, 14, 1253–1259. [Google Scholar] [CrossRef]
- Cacciatore, I.; Cornacchia, C.; Fornasari, E.; Baldassarre, L.; Pinnen, F.; Sozio, P.; di Stefano, A.; Marinelli, L.; Dean, A.; Fulle, S.; et al. A Glutathione Derivative with Chelating and in vitro Neuroprotective Activities: Synthesis, Physicochemical Properties, and Biological Evaluation. ChemMedChem 2013, 8, 1818–1829. [Google Scholar] [CrossRef]
- Cacciatore, I.; Marinelli, L.; di Stefano, A.; di Marco, V.; Orlando, G.; Gabriele, M.; Gatta, D.M.P.; Ferrone, A.; Franceschelli, S.; Spenaza, L.; et al. Chelating and antioxidant properties of L-Dopa containing tetrapeptide for the treatment of neurodegenerative diseases. Neuropeptides 2018, 71, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Aimé, P.; Dai, D.; Ramalingam, N.; Crary, J.F.; Burke, R.E.; Greene, L.A.; Levy, O.A. Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease. Exp. Neurol. 2018, 303, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef] [PubMed]
- Varier, K.M.; Sumathi, T. Hinokitiol Offers Neuroprotection Against 6-OHDA-Induced Toxicity in SH-SY5Y Neuroblastoma Cells by Downregulating mRNA Expression of MAO/α -Synuclein/LRRK2/PARK7/PINK1/PTEN Genes. Neurotox. Res. 2019, 35, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Niveditha, S.; Shivanandappa, T. Neuroprotective action of 4-Hydroxyisophthalic acid against paraquat-induced motor impairment involves amelioration of mitochondrial damage and neurodegeneration in Drosophila. Neurotoxicology 2018, 66, 160–169. [Google Scholar]
- Workman, D.G.; Tsatsanis, A.; Lewis, F.W.; Boyle, J.P.; Mousadoust, M.; Hettiarachchi, N.T.; Hunter, M.; Peers, C.S.; Te, D.; Duce, J.A. Protection from neurodegeneration in the 6-hydroxydopamine model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics 2015, 7, 867–876. [Google Scholar] [CrossRef]
- Athauda, D.; Foltynie, T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat. Rev. Neurol. 2014, 11, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, V.; Sgarlata, C.; Vecchio, G. Cyclodextrins 3-Functionalized with 8-Hydroxyquinolines: Copper- Binding Ability and Inhibition of Synuclein Aggregation. Chem. Asian J. 2016, 11, 2436–2442. [Google Scholar] [CrossRef]
- Cukierman, D.S.; Pinheiro, A.B.; Castiñeiras-Filho, S.L.; da Silva, A.S.; Miotto, M.C.; de Falco, A.; de Ribeiro, P.T.; Maisonette, S.; de Cunha, A.L.; Hauser-Davis, R.A.; et al. A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson’s disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J. Inorg. Biochem. 2017, 170, 160–168. [Google Scholar] [CrossRef]
- Funakohi-Tago, M.; Sakata, T.; Fujiwara, S.; Sakakura, A.; Sugai, T. Hydroxytyrosol butyrate inhibits 6-OHDA-induced apoptosis through activation of the Nrf2/HO-1 axis in SH-SY5Y cells. Eur. J. Pharmacol. 2018, 834, 246–256. [Google Scholar] [CrossRef]
- Jin, J.; Wang, H.; Hua, X.; Chen, D.; Huang, C.; Chen, Z. An outline for the pharmacological effect of icariin in the nervous system. Eur. J. Pharmacol. 2019, 842, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Deng, Y.; Li, F.; Yin, C.; Shi, J.; Gong, Q. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF- κB pathway in rats. Biomed. Pharmacother. 2019, 111, 315–324. [Google Scholar] [CrossRef]
- Kumari, N.; Agrawal, S.; Kumari, R.; Sharma, D.; Luthra, P.M. Neuroprotective effect of IDPU (1-(7-imino-3-propyl-2,3-dihydrothiazolo [4,5-d]pyrimidin-6(7H)-yl)urea) in 6-OHDA induced Rodent model of hemiparkinson’s disease. Neurosci. Lett. 2018, 675, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.A.; Abdelkader, N.F.; El-sayeh, B.M.; Saleh, S. Imipramine and amitriptyline ameliorate the rotenone model of parkinson’s disease in rats. Neuroscience 2016, 332, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Wang, S.; Wang, M.; Fu, W.; Zhang, C.; Xu, D. Isobavachalcone Attenuates MPTP-Induced Parkinson’s Disease in Mice by Inhibition of Microglial Activation through NF-κ B Pathway. PLoS ONE 2017, 12, e0169560. [Google Scholar] [CrossRef] [PubMed]
- Magalingam, K.B.; Radhakrishnan, A. Protective effects of quercetin glycosides, rutin, and isoquercetrin against neurotoxicity in rat pheochromocytoma. Int. J. Immunopathol. Pharmacol. 2016, 29, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Yu, C.; Lee, J.; Moon, K.; Kim, E.; Yoo, S.; Koo, T. Subacute toxicity evaluation of KR-33493, FAF1 inhibitor for a new anti-parkinson’s disease agent, after oral administration in rats and dogs. Regul. Toxicol. Pharmacol. 2016, 81, 387–396. [Google Scholar] [CrossRef]
- Hu, X.; Niu, Y.; Zhang, Q.; Tian, X.; Gao, L.; Guo, L. Neuroprotective effects of Kukoamine B against hydrogen peroxide-induced apoptosis and potential mechanisms in SH-SY5Y cells. Environ. Toxicol. Pharmacol. 2015, 40, 230–240. [Google Scholar] [CrossRef]
- Seifar, F.; Khalili, M.; Khaledyan, H.; Amiri Moghadam, S.; Izadi, A.; Seifar, F.; Shakouri, S.K. α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr. Neurosci. 2019, 22, 306–316. [Google Scholar] [CrossRef]
- Kulikova, O.I.; Berezhnoy, D.S.; Stvolinsky, S.L.; Lopachev, A.V.; Orlova, V.S.; Fedorova, T.N. Neuroprotective effect of the carnosine—α-lipoic acid nanomicellar complex in a model of early-stage Parkinson’s disease. Regul. Toxicol. Pharmacol. 2018, 95, 254–259. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, C.; Lin, J.; Wang, M.; Wang, X. Lipoic acid alleviates L-DOPA-induced dyskinesia in 6-OHDA parkinsonian rats via anti-oxidative stress. Mol. Med. Rep. 2018, 17, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- Amit, T.; Bar-Am, O.; Mechlovich, D.; Kupershmidt, L.; Youdim, M.B.H.; Weinreb, O. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer’s disease models. Neuropharmacology 2017, 123, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, G.; Li, P.; Wang, Y.; Si, C.; He, J.; Long, W.; Bai, Y.; Feng, Z.; Wang, X. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation. Chem. Biol. Interact. 2014, 224, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Qiu, Y.; Bao, Z. Magnesium Lithospermate B Suppresses Lipopolysaccharide-Induced Neuroinflammation in BV2 Microglial Cells and Attenuates Neurodegeneration in Lipopolysaccharide-Injected Mice. J. Mol. Neurosci. 2018, 64, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Janhom, P.; Dharmasaroja, P. Neuroprotective Effects of Alpha-Mangostin on MPP(+)-Induced Apoptotic Cell Death in Neuroblastoma SH-SY5Y Cells. J. Toxicol. 2015, 2015, 919058. [Google Scholar] [CrossRef] [PubMed]
- Jaisin, Y.; Ratanachamnong, P.; Kuanpradit, C.; Khumpum, W.; Suksamrarn, S. Protective effects of γ-Mangostin on 6-OHDA-Induced Toxicity in SH-SY5Y Cells. Neurosci. Lett. 2018, 665, 229–235. [Google Scholar] [CrossRef]
- Paz, R.M.; Tubert, C.; Stahl, A.; Díaz, A.L.; Etchenique, R.; Murera, M.G.; Rela, L. Inhibition of striatal cholinergic interneuron activity by the Kv7 opener retigabine and the nonsteroidal anti-inflammatory drug diclofenac. Neuropharmacology 2018, 137, 309–321. [Google Scholar] [CrossRef]
- Ryu, Y.; Park, H.; Go, J.; Choi, D.; Kim, Y.; Hwang, J.H.; Noh, J.; Lee, T.G.; Lee, C.; Kim, K. Metformin Inhibits the Development of L-DOPA-Induced Dyskinesia in a Murine Model of Parkinson’s Disease. Mol. Neurobiol. 2018, 55, 5715–5726. [Google Scholar] [CrossRef]
- Markowicz-Piasecka, M.; Huttunen, K.M.; Sikora, J. Metformin—A Future Therapy for Neurodegenerative Diseases. Pharm. Res. 2017, 34, 2614–2627. [Google Scholar] [CrossRef]
- Agrawal, N.; Mishra, P. Synthesis, monoamine oxidase inhibitory activity and computational study of novel isoxazole derivatives as potential antiparkinson agents. Comput. Biol. Chem. 2019, 79, 63–72. [Google Scholar] [CrossRef]
- Beitnere, U.; van Groen, T.; Kumar, A.; Jansone, B.; Klusa, V.; Kadish, I. Mildronate Improves Cognition and Reduces Amyloid-β Pathology in Transgenic Alzheimer’s Disease Mice. J. Neurosci. Res. 2014, 92, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Singh, D.K.; Gupta, S.; Gupta, P.; Singh, A.; Biswas, J.; Singh, S. Minocycline diminishes the rotenone induced neurotoxicity and glial activation via suppression of apoptosis, nitrite levels and oxidative stress. Neurotoxicology 2018, 65, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Acquarone, M.; De Melo, T.M.; Meireles, F.; Brito-Moreira, J.; Houzel, J.; Rehen, S.K.; Meraz-Ríos, M.A. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson’s disease. Front. Cell. Neurosci. 2015, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Chakraborty, I.; Banerjee, T.S.; Vana, D.R.; Adapa, D. Efficacy of Morin as a Potential Therapeutic Phytocomponent: Insights into the Mechanism of Action. Int. J. Med. Res. Health Sci. 2017, 6, 175–194. [Google Scholar]
- Cerri, S.; Levandis, G.; Ambrosi, G.; Montepeloso, E.; Lanciego, L.; Baqi, Y.; Antoninetti, G.F.; Franco, R.; Mu, C.E.; Pinna, A.; et al. Neuroprotective Potential of Adenosine A2A and Cannabinoid CB1 Receptor Antagonists in an Animal Model of Parkinson Disease. J. Neuropathol. Exp. Neurol. 2014, 73, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Ara, G.; Afzal, M.; Jyoti, S.; Rahul, F.N.; Siddique, Y.H. Effect of Myricetin on the Loss of Dopaminergic Neurons in the Transgenic Drosophila Model of Parkinson’s Disease. Curr. Drug Ther. 2019, 14, 58–64. [Google Scholar] [CrossRef]
- Das, S.; Pukala, T.L.; Smid, S.D. Exploring the Structural Diversity in Inhibitors of α-Synuclein Amyloidogenic Folding, Aggregation and Neurotoxicity. Front. Chem. 2018, 6, 181. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Pu, X. Myricitrin Alleviates Methylglyoxal-Induced Mitochondrial Dysfunction and AGEs/RAGE/NF-κB Pathway Activation in SH-SY5Y Cells. Mol. Neurosci. 2014, 53, 562–570. [Google Scholar] [CrossRef]
- Wu, L.; Lin, C.; Lin, H.; Liu, Y.; Wu, C.Y.; Tsai, C. Naringenin Suppresses Neuroinflammatory Responses Through Inducing Suppressor of Cytokine Signaling 3 Expression. Mol. Neurob. 2015, 53, 1080–1091. [Google Scholar] [CrossRef]
- Jung, U.J.; Kim, S.R. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain. Neural Regen. Res. 2014, 9, 7–10. [Google Scholar]
- Leem, E.; Han, J.; Jeon, M.; Shin, W.; Won, S.; Park, S. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J. Nutr. Biochem. 2014, 25, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, Z.; Wu, F.; Zhou, Y.; Sheng, R.; Wu, J.; Qin, Z. NADPH ameliorates MPTP-induced dopaminergic neurodegeneration through inhibiting p38MAPK activation. Acta Pharmacol. Sin. 2018, 40, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wu, J.; Sheng, R.; Li, M.; Wang, Y.; Han, R.; Han, F. Reduced nicotinamide adenine dinucleotide phosphate inhibits MPTP-induced neuroinflammation and neurotoxicity. Neuroscience 2018, 391, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.E.I.; Tang, L.E.; Wei, W.; Hong, Y.; Chen, H.; Ying, W.; Chen, S. Nicotinamide mononucleotide improves energy activity and survival rate in an in vitro model of Parkinson’s disease. Exp. Ther. Med. 2014, 8, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Dahodwala, M.; Willis, A.W.; Li, P.; Doshi, J.A. Prevalence and Correlates of Anti-Parkinson Drug Use in a Nationally Representative. Mov. Disord. Clin. Pract. 2016, 22, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Min, J.; Lee, J.Y.; Chae, U.; Yang, E.J.; Song, K.S.; Lee, H.S.; Lee, H.J.; Lee, S.R.; Lee, D.S. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr. Neurosci. 2018, 21, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Hu, Q.; Wu, J.; Mu, C.; Ren, H. P7C3 Inhibits LPS-Induced Microglial Activation to Protect Dopaminergic Neurons Against Inflammatory Factor-Induced Cell Death in vitro and in vivo. Front. Cell. Neurosci. 2018, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- De Jesús-Cortés, H.; Miller, A.D.; Britt, J.K.; DeMarco, A.J.; De Jesús-Cortés, M.; Stuebing, E.; Naidoo, J.; Vázquez-Rosa, E.; Morlock, L.; Williams, N.S.; et al. Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson’s disease. Front. Cell. Neurosci. 2015, 12, 3–8. [Google Scholar] [CrossRef]
- Pinna, A. Adenosine A 2A Receptor Antagonists in Parkinson’s Disease: Progress in Clinical Trials from the Newly Approved Istradefylline to Drugs in Early Development and Those Already Discontinued. CNS Drugs 2014, 28, 455–474. [Google Scholar] [CrossRef]
- Adlard, P.A.; Cherny, R.A.; Finkelstein, D.I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J.P.; Perez, K.; et al. Rapid restoration of cognition in alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial abeta. Neuron 2008, 59, 43–55. [Google Scholar] [CrossRef]
- Finkelstein, D.I.; Billings, J.L.; Adlard, P.A.; Ayton, S.; Sedjahtera, A.; Masters, C.L.; Wilkins, S.; Shackleford, D.M.; Charman, S.A.; Bal, W.; et al. The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol. Commun. 2017, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Uliassi, E.; Pena-Altamira, L.; Morales, A.; Massenzio, F.; Petralla, S.; Rossi, M.; Roberti, M.; Gonzalez, L.; Martinez, A.; Monti, B. A focused library of psychotropic analogs with neuroprotective and neuroregenerative potential. ACS Chem. Neurosci. 2018, 10, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Gaisina, I.N.; Lee, S.H.; Kaidery, N.A.; Aissa, M.B.; Ahuja, M.; Smirnova, N.N.; Wakade, S.; Gaisin, A.; Bourassa, M.W.; Ratan, R.R.; et al. Activation of Nrf2 and Hypoxic Adaptive Response Contribute to Neuroprotection Elicited by Phenylhydroxamic Acid Selective HDAC6 Inhibitors. ACS Chem. Neurosci. 2018, 9, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, B.; Feng, Y.; Tang, F.; Hoi, M.P.; Su, Z.; Lee, S.M. Pinostrobin Exerts Neuroprotective Actions in Neurotoxin-Induced Parkinson’s Disease Models through Nrf2 Induction. J. Agric. Food Chem. 2018, 66, 8307–8318. [Google Scholar] [CrossRef] [PubMed]
- Kin, W.; Ko, D.; Li, Q.; Yun, L.; Morelli, M.; Carta, M.; Bezard, E. A preclinical study on the combined effects of repeated eltoprazine and preladenant treatment for alleviating L-DOPA-induced dyskinesia in Parkinson’s disease. Eur. J. Pharmacol. 2017, 813, 10–16. [Google Scholar]
- Nusrat, S.; Zaman, M.; Masroor, A.; Khursheed, M. Deciphering the enhanced inhibitory, disaggregating and cytoprotective potential of promethazine towards amyloid fibrillation. Int. J. Biol. Macromol. 2018, 106, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Li-Chao, W.; Li-Xi, L.; Ming-bo, Z.; Xin, D. Protosappanin A exerts anti-neuroinflammatory effect by inhibiting JAK2-STAT3 pathway in lipopolysaccharide-induced BV2 microglia. Chin. J. Nat. Med. 2017, 15, 674–679. [Google Scholar]
- Chu, J.F.; Han, W. Punicalagin Exerts Beneficial Functions in 6-Hydroxydopamine-Treated SH-SY5Y Cells by Attenuating Mitochondrial Dysfunction and Inflammatory Responses. Med. Sci. Monit. 2018, 24, 5905. [Google Scholar] [CrossRef]
- Gardiner, J.M.; Iqbal, J. Pyrazolobenzothiazine-based carbothioamides as new structural leads for the inhibition of monoamine oxidases: Design, synthesis, in vitro bioevaluation and molecular docking studies. Medchemcomm 2017, 8, 452–464. [Google Scholar]
- Awale, M.; Reymond, J.; Hediger, M.A. Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2. Biochem. Pharmacol. 2015, 96, 216–224. [Google Scholar]
- Singh, S.; Kumar, P. Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: Biochemical and neurochemical evidences. Neurosci. Res. 2018, 133, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, G.A. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell cul. J. Neurochem. 2017, 141, 766–782. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Park, Y.J.; Yun, S.P.; Kwon, S.; Kim, D.; Kim, D.Y.; Shin, J.S.; Cho, D.J.; Lee, G.Y.; et al. The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model. Hum. Mol. Genet. 2018, 27, 2344–2356. [Google Scholar] [CrossRef] [PubMed]
- Saedisomeolia, A.; Ashoori, M. Riboflavin in Human Health: A Review of Current Evidences. Adv. Food Nutr. Res. 2018, 83, 57–81. [Google Scholar] [PubMed]
- Marashly, E.T.; Bohlega, S.A. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine. Front. Neurol. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Xu, H.; Jiang, H.; Xu, H.; Jiang, H. Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced α-synuclein aggregation. Neuropharmacology 2018, 144, 291–300. [Google Scholar] [CrossRef]
- Seeman, P. Parkinson’s Disease Treatment May Cause Impulse—Control Disorder Via Dopamine D3 Receptors. Synapse 2015, 69, 183–189. [Google Scholar] [CrossRef]
- Thakur, P.; Nehru, B. Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone induced Parkinson’s disease pathology. Neurochem. Int. 2014, 75, 1–10. [Google Scholar] [CrossRef]
- Michel, A.; Downey, P.; Nicolas, J.; Scheller, D. Unprecedented Therapeutic Potential with a Combination of A 2A/NR2B Receptor Antagonists as Observed in the 6-OHDA Lesioned Rat Model of Parkinson’s Disease. PLoS ONE 2014, 9, 1–25. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, S.; Du, N.; Liu, J.; Huang, Y.; Han, M. Neuroprotective effects of stemazole in the MPTP-induced acute model of Parkinson’s disease: Involvement of the dopamine system. Neurosci. Lett. 2016, 616, 152–159. [Google Scholar] [CrossRef]
- Kwon, S.; Ma, S.; Lee, S.; Jang, C. Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem. Int. 2014, 74, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Che, Y.; Sun, F.; Wang, Q. Taurine protects noradrenergic locus coeruleus neurons in a mouse Parkinson’s disease model by inhibiting microglial M1 polarization. Amino Acids 2018, 50, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kim, Y.J.; Kim, B.; Park, G.; Jeong, S. The Anti-neuroinflammatory Activity of Tectorigenin Pretreatment via Downregulated NF-κB and ERK/JNK Pathways in BV-2 Microglial and Microglia Inactivation in Mice With Lipopolysaccharide. Front. Pharmacol. 2018, 9, 462. [Google Scholar] [CrossRef] [PubMed]
- Bortolanza, M.; Nascimento, G.C.; Socias, S.B.; Ploper, D.; Chehín, R.N.; Raisman-Vozari, R.; Del-Bel, E. Tetracycline repurposing in neurodegeneration: Focus on Parkinson’s disease. J. Neural Transm. 2018, 125, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, A.; Nayebi, A.M.; Jorjani, M.; Haddadi, R. Effect of WR-1065 on 6-hydroxydopamine-induced catalepsy and IL-6 level in rats. Iran. J. Basic Med. Sci. 2016, 19, 490–496. [Google Scholar] [PubMed]
- Hossain, M.M.; Weig, B.; Reuhl, K.; Gearing, M.; Wu, L.J. The anti-parkinsonian drug zonisamide reduces neuro inflammation: Role of microglial Nav 1.6. Exp. Neurol. 2018, 308, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hershey, L.; Irwin, D. Zonisamide for DLB parkinsonism: An old drug used in a new context. Neurology 2018, 90, 349–350. [Google Scholar] [CrossRef]
- Uemura, M.T.; Asano, T.; Hikawa, R.; Yamakado, H.; Takahashi, R. Zonisamide inhibits monoamine oxidase and enhances motor performance and social activity. Neurosci. Res. 2017, 124, 25–32. [Google Scholar] [CrossRef]
- Ohman, L.; Sjijberg, S. The experimental determination of thermodynamic properties for aqueous aluminium complexes. Coord. Chem. Rev. 1996, 149, 33–57. [Google Scholar] [CrossRef]
- Kozlowski, H.; Remelli, M. Prion proteins and copper ions. Biological and chemical controversies. Dalton Trans. 2010, 39, 6371–6385. [Google Scholar] [CrossRef]
- Zhou, T.; Kong, X.; Hider, R.C. Synthesis and iron chelating properties of hydroxypyridinone and hydroxypyranone hexadentate ligands. Dalton Trans. 2019, 48, 3459–3466. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yang, L.; He, L. Overview of the detection methods for equilibrium dissociation constant K D of drug-receptor interaction. J. Pharm. Anal. 2018, 8, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Faller, P.; Hureau, C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans. 2009, 21, 1080–1094. [Google Scholar] [CrossRef] [PubMed]
- Dalvit, C.; Parent, A.; Mathieu, M.; Vallèe, F.; Rak, A. Fast NMR methods for measuring in direct and/or competition mode the dissociation binding constants of chemical fragments interacting with a receptor. ChemMedChem 2019, 14, 1115–1127. [Google Scholar] [CrossRef]
- Neumaier, F.; Alpdogan, S.; Hescheler, J.; Schneider, T. A practical guide to the preparation and use of metal ion-buffered systems for physiological research. Acta Physiol. 2018, 222, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Pedro, L.; van Voorhis, W.C.; Quinn, R.J. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein–Ligand Equilibrium Dissociation Constant Determinations. J. Am. Soc. Mass Spectrom. 2016, 27, 1520–1530. [Google Scholar] [CrossRef]
- ScQuery. The IUPAC Stability Constant Database; vers. 5.84; Academic Software: Yorks, UK, 2006. [Google Scholar]
- Ma, J.; Ni, X.; Gao, Y.; Huang, K.; Liu, J.; Wang, Y.; Chen, R.; Wang, C. Identification and biological evaluation of novel benzothiazole derivatives bearing a pyridine-semicarbazone moiety as apoptosis inducers via activation of procaspase-3 to caspase-3. Medchemcomm 2019, 10, 465–477. [Google Scholar] [CrossRef]
- Kalinowski, D.S.; Stefani, C.; Toyokuni, S.; Ganz, T.; Anderson, G.J.; Subramaniam, N.V.; Trinder, D.; Olynyk, J.K.; Chua, A.; Jansson, P.J.; et al. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. BBA Mol. Cell Res. 2016, 1863, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.; Ferlin, M.G.; Cvijovic, M.; Djurdjevic, P.; Dotto, F.; Badocco, D.; Pastore, P.; Venzo, A.; Di Marco, V.B. Evaluation of 1,2-dimethyl-3-hydroxy-4-pyridinecarboxylic acid and of other 3-hydroxy-4-pyridinecarboxylic acid derivatives for possible application in iron and aluminium chelation therapy. Polyhedron 2014, 67, 520–528. [Google Scholar] [CrossRef]
- Merkofer, M.; Kissner, R.; Hider, R.C.; Brunk, U.T.; Koppenol, W.H. Fenton Chemistry and Iron Chelation under Physiologically Relevant Conditions: Electrochemistry and Kinetics. Chem. Res. Toxicol. 2006, 19, 1263–1269. [Google Scholar] [CrossRef]
- Koppenol, W.; Hider, R. Iron and redox cycling. Do’s and don’ts. Free Radic. Biol. Med. 2019, 133, 3–10. [Google Scholar] [CrossRef]
- Kiss, T.; Enyedy, E.; Jakusch, T. Development of the application of speciation in chemistry. Coord. Chem. Rev. 2017, 352, 401–423. [Google Scholar] [CrossRef] [Green Version]
- Kiss, T.; Enyedy, E.; Jakusch, T.; Domotor, O. Speciation of Metal Complexes of Medicinal Interest: Relationship between Solution Equilibria and Pharmaceutical Properties. Curr. Med. Chem. 2019, 26, 580–606. [Google Scholar] [CrossRef] [Green Version]
- Melchior, A.; Peralta, E.; Valiente, M.; Tavagnacco, C.; Endrizzi, F.; Tolazzi, M. Interaction of d10 metal ions with thioether ligands: A thermodynamic and theoretical study. Dalton Trans. 2013, 42, 6074–6082. [Google Scholar] [CrossRef]
Metal Ion | Kd (nmol/L) | References |
---|---|---|
Cu(II) | 102 | [12,61] |
Cu(I) | 104–103 | [61] |
Fe(III) | 10−4 | [12,60] |
Fe(II) | 106–5 × 104 | [12,60] |
Mn(II) | 106 | [60] |
Zn(II) | >106 | [61] |
Compound Name(s) | References |
---|---|
7DH | [112] |
7MH | [112] |
8A | [89] |
8B | [89] |
8C | [89] |
8E | [89] |
8F | [89] |
N-Acetylcysteine | [113,114] |
ACPT-I | [115] |
ADX88178 | [116] |
Alaternin | [117] |
Alvespimycin | [118] |
AM-251 | [119,120] |
Ambroxol | [121,122] |
3-(7-Amino-5-(cyclohexyl-amino) -[1,2,4]triazolo[1,5-a] [1,3,5]triazin-2-yl)-2 -cyanoacrylamide | [123] |
Aminothiazoles derivatives as SUMOylation activators | [124] |
AMN082 | [115] |
Amodiaquine | [125,126] |
Antagonist of the A(2A) adenosine receptor-derivative 49 | [127] |
Apigenin | [128,129,130,131] |
Apomorphine | [132,133] |
l-Arginine | [134] |
Aromadendrin | [128] |
Ascorbic acid | [135,136] |
ASI-1 | [12] |
ASI-5 | [12] |
Astilbin | [137] |
Azilsartan | [138] |
Baicalein | [139,140,141] |
Benserazide | [142,143] |
7H-Benzo, perimidin-7-one derivatives (R6 = OH) | [144] |
4H-1-Benzopyran-4-one | [145] |
8-Benzyl-tetrahydropyrazino, purinedione derivatives (derivative n.57) | [146] |
Bikaverin | [147] |
(−)-N6-(2-(4-(Biphenyl-4-yl) piperazin-1-yl)-ethyl)-N6- propyl-4,5,6,7-tetrahydro- benzo, thiazole-2,6-diamine derivatives | [148] |
2.2’-Bipyridyl (2,2’-bipyridine) | [112] |
4-((5-Bromo-3-chloro-2- hydroxybenzyl) amino)-2- hydroxybenzoic acid (LX007, ZL006) | [149,150] |
C-3 (α carboxyfullerene) | [151] |
Caffeic acid amide analogues | [152,153,154,155] |
Carbazole-derived compounds | [156] |
Carbidopa | [135,157] |
Carnosic acid | [154,158] |
Catechin | [24,128] |
Ceftriaxone | [12,159,160,161] |
Celastrol | [162,163] |
CEP-1347 | [164,165] |
Chebulagic acid | [166] |
Chlorogenic acid | [167] |
3′-O-(3-Chloropivaloyl) quercetin | [168] |
Chlorpromazine | [108] |
Chrysin | [128,169,170] |
Clioquinol | [89,91,171,172] |
Clioquinol-selegiline hybrid | [79] |
Clovamide analogues (R1 and R2 = OH, and/or R3 and R4 = OH) | [173] |
“Compound 1” | [174] |
“Compound (−)-8a” | [175] |
“Compound 8” | [176] |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxy phenyl) butan-1-one | [177] |
“Compound (−)-21a” , derivative of N-6-(2-(4-(1H-indol-5-yl) piperazin-1-yl)ethyl)-N-6- propyl-4,5,6,7-tetrahydro- benzo[d]thiazole-2,6-diamine | [178] |
Creatine | [179,180] |
Cudraflavone B | [181] |
Curcumin | [89,117,182,183,184] |
Cyanidin | [185,186] |
D-512 | [187] |
D-607 (bipyridyl-D2R/D3R agonist hybrid) | [12,188,189] |
DA-2 (8D) | [12,89] |
DA-3 | [12] |
DA-4 | [12] |
Dabigatran etexilate | [190] |
Dabrafenib | [191] |
(S)-3,4-DCPG | [115] |
Deferasirox | [24] |
Deferricoprogen | [192] |
Delphinidin | [160,185,193,194] |
Demethoxycurcumin | [195] |
Dendropanax morbifera active compound | [196] |
Desferrioxamine (Desferoxamine, Desferal, DFO) | [112] |
(S)-N-(3-(3,6-Dibromo-9H -carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine | [197] |
4,5-O-Dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid derivatives (R1, R2, R3, R4, or R5 = caffeoyl) | [198] |
Dihydromyricetin | [199] |
5-(3,4-Dihydroxybenzylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione | [200] |
7,8-Dihydroxycoumarin derivative DHC12 | [79] |
3′,4′-Dihydroxyflavone | [201] |
7,8-Dihydroxyflavone | [202,203] |
5,7-Dihydroxy-4′-methoxy flavone | [204] |
(E)-3,4-Dihydroxystyryl aralkyl sulfones | [205] |
(E)-3,4-Dihydroxystyryl aralkyl sulfoxides | [205] |
5,3’-Dihydroxy-3,7,4’ -trimethoxyflavone | [206] |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6- trimethylpyrazine | [207] |
DKP | [85] |
L-DOPA (levodopa, CVT-301) | [132,135,208] |
DOPA-derived peptido-mimetics (deprotected) | [209] |
DOPA-derived peptido-mimetics (protected) | [209] |
L-DOPA deuterated (D3-L-DOPA) | [210] |
Doxycycline | [211,212] |
Droxidopa | [110] |
Echinacoside | [213] |
Ellagic acid | [214] |
Entacapone (Comtan, ASI-6) | [12,215,216] |
Enzastaurin | [164] |
Epicatechin | [128,160,193,194] |
Epigallocatechin-3-gallate | [117,217,218] |
Etidronate (HEDPA) | [219] |
Exifone | [12] |
F13714 | [220] |
F15599 | [220,221] |
Farrerol | [222] |
Fisetin (3,3′,4′,7-Tetrahydroxy flavone) | [223,224,225] |
Fraxetin | [117] |
Galangin | [226] |
Gallic acid and derivatives | [214,227,228] |
Gallocatechin | [128] |
Garcinol | [229] |
Genistein | [117,128,230,231] |
Glutamine | [232] |
Glutathione derivatives | [63] |
Glutathione -hydroxyquinoline compound | [233] |
Glutathione-l-DOPA compound | [234] |
Gly-N-C-DOPA | [209] |
GSK2795039 | [108] |
Guanabenz | [235] |
Hesperidin | [128,236] |
Hinokitiol | [237] |
8-HQ-MC-5 (VK-28) | [12,24,89,92,93] |
4-Hydroxyisophthalic acid | [238] |
1-Hydroxy-2-pyridinone derivatives | [89,239] |
3-Hydroxy-4(1H)-pyridinone (Deferiprone) | [112,239,240] |
8-Hydroxyquinoline | [241] |
8-Hydroxyquinoline-2- carboxaldehyde isonicotinoyl hydrazone | [242] |
Hydroxyquinoline-propargyl hybrid (HLA 20) | [12,79,89] |
Hydroxytyrosol butyrate | [243] |
Hyperoside | [117] |
IC87201 | [150] |
Icariin | [244] |
Icariside II | [245] |
l-(7-imino-3-propyl-2,3- dihydrothiazolo [4,5-d]pyrimidin-6(7H)-yl)urea | [246] |
Imipramine | [247] |
Isobavachalcone | [248] |
Isochlorogenic acid | [167] |
Isoquercetin (Isoquercitrin) | [249] |
Kaempferol | [128,160,193,194] |
Kaempferol, 3-O-a-l arabinofuranoside-7-O-a-l-rhamnopyranoside | [214] |
KR33493 | [250] |
Kukoamine | [251] |
Lestaurtinib | [164] |
Lipoic acid | [252,253,254] |
Luteolin | [128] |
LY354740 | [115] |
M10 | [24] |
M30 (VAR10303) | [112,255] |
M99 | [24] |
Macranthoin G | [256] |
Magnesium lithospermate B | [257] |
α-Mangostin | [258] |
γ-Mangostin | [259] |
MAOI-1 | [12] |
MAOI-2 | [12] |
MAOI-4 | [12] |
MAOI-8 | [12] |
Meclofenamic acid | [260] |
Metformin (Met) | [261,262] |
Methoxy-6-acetyl-7- methylijuglone | [117] |
N’-(4-Methylbenzylidene)-5-phenylisoxazole-3-carbohydrazide | [263] |
Mildronate | [264] |
Minocycline | [12,160,265] |
Mitomycin C | [266] |
MitoQ | [108] |
Morin (3,5,7,29,49-pentahydroxy flavone) | [160,193,194,267] |
[18F]MPPF | [107] |
MSX-3 | [268] |
Myricetin | [128,269,270] |
Myricitrin | [271] |
Naringenin | [128,272] |
Naringin | [117,273,274] |
Nicotinamide adenine dinucleotide phosphate (NADPH) | [275,276] |
Nicotinamide mononucleotide | [277] |
Nitecapone | [278] |
Nordihydroguaiaretic | [160,193,194] |
Oleuropein | [279] |
Opicapone | [278] |
P7C3 | [280,281] |
PBF-509 | [282] |
PBT2 | [89,283] |
PBT434 | [284] |
Petunidin | [185] |
Phenothiazine 2Bc (n = 0 and n = 1) | [285] |
Phenylhydroxamates | [286] |
Piceatannol | [160,193,194] |
Pinostrobin | [287] |
Piperazine-8-OH-quinolone hybrid | [79] |
Preladenant | [282,288] |
Promethazine | [289] |
Protocatechuic acid | [170] |
Protosappanin A | [290] |
Punicalangin | [270,291] |
Pyrazolobenzothiazine-based carbothioamides | [292] |
Pyridoxal isonicotinoyl hydrazone (PIH) and related compounds | [24,89] |
Pyrimidinone 8 | [293] |
Q1 | [89] |
Q4 | [89] |
Quercetin | [117,294,295] |
Quinolines Derivatives as SUMOylation activators | [124] |
Radotinib | [296] |
Riboflavin | [297,298] |
Rifampicin (ASI-3) | [12,160] |
Rimonabant | [119,120,282] |
Rosmarinic acid | [154,299] |
Rotigotine | [105,133,278,300] |
Rutin | [128,249] |
Salicylate, sodium salt | [301] |
Salvianolic Acid B | [117] |
SCH-58261 | [105,302] |
SCH412348 | [105] |
Silibinin (silybin) A, B | [89] |
Silydianin | [24] |
ST1535 | [282] |
ST4206 | [282] |
Staurosporine | [164] |
Stemazole | [303] |
Sulfuretin | [304] |
Tannic acid | [160,193,194] |
Tanshinol | [117] |
Taurine | [305] |
Taxifolin | [128] |
Tectorigenin | [306] |
Tetracycline | [307] |
Tolcapone (ASI-7) | [12,105] |
Tozadenant | [282,302] |
Transilitin | [270] |
O-Trensox | [24] |
2′,3′,4′-Trihydroxyflavone | [270] |
2,3,3-Trisphosphonate | [219] |
V81444 | [282] |
VAS3947 | [108] |
VAS2870 | [108] |
Verbascoside | [160,193,194] |
WIN 55,212-2 | [119,120] |
WR-1065 | [308] |
Zonisamide | [309,310,311] |
Compound Name(s) | pCu(II) | Kd (nmol/L) | Most Abundant Complex |
---|---|---|---|
7DH 7MH | 14.2 | 5.91 × 10−5 | CuL2 |
8A 8B 8C | 14.2 | 5.91 × 10−5 | CuL2 |
8E 8F | 10.6 | 2.35 × 10−1 | CuL2 |
N-Acetyl cysteine | 6.2 | 3.82 × 104 | CuL |
ACPT-I | 7.3 | 5.93 × 102 | CuL |
ADX88178 | 7.4 | 5.15 × 102 | CuL |
Alaternin | 16.5 | 3.39 × 10−7 | CuL2 |
Alvespimycin | 10.3 | 5.35 × 10−1 | CuL22+ |
AM-251 | 6.3 | 1.47 × 104 | CuL |
Ambroxol | 9.2 | 7.26 | CuL+ |
3-(7-Amino-5-(cyclohexylamino)-[1,2,4]triazolo[1,5-a][1,3,5] triazin-2-yl)-2-cyanoacrylamide | 9.1 | 7.58 | CuL2 |
Aminothiazoles derivatives as SUMOylation activators | 9.7 | 1.86 | CuL2 |
AMN082 | 10.3 | 5.35 × 10−1 | CuL22+ |
Amodiaquine | 6.1 | 1.90 × 107 | CuHL |
Antagonist of the A(2A) adenosine receptor-derivative 49 | 6.4 | 9.65 × 103 | CuL |
Apigenin | 6.8 | 2.39 × 103 | CuH2L+ |
Apomorphine | 7.4 | 5.06 × 102 | CuL |
l-Arginine | 7.1 | 9.57 × 102 | CuL2+ |
Aromadendrin | 11.1 | 8.29 × 10−2 | CuL |
Ascorbic acid | 6.1 | 2.43 × 105 | Cu2H–2L2 |
ASI-1 | 7.9 | 1.21 × 102 | CuL2 |
ASI-5 | 6.1 | 2.23 × 106 | CuL |
Astilbin | 7.4 | 5.06 × 102 | CuL |
Azilsartan | 6.1 | 4.53 × 105 | CuL |
Baicalein | 9.3 | 5.41 | CuL22− |
Benserazide | 9.3 | 5.30 | CuL2 |
7H-benzo[e] perimidin-7-one derivatives | 14 | 1.05 × 10−4 | CuL2 |
8-Benzyl-tetrahydropyrazino[2,1-f]purinedione (derivative n. 57) | 6.1 | 3.36 × 106 | CuL |
Bikaverin | 14 | 1.05 × 10−4 | CuL2 |
(−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives | 10.3 | 5.35 × 10−1 | CuL22+ |
2,2′-bipyridyl | 10.6 | 2.35 × 10−1 | CuL22+ |
4-((5-bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid (LX007, ZL006) | 6.2 | 6.51 × 104 | CuL |
C-3 (α-carboxyfullerene) | 6.9 | 1.96 × 103 | CuL |
Caffeic acid amide analogues | 7.3 | 6.02 × 102 | CuH−1L |
Carbazole-derived compounds | 10.3 | 5.35 × 10−1 | CuL22+ |
Carbidopa | 15.1 | 8.11 × 10−6 | CuH−2L |
Carnosic acid | 7.4 | 5.06 × 102 | CuL |
Catechin | 7.9 | 1.50 × 102 | CuH2L |
Ceftriaxone | 6.1 | 4.04 × 106 | CuL |
Celastrol | 6.5 | 5.27 × 103 | CuL |
Chebulagic acid | 6.3 | 1.51 × 104 | CuHL |
Chlorogenic acid | 8.3 | 5.04 × 101 | CuL− |
3′-O-(3-chloropivaloyl) quercetin | 11.1 | 8.29 × 10−2 | CuL |
Chlorpromazine | 6.3 | 1.47 × 104 | CuL2+ |
Chrysin | 10.6 | 2.97 × 10−1 | CuHL+ |
Clioquinol | 14.2 | 5.91 × 10−5 | CuL2 |
Clovamide analogues (R1 and R2 = OH, and/or R3 and R4 = OH) | 7.4 | 5.06 × 102 | CuL |
“Compound 1” | 10.3 | 5.35 × 10−1 | CuL22+ |
“Compound 8” | 6.1 | 4.37 × 105 | CuL2 |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one | 7.3 | 5.93 × 102 | CuL+ |
“Compound (−)-21a”, derivative of N-6-(2-(4-(1H-indol-5-yl) piperazin-1-yl)ethyl)-N-6-propyl-4,5,6,7-tetrahydrobenzo[d] thiazole-2,6-diamine | 10.3 | 5.35 × 10−1 | CuL23+ |
Creatine | 6.8 | 2.26 × 103 | CuH−1L |
Cudraflavone B | 11.1 | 8.29 × 10−2 | CuL |
Curcumin | 7.9 | 1.21 × 102 | CuL2 |
Cyanidin | 7.4 | 5.06 × 102 | CuL |
D512 | 10.3 | 5.35 × 10−1 | CuL22+ |
D607 (bipyridyl-D2R/D3R agonist hybrid) | 10.6 | 2.35 × 10−1 | CuL2 |
DA-2 (8D) | 14.2 | 5.91 × 10−5 | CuL2 |
DA-3 | 10.3 | 5.35 × 10−1 | CuL2 |
DA-4 | 10.3 | 5.35 × 10−1 | CuL2 |
Dabigatran etexilate | 10.3 | 5.35 × 10−1 | CuL2 |
Dabrafenib | 6.1 | 3.36 × 106 | CuL |
(S)-3-4-DCPG | 6.1 | 4.54 × 105 | CuL |
Deferricoprogen | 12.6 | 3.17 × 10−3 | CuHL |
Delphinidin | 9.3 | 5.30 | CuL2 |
Demethoxycurcumin | 7.9 | 1.21 × 102 | CuL2 |
Dendropanax morbifera active compound | 7.4 | 5.06 × 102 | CuL |
Desferrioxamine (Deferoxamine, Desferal, DFO) | 11.4 | 4.98 × 10−2 | CuH2L+ |
(S)-N-(3-(3-6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6- methoxypyridin-2-amine | 6.3 | 1.47 × 104 | CuL |
4, 5-O-Dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid (R1, R2, R3, R4, or R5 = caffeoyl) | 7.4 | 5.06 × 102 | CuL |
Dihydromyricetin | 9.3 | 5.30 | CuL2 |
5-(3,4-Dihydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione | 7.4 | 5.06 × 102 | CuL |
7,8-Dihydroxycoumarin derivative DHC12 | 7.4 | 5.06 × 102 | CuL |
3′,4′-Dihydroxyflavone | 7.4 | 5.06 × 102 | CuL |
7,8-Dihydroxyflavone | 7.4 | 5.06 × 102 | CuL |
5,7-Dihydroxy-4′-methoxyflavone | 6.6 | 4.58 × 103 | CuL |
(E)-3, 4-Dihydroxystyryl aralkyl sulfones | 7.4 | 5.06 × 102 | CuL |
(E)-3, 4-Dihydroxystyryl aralkyl sulfoxides | 7.4 | 5.06 × 102 | CuL |
5,3′-Dihydroxy-3,7,4′-trimethoxyflavone | 6.6 | 4.58 × 103 | CuL |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine | 9.6 | 2.98 | CuL |
DKP | 8.1 | 8.43 × 101 | CuL |
l-DOPA (levodopa, CVT-301) | 15.2 | 7.95 × 10−6 | CuH−2L3− |
DOPA-derived peptido-mimetics (deprotected) | 15.2 | 7.95 × 10−6 | CuH−2L2 |
DOPA-derived peptido-mimetics (protected) | 7.4 | 5.06 × 102 | CuL |
l-DOPA deuterated | 15.2 | 7.95 × 10−6 | CuH−2L3− |
Doxycycline | 8.9 | 1.28 × 101 | CuL |
Droxidopa | 15.2 | 7.95 × 10−6 | CuH−2L3− |
Echinacoside | 7.4 | 5.06 × 102 | CuL |
Ellagic acid | 7.4 | 5.06 × 102 | CuL |
Entacapone (comtan, ASI-6) | 10.1 | 8.00 × 10−1 | CuL22− |
Enzastaurin | 10.3 | 5.35 × 10−1 | CuL2 |
Epigallocatechin-3-gallate | 6.1 | 1.33 × 105 | CuH2L2 |
Etidronate (HEDPA) | 9 | 1.11 × 101 | CuL2− |
Exifone | 6.3 | 1.51 × 104 | CuHL |
F13714, F15599 | 9.7 | 1.86 | CuL2 |
Farrerol | 11.1 | 8.29 × 10−2 | CuL |
Fisetin (3,3′,4′,7-tetra-hydroxy-flavone) | 7.4 | 5.06 × 102 | CuL |
Fraxetin | 7.4 | 5.06 × 102 | CuL |
Galangin | 9.1 | 8.20 | CuL |
Gallic acid derivatives | 6.3 | 1.51 × 104 | CuHL− |
Gallocatechin | 9.3 | 5.30 | CuL2 |
Garcinol | 7.4 | 5.06 × 102 | CuL |
Genistein | 11.1 | 8.29 × 10−2 | CuL |
Glutamine | 7.3 | 5.38 × 102 | CuL+ |
Glutathione derivatives | 6.2 | 7.23 × 104 | CuL− |
Glutathione-hydroxy-quinoline compound | 9.4 | 5.00 | CuH−1L+ |
Glutathione-l-DOPA compound | 13.5 | 3.98 × 10−4 | CuH−1L |
Gly-N-C-DOPA | 15.2 | 7.95 × 10−6 | CuH−2L3− |
GSK2795039 | 12 | 1.02 × 10−2 | CuL2 |
Guanabenz | 10.3 | 5.35 × 10−1 | CuL2 |
Hesperidin | 11.1 | 8.29 × 10−2 | CuL |
Hinokitiol | 7.3 | 6.69 × 102 | CuL+ |
8-HQ-MC-5 (VK-28) | 14.2 | 5.91 × 10−5 | CuL2 |
4-Hydroxyisophthalic acid | 6.3 | 2.06 × 104 | CuL |
1-Hydroxy-2-pyridinone derivatives | 8.4 | 4.26 × 101 | CuL2 |
3-Hydroxy-4(1H)pyridinone (Deferiprone) | 10.2 | 6.60 × 10−1 | CuL2 |
3-Hydroxy-4(1H)pyridinone derivatives (R = H) | 10.2 | 6.60 × 10−1 | CuL2 |
8-Hydroxyquinoline | 14.2 | 5.91 × 10−5 | CuL2 |
8-Hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone | 14.2 | 5.91 × 10−5 | CuL2 |
Hydroxy-quinoline-propargyl hybrids (HLA20) | 14.2 | 5.91 × 10−5 | CuL2 |
Hydroxytyrosol butyrate | 7.4 | 5.06 × 102 | CuL |
Hyperoside | 9.1 | 8.20 | CuL |
IC87201 | 6.1 | 1.90 × 107 | CuHL |
Icariin | 6.6 | 4.58 × 103 | CuL |
Icariside II | 6.6 | 4.58 × 103 | CuL |
l-(7-Imino-3-propyl-2,3-dihydrothiazolo[4,5-d]pyrimidin -6(7H)-yl)urea | 6.1 | 4.37 × 105 | CuL2 |
Imipramine | 6.3 | 1.47 × 104 | CuL2+ |
Isobavachalcone | 6.2 | 8.13 × 104 | CuL+ |
Isochlorogenic acid | 8.3 | 5.04 × 101 | CuL− |
Isoquercetin (isoquercitrin) | 9.1 | 8.20 | CuL |
Kaempferol | 9.1 | 8.20 | CuL |
KR33493 | 7.3 | 5.93 × 102 | CuL |
Kukoamine | 7.4 | 5.06 × 102 | CuL |
Lestaurtinib | 10.3 | 5.35 × 10−1 | CuL2 |
Lipoic acid | 6.1 | 4.41 × 105 | CuL+ |
Luteolin | 7.4 | 5.06 × 102 | CuL |
M10 M30 (VAR10303) M99 | 14.2 | 5.91 × 10−5 | CuL2 |
Macranthoin G | 7.4 | 5.06 × 102 | CuL |
Magnesium lithospermate B | 7.4 | 5.06 × 102 | CuL |
α-mangostin | 7.4 | 5.06 × 102 | CuL |
γ-Mangostin | 7.4 | 5.06 × 102 | CuL |
MAOI-1 | 9.3 | 5.30 | CuL2 |
MAOI-2 | 10.3 | 5.35 × 10−1 | CuL2 |
MAOI-4 | 6.3 | 1.47 × 104 | CuL |
MAOI-8 | 6.1 | 1.90 × 107 | CuHL |
Metformin (met) | 6.3 | 1.61 × 104 | CuL+ |
Methoxy-6-acetyl-7-methylijuglone | 14 | 1.05 × 10−4 | CuL2 |
N′-(4-methylbenzylidene)-5-phenylisoxazole-3-carbohydrazide | 6.3 | 1.38 × 104 | CuL |
Minocycline | 11.6 | 2.83 × 10−2 | CuL |
Mitomycin C | 7.1 | 9.14 × 102 | CuL |
Morin | 6.1 | 2.27 × 1015 | CuH3L |
[18F]MPPF | 10.3 | 5.35 × 10−1 | CuL2 |
MSX-3 | 6.1 | 2.01 × 106 | CuL |
Myricetin Myricitrin | 9.1 | 8.20 | CuL |
Naringin | 6.9 | 1.58 × 103 | CuHL |
Naringenin | 6.9 | 1.58 × 103 | CuHL |
Nicotinamide adenine dinucleotide phosphate (NADPH) | 6.4 | 8.91 × 103 | CuL |
Nicotinamide mononucleotide | 6.1 | 2.01 × 106 | CuL |
Nitecapone | 10.1 | 8.00 × 10−1 | CuL22− |
Nordihydroguaiaretic acid | 7.4 | 5.06 × 102 | CuL |
Oleuropein | 7.4 | 5.06 × 102 | CuL |
Opicapone | 10.1 | 8.00 × 10−1 | CuL2 |
P7C3 | 7.8 | 3.76 × 102 | Cu2H−2L2+ |
PBT2 | 12.4 | 4.04 × 10−3 | CuL+ |
PBT434 | 11.2 | 7.21 × 10−2 | CuL+ |
Petunidin | 7.4 | 5.06 × 102 | CuL |
Phenothiazine 2Bc (n=0) | 10.3 | 5.35 × 10−1 | CuL22+ |
Phenothiazine 2Bc (n=1) | 6.3 | 1.47 × 104 | CuL2+ |
Phenylhydroxamates | 7 | 1.46 × 103 | CuL |
Piceatannol | 7.4 | 5.06 × 102 | CuL |
Pinostrobin (5-hydroxy-7-methoxy-flavone) | 6.6 | 4.58 × 103 | CuL+ |
Piperazine-8-OH-quinolone hybrid | 14.2 | 5.91 × 10−5 | CuL2 |
Preladenant | 10.3 | 5.35 × 10−1 | CuL2 |
Promethazine | 8.2 | 7.99 × 101 | CuL2+ |
Protocatechuic acid | 8.1 | 8.13 × 101 | CuL− |
Protosappanin A | 7.4 | 5.06 × 102 | CuL |
Punicalangin | 8.2 | 6.89 × 101 | CuL |
Pyrazolobenzothiazine-based carbothioamides | 6.1 | 4.66 × 105 | CuL |
Pyrimidinone 8 | 10.3 | 5.35 × 10−1 | CuL2 |
Q1 Q4 | 14.2 | 5.91 × 10−5 | CuL2 |
Quercetin | 9.1 | 8.20 | CuL3− |
Quinoline derivatives SUMOylation activators | 7.2 | 7.26 × 102 | CuL2+ |
Radotinib | 10.6 | 2.35 × 10−1 | CuL2 |
Riboflavin | 6.1 | 1.65 × 105 | CuHL3+ |
Rifampicin (ASI-3) | 6.5 | 6.97 × 103 | CuL |
Rimonabant | 8.1 | 8.43 × 101 | CuL |
Rosmarinic acid | 7.4 | 5.06 × 102 | CuL |
Rotigotine | 6.1 | 1.45 × 108 | CuL2 |
Rutin | 9.1 | 8.20 | CuL |
Salicylate, sodium salt | 6.3 | 2.06 × 104 | CuL |
Salvianolic acid B | 7.4 | 5.06 × 102 | CuL |
SCH58261 SCH412348 | 9.1 | 7.58 | CuL2 |
ST1535 ST4206 | 9.1 | 7.58 | CuL2 |
Staurosporine | 10.3 | 5.35 × 10−1 | CuL2 |
Stemazole | 6.1 | 4.66 × 105 | CuL |
Sulfuretin | 7.4 | 5.06 × 102 | CuL |
Tannic acid | 6.1 | 1.84 × 105 | CuL |
Tanshinol | 7.4 | 5.06 × 102 | CuL |
Taurine | 6.1 | 1.23 × 107 | CuL+ |
Taxifolin | 10.4 | 4.55 × 10−1 | CuL2− |
Tectorigenin | 11.1 | 8.29 × 10−2 | CuL |
Tetracycline | 6.4 | 1.08 × 104 | CuL |
Tolcapone (ASI-7) | 10.1 | 8.00 × 10−1 | CuL2 |
Transilitin | 7.4 | 5.06 × 102 | CuL |
o-Trensox | 22.9 | 1.51 × 10−13 | CuL4− |
2′, 3′, 4′-Trihydroxyflavone | 9.3 | 5.30 | CuL22− |
2,3,3-Trisphosphonate | 14 | 9.98 × 10−5 | CuL2 |
V81444 | 9.7 | 1.86 | CuL2 |
VAS3947 VAS2870 | 6.1 | 4.37 × 105 | CuL2 |
Verbascoside | 7.3 | 6.02 × 102 | CuH−1L |
WIN 55, 212-2 | 10.3 | 5.35 × 10−1 | CuL22+ |
WR-1065 | 6.6 | 3.67 × 103 | CuL2+ |
Zonisamide | 7.4 | 4.62 × 102 | CuL |
Compound Name(s) | pCu(I) | Kd (nmol/L) | Most Abundant Complex |
---|---|---|---|
7DH 7MH | 6.3 | 8.38 × 103 | CuL2 |
8A 8B 8C | 6.3 | 8.38 × 103 | CuL2 |
8E 8F | 6.2 | 1.87 × 104 | CuL |
ACPT-I | 6 | 2.54 × 108 | CuL2 |
ADX88178 | 7.7 | 1.77 × 102 | CuL |
Alvespimycin | 6 | 7.98 × 107 | CuL2+ |
3-(7-Amino-5-(cyclohexylamino)-[1,2,4]triazolo[1,5-a] [1,3,5]triazin-2-yl)-2-cyanoacrylamide | 6 | 7.98 × 107 | CuL2 |
Aminothiazoles derivatives as SUMOylation activators | 6 | 2.66 × 106 | CuL2 |
AMN082 | 6 | 7.98 × 107 | CuL2 |
Antagonist of the A(2A) adenosine receptor (derivative 49) | 6 | 3.06 × 107 | CuL2 |
8-Benzyl-tetrahydropyrazino[2,1-f]purinedione (derivative 57) | 7.6 | 2.17 × 102 | CuL |
(−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives | 6 | 7.98 × 107 | CuL2+ |
2,2′-bipyridyl | 6.2 | 1.87 × 104 | CuL+ |
Carbazole-derived compounds | 6 | 7.98 × 107 | CuL2+ |
Ceftriaxone | 6 | 2.54 × 108 | CuL2 |
Clioquinol | 7.2 | 5.79 × 102 | CuL2− |
“Compound 1” | 6 | 7.98 × 107 | CuL2+ |
“Compound 8” | 7.6 | 2.17 × 102 | CuL |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxy phenyl) butan-1-one | 6 | 2.54 × 108 | CuL2− |
“Compound (−)-21a”, derivative of N-6-(2-(4-(1H-indol-5-yl) piperazin-1-yl)ethyl)-N-6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine | 6 | 7.98 × 107 | CuL2+ |
Creatine | 6 | 2.54 × 108 | CuL2− |
D512 | 6 | 7.98 × 107 | CuL2+ |
D607(bipyridyl-D2R/D3R agonist hybrid) | 6.2 | 1.87 × 104 | CuL |
DA-2 (8D) | 6.3 | 8.38 × 103 | CuL2 |
DA-3 | 6 | 7.98 × 107 | CuL2 |
DA-4 | 6 | 7.98 × 107 | CuL2 |
Dabigatran etexilate | 6 | 7.98 × 107 | CuL2 |
Dabrafenib | 7.7 | 1.77 × 102 | CuL |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine | 6.9 | 1.07 × 103 | CuH2L2 |
DKP | 7.4 | 3.64 × 102 | CuL |
Doxycycline | 9.2 | 1.26 × 101 | Cu2L |
Enzastaurin | 6 | 7.98 × 107 | CuL2 |
F13714 F15599 | 6 | 7.83 × 105 | Cu2L |
Glutathione-hydroxy-quinoline compound | 6.3 | 8.38 × 103 | CuL2− |
Glutathione derivatives | 15.2 | 6.21 × 10−6 | CuHL− |
Guanabenz | 6 | 7.98 × 107 | CuL2 |
8-HQ-MC-5 (VK-28) | 6.3 | 8.38 × 103 | CuL2 |
8-hydroxyquinoline | 6.3 | 8.38 × 103 | CuL2− |
8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone | 6.3 | 8.38 × 103 | CuL2 |
Hydroxy-quinoline-propargyl hybrids (HLA20) | 6.3 | 8.38 × 103 | CuL2 |
l-(7-Imino-3-propyl-2,3-dihydrothiazolo [4,5-d] pyrimidin-6(7H)-yl)urea | 7.6 | 2.17 × 102 | CuL |
KR33493 | 6 | 2.54 × 108 | CuL2 |
Lestaurtinib | 6 | 7.98 × 107 | CuL2 |
M10 M30 (VAR10303) M99 | 6.3 | 8.38 × 103 | CuL2 |
MAOI-2 | 6 | 7.98 × 107 | CuL2 |
[18F]MPPF | 6 | 7.98 × 107 | CuL2 |
PBF-509 | 6 | 7.98 × 107 | CuL2 |
PBT2 | 6.3 | 8.38 × 103 | CuL2 |
Phenothiazine 2Bc (n=0) | 6 | 7.98 × 107 | CuL2+ |
Piperazine-8-OH-quinolone hybrid | 6.3 | 8.38 × 103 | CuL2 |
Preladenant | 6 | 7.98 × 107 | CuL2 |
Promethazine | 6 | 7.98 × 107 | CuL2+ |
Pyrimidinone 8 | 6 | 7.98 × 107 | CuL2 |
Q1 Q4 | 6.3 | 8.38 × 103 | CuL2 |
Radotinib | 6.2 | 1.87 × 104 | CuL |
Rifampicin (ASI-3) | 9.2 | 1.26 × 101 | Cu2L |
Rimonabant | 7.4 | 3.64 × 102 | CuL |
Rotigotine | 7.7 | 1.77 × 102 | CuL |
SCH58261 SCH412348 | 6 | 7.98 × 107 | CuL2 |
ST1535 ST4206 | 6 | 7.98 × 107 | CuL2 |
Staurosporine | 6 | 7.98 × 107 | CuL2 |
V81444 | 6 | 2.66 × 106 | CuL2 |
VAS3947 VAS2870 | 7.6 | 2.17 × 102 | CuL |
WIN 55, 212-2 | 6 | 7.98 × 107 | CuL2+ |
WR-1065 | 7.6 | 2.17 × 102 | CuL |
Compound Name(s) | pFe(III) | Kd (nmol/L) | Most Abundant Complex |
---|---|---|---|
7DH 7MH | 20.6 | 2.15 × 10−1 | FeL3 |
8A 8B 8C | 20.6 | 2.15 × 10−1 | FeL3 |
8E 8F | 21.5 | 3.01 × 10−2 | FeH–2L2 |
N-Acetyl cysteine | 16.1 | 4.59 × 109 | FeL2− |
ACPT-I | 16.1 | 9.59 × 107 | FeL2 |
Ambroxol | 16.3 | 1.70 × 104 | FeL2+ |
Apigenin | 16.1 | 7.55 × 108 | FeL2+ |
Apomorphine | 16.3 | 1.35 × 104 | FeL2 |
l-Arginine | 16.1 | 1.18 × 1012 | FeL3+ |
Aromadendrin | 16.1 | 7.55 × 108 | FeL |
Ascorbic acid | 16.1 | 4.99 × 1017 | FeL2+ |
ASI-1 | 16.8 | 2.28 × 103 | FeL |
ASI-5 | 18 | 1.06 × 102 | FeL |
Astilbin | 16.3 | 1.35 × 104 | FeL2 |
Baicalein | 16.1 | 7.55 × 108 | FeL2+ |
4H-1-benzopyran-4-one | 18.1 | 8.14 × 101 | FeL2 |
2,2′-bipyridyl | 21.5 | 3.01 × 10−2 | FeH−2L2+ |
4-((5-bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid (LX007, ZL006) | 16.1 | 4.46 × 107 | FeL2 |
C-3 (α carboxyfullerene) | 16.1 | 2.54 × 1010 | FeL2 |
Caffeic acid amide analogues | 16.3 | 1.35 × 104 | FeL2 |
Carbidopa | 16.2 | 2.96 × 104 | FeL |
Carnosic acid | 16.3 | 1.35 × 104 | FeL2 |
Catechin | 16.1 | 4.49 × 1017 | FeHL |
Ceftriaxone | 16.1 | 9.59 × 107 | FeL2 |
Celastrol | 19.2 | 6.33 | FeL2 |
Chebulagic acid | 16.1 | 7.45 × 105 | FeHL |
Chlorogenic acid | 16.1 | 1.07 × 107 | FeL |
3′-O-(3-Chloropivaloyl) quercetin | 16.1 | 7.55 × 108 | FeL |
Chrysin | 16.1 | 7.55 × 108 | FeL+ |
Clioquinol | 20.6 | 2.15 × 10−1 | FeL3 |
Clioquinol-selegiline hybrid | 22.9 | 1.07 × 10−3 | FeL2 |
Clovamide analogues (R1 and R2 = OH, and/or R3 and R4 = OH) | 16.3 | 1.35 × 104 | FeL2 |
“Compound (−)-8a” | 16.3 | 1.35 × 104 | FeL2 |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one | 16.1 | 9.59 × 107 | FeL2+ |
Creatine | 16.1 | 9.59 × 107 | FeL2+ |
Cudraflavone B | 16.1 | 7.55 × 108 | FeL |
Curcumin | 16.6 | 4.09 × 103 | FeL |
Cyanidin | 16.3 | 1.35 × 104 | FeL2 |
D607 (bipyridyl-D2R/D3R agonist hybrid) | 21.5 | 3.01 × 10−2 | FeH−2L2 |
DA-2 (8D) | 20.6 | 2.15 × 10−1 | FeL3 |
DA-3 | 17.2 | 5.61 × 102 | FeL2 |
DA-4 | 17.2 | 5.61 × 102 | FeL2 |
Deferasirox | 23.5 | 3.22 × 10−4 | FeL23− |
Delphinidin | 16.3 | 1.35 × 104 | FeL2 |
Demethoxycurcumin | 16.8 | 2.28 × 103 | FeL |
Dendropanax morbifera active compound | 16.3 | 1.35 × 104 | FeL2 |
Desferrioxamine (Deferoxamine, Desferal, DFO) | 26.8 | 1.81 × 10−7 | FeHL+ |
4,5-O-Dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid derivatives (R1, R2, R3, R4, or R5 = caffeoyl) | 16.3 | 1.35 × 104 | FeL2 |
Dihydromyricetin | 16.3 | 1.35 × 104 | FeL2 |
5-(3,4-dihydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione | 16.3 | 1.35 × 104 | FeL2− |
7,8-dihydroxycoumarin derivative DHC12 | 16.3 | 1.35 × 104 | FeL2 |
3′,4′-dihydroxyflavone | 16.3 | 1.35 × 104 | FeL2− |
7,8-dihydroxyflavone | 16.3 | 1.35 × 104 | FeL2− |
5,7-dihydroxy-4′-methoxyflavone | 18.1 | 8.14 × 101 | FeL2 |
(E)-3,4-dihydroxystyryl aralkyl sulfones | 16.3 | 1.35 × 104 | FeL2− |
(E)-3,4-dihydroxystyryl aralkyl sulfoxides | 16.3 | 1.35 × 104 | FeL2− |
5,3′-dihydroxy-3,7,4′-trimethoxyflavone | 18.1 | 8.14 × 101 | FeL2 |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine | 16.1 | 1.86 × 1010 | FeL |
DKP | 16.1 | 7.43 × 1021 | FeL2 |
l-DOPA (levodopa, CVT-301) | 16.2 | 2.96 × 104 | FeL |
DOPA-derived peptido-mimetics (deprotected) | 16.2 | 2.96 × 104 | FeL |
DOPA-derived peptido-mimetics (protected) | 16.3 | 1.35 × 104 | FeL2 |
l-dopa deuterated | 16.2 | 2.96 × 104 | FeL |
Doxycycline | 18.1 | 7.22 × 101 | FeL2 |
Droxidopa | 16.2 | 2.96 × 104 | FeL |
Echinacoside | 16.3 | 1.35 × 104 | FeL2 |
Ellagic acid | 16.3 | 1.35 × 104 | FeL2 |
Entacapone (comtan, ASI-6) | 19.3 | 3.99 | FeL33− |
Epicatechin | 16.3 | 1.35 × 104 | FeL2 |
Epigallocatechin-3-gallate | 16.1 | 7.45 × 105 | FeHL |
Etidronate (HEDPA) | 23.5 | 3.22 × 10−4 | FeH−1L |
Exifone | 16.1 | 7.45 × 105 | FeHL |
Farrerol | 16.1 | 7.55 × 108 | FeL |
Fiset (3,3′,4′,7-tetra-hydroxy-flavone) | 16.3 | 1.35 × 104 | FeL2 |
Fraxetin | 16.3 | 1.35 × 104 | FeL2− |
Galangin | 27.0 | 9.36 × 10−8 | FeH−1L |
Gallic acid derivatives | 16.1 | 7.45 × 105 | FeHL |
Garcinol | 16.3 | 1.35 × 104 | FeL2 |
Genistein | 16.1 | 7.55 × 108 | FeL |
Glutathione-hydroxy-quinoline compound | 18 | 1.04 × 102 | FeH−2L+ |
Glutathione-l-DOPA compound | 16.3 | 1.35 × 104 | FeL2 |
Gly-N-C-DOPA | 16.2 | 2.96 × 104 | FeL |
Hesperidin | 16.1 | 7.55 × 108 | FeL |
Hinokitiol | 16.1 | 4.30 × 108 | FeL2+ |
8-HQ-MC-5 (VK-28) | 20.6 | 2.15 × 10−1 | FeL3 |
4-Hydroxyisophthalic acid | 16.1 | 1.64 × 106 | FeL3 |
1-Hydroxy-2-pyridinone derivatives | 17.7 | 1.50 × 102 | FeL3 |
3-Hydroxy-4(1H)pyridinone (Deferiprone) | 19.3 | 3.92 | FeL3 |
3-Hydroxy-4(1H)pyridinone derivatives (R = H) | 19.3 | 3.92 | FeL3 |
8-Hydroxyquinoline | 20.6 | 2.15 × 10−1 | FeL3 |
8-Hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone | 20.6 | 2.15 × 10−1 | FeL3 |
Hydroxy-quinoline-propargyl hybrids (HLA20) | 20.6 | 2.15 × 10−1 | FeL3 |
Hydroxytyrosol butyrate | 16.3 | 1.35 × 104 | FeL2− |
Hyperoside | 27.0 | 9.36 × 10−8 | FeH−1L |
Icariin | 18.1 | 8.14 × 101 | FeL2 |
Icariside II | 18.1 | 8.14 × 101 | FeL2 |
Isobavachalcone | 16.1 | 3.23 × 108 | FeL2+ |
Isochlorogenic acid | 16.1 | 1.07 × 107 | FeL |
Isoquercetin (isoquercitrin) | 27.0 | 9.36 × 10−8 | FeH−1L |
Kaempferol | 27.0 | 9.36 × 10−8 | FeH−1L |
Kaempferol, 3-O-a-L arabino-furanoside-7-O-a-L- rhamno-pyranoside | 18.1 | 8.14 × 101 | FeL2 |
KR33493 | 16.3 | 1.06 × 104 | FeL2 |
Kukoamine | 16.3 | 1.35 × 104 | FeL2 |
Luteolin | 16.3 | 1.35 × 104 | FeL2 |
M10 M30 (VAR10303) M99 | 20.6 | 2.15 × 10−1 | FeL3 |
Macranthoin G | 16.3 | 1.35 × 104 | FeL2 |
Magnesium lithospermate B | 16.3 | 1.35 × 104 | FeL2 |
α-mangostin | 16.3 | 1.35 × 104 | FeL2 |
γ-mangostin | 16.3 | 1.35 × 104 | FeL2 |
Metformin (Met) | 16.1 | 1.36 × 109 | FeL2+ |
MitoQ | 16.1 | 5.72 × 1010 | FeL2 |
Morin | 18.1 | 8.14 × 101 | FeL2 |
Myricetin Myricitrin | 27.0 | 9.36 × 10−8 | FeH−1L |
Naringenin | 16.1 | 7.55 × 108 | FeL |
Naringin | 16.1 | 7.55 × 108 | FeL |
Nicotinamide adenine dinucleotide phosphate (NADPH) | 16.1 | 6.01 × 1010 | FeL2 |
Nitecapone | 16.8 | 2.04 × 103 | FeL2− |
Nordihydroguaiaretic acid | 16.3 | 1.35 × 104 | FeL2 |
Oleuropein | 16.3 | 1.35 × 104 | FeL2− |
Opicapone | 16.8 | 2.04 × 103 | FeL2 |
PBT2 | 20.6 | 2.15 × 10−1 | FeL3 |
PBT434 | 16.1 | 3.22 × 109 | FeL2+ |
Petunidin | 16.3 | 1.35 × 104 | FeL2 |
Phenylhydroxamates | 16.1 | 9.46 × 104 | FeL2 |
Piceatannol | 16.3 | 1.35 × 104 | FeL2 |
Pinostrobin (5-hydroxy-7-methoxy-flavone) | 18.1 | 8.14 × 101 | FeL2 |
Piperazine-8-OH-quinolone hybrid | 20.6 | 2.15 × 10−1 | FeL3 |
Protocatechuic acid | 22.2 | 6.16 × 10−3 | FeL23− |
Protosappanin A | 16.3 | 1.35 × 104 | FeL2 |
Punicalangin | 16.1 | 1.14 × 1012 | FeL |
Pyridoxal isonicotinoyl hydrazone (PIH) | 22.9 | 1.07 × 10−3 | FeL2 |
Pyridoxal isonicotinoyl hydrazone derivatives: PCIH PCTH H2NPH H2PPH | 22.9 | 1.07 × 10−3 | FeL2 |
Q1 Q4 | 20.6 | 2.15 × 10−1 | FeL3 |
Quercetin | 27.0 | 9.36 × 10−8 | FeH–1L3− |
Quinoline derivatives as SUMOylation activators | 16.1 | 1.14 × 1016 | FeL2+ |
Radotinib | 21.5 | 3.01 × 10−2 | FeH−2L2 |
Rimonabant | 16.1 | 7.43 × 1021 | FeL2 |
Rosmarinic acid | 16.3 | 1.35 × 104 | FeL2 |
Rutin | 27.0 | 9.36 × 10−8 | FeH−1L |
Salicylate, sodium salt | 16.1 | 1.64 × 106 | FeL33− |
Salvianolic acid B | 16.3 | 1.35 × 104 | FeL2 |
Silibinin (silybin) A, B | 16.1 | 1.99 × 1019 | FeH3L3+ |
Silydianin | 16.1 | 1.99 × 1019 | FeH3L3+ |
Sulfuretin | 16.3 | 1.35 × 104 | FeL2 |
Tanshinol | 16.3 | 1.35 × 104 | FeL2 |
Tannic acid | 16.1 | 6.05 × 1049 | Fe4L |
Taxifolin | 16.1 | 7.55 × 108 | FeL |
Tectorigenin | 16.1 | 7.55 × 108 | FeL |
Tetracycline | 16.1 | 8.35 × 1010 | FeL22− |
Tolcapone (ASI-7) | 16.8 | 2.04 × 103 | FeL2− |
Transilitin | 16.3 | 1.35 × 104 | FeL2 |
o-Trensox | 29.5 | 3.36 × 10−10 | FeL3− |
2,3,3-Trisphosphonate | 18 | 1.06 × 102 | FeL |
Verbascoside | 16.3 | 1.35 × 104 | FeL2 |
Zonisamide | 16.1 | 1.86 × 1011 | FeL2 |
Compound Name(s) | pFe(II) | Kd (nmol/L) | Most Abundant Complex |
---|---|---|---|
7DH 7MH | 6.9 | 1.35 × 103 | FeL |
8A 8B 8C | 6.9 | 1.35 × 103 | FeL |
8E 8F | 6.1 | 4.62 × 104 | FeL2 |
ACPT-I | 6 | 1.20 × 107 | FeL |
Alvespimycin | 6 | 2.07 × 107 | FeL2+ |
Aminothiazoles derivatives as SUMOylation activators | 6 | 2.77 × 106 | FeL |
AMN082 | 6 | 2.07 × 107 | FeL2+ |
Apomorphine | 6 | 1.53 × 107 | FeHL |
l-Arginine | 6 | 3.30 × 107 | FeL2+ |
Ascorbic acid | 6 | 1.89 × 109 | FeL+ |
ASI-1 | 6 | 1.78 × 105 | FeL+ |
ASI-5 | 10.7 | 1.95 × 10−1 | FeL |
Astilbin | 6 | 1.53 × 107 | FeHL |
Azilsartan | 6 | 2.53 × 1015 | FeL2 |
Baicalein | 9.9 | 1.09 | FeL22− |
Benserazide | 9.9 | 1.09 | FeL2 |
(−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives | 6 | 2.07 × 107 | FeL2+ |
2,2′-Bipyridyl | 6.1 | 4.62 × 104 | FeL22+ |
4-((5-bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid (LX007, ZL006) | 6 | 3.13 × 108 | FeL |
C-3 (α carboxyfullerene) | 6 | 6.90 × 106 | FeL |
Caffeic acid amide analogues | 6.7 | 2.02 × 103 | FeH−1L |
Carbazole-derived compounds | 6 | 2.07 × 107 | FeL2+ |
Carbidopa | 6.3 | 1.07 × 104 | FeL |
Carnosic acid | 6 | 1.53 × 107 | FeHL |
Catechin | 6 | 1.53 × 107 | FeHL |
Ceftriaxone | 6 | 1.20 × 107 | FeL |
Celastrol | 6 | 1.53 × 107 | FeHL |
CEP-1347 | 6 | 1.53 × 107 | FeHL |
Chebulagic acid | 6 | 5.66 × 105 | FeL |
Chlorogenic acid | 6 | 2.93 × 106 | FeHL |
Clioquinol | 7.9 | 1.01 × 102 | FeL2 |
Clioquinol-selegiline hybrid | 7.1 | 6.37 × 102 | FeH2L2 |
Clovamide analogues (R1 and R2 = OH, and/or R3 and R4 = OH) | 6 | 1.53 × 107 | FeHL |
“Compound 1” | 6 | 2.07 × 107 | FeL2+ |
“Compound (−)-8a” | 6 | 1.53 × 107 | FeHL |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one | 6 | 1.20 × 107 | FeL+ |
“Compound (−)-21a”, derivative of N-6-(2-(4-(1H-indol-5-yl) piperazin-1-yl)ethyl)-N-6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine | 6 | 2.07 × 107 | FeL2+ |
Creatine | 6 | 1.20 × 107 | FeL+ |
Curcumin | 6 | 4.16 × 109 | FeH2L+ |
Cyanidin | 6 | 1.53 × 107 | FeHL |
D512 | 6 | 2.07 × 107 | FeL2+ |
D607 (bipyridyl-D2R/D3R agonist hybrid) | 6.1 | 4.63 × 104 | FeL2 |
DA-2 (8D) | 6.9 | 1.35 × 103 | FeL |
DA-3 | 6 | 2.07 × 107 | FeL |
DA-4 | 6 | 2.07 × 107 | FeL |
Dabigatran etexilate | 6 | 2.07 × 107 | FeL |
Delphinidin | 9.9 | 1.09 | FeL2 |
Demethoxycurcumin | 6 | 1.78 × 105 | FeL |
Dendropanax morbifera | 6 | 1.53 × 107 | FeHL |
Desferrioxamine (Deferoxamine, Desferal, DFO) | 6.2 | 2.24 × 104 | FeH2L+ |
4,5-O-Dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid derivatives (R1, R2, R3, R4, or R5 = caffeoyl) | 6 | 1.53 × 107 | FeHL |
Dihydromyricetin | 9.9 | 1.09 | FeL2 |
5-(3,4-Dihydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione | 6 | 1.53 × 107 | FeHL+ |
7, 8-Dihydroxycoumarin derivative DHC12 | 6 | 1.53 × 107 | FeHL |
3′,4′-Dihydroxyflavone | 14.8 | 1.58 × 10−5 | FeL+ |
7,8-Dihydroxyflavone | 6 | 1.53 × 107 | FeHL+ |
(E)-3,4-Dihydroxystyryl aralkyl sulfones | 6 | 1.53 × 107 | FeHL+ |
(E)-3,4-Dihydroxystyryl aralkyl sulfoxides | 6 | 1.53 × 107 | FeHL+ |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine | 8.2 | 5.40 × 101 | FeL2 |
DKP | 6 | 4.33 × 105 | FeL |
l-DOPA (levodopa, CVT-301) | 6.3 | 1.07 × 104 | FeL− |
DOPA-derived peptido-mimetics (deprotected) | 10.5 | 2.82 × 10−1 | FeHL |
DOPA-derived peptido-mimetics (protected) | 6 | 1.53 × 107 | FeHL |
l-DOPA deuterated | 6.3 | 1.07 × 104 | FeL− |
Doxycycline | 6 | 4.07 × 108 | FeL |
Droxidopa | 6.3 | 1.07 × 104 | FeL− |
Echinacoside | 6 | 1.53 × 107 | FeHL |
Ellagic acid | 6 | 1.53 × 107 | FeHL |
Entacapone (comtan, ASI-6) | 12.7 | 1.65 × 10−3 | FeL22− |
Enzastaurin | 6 | 2.07 × 107 | FeL |
Epicatechin | 6 | 1.53 × 107 | FeHL |
Etidronate (HEDPA) | 9.9 | 1.14 | FeL2− |
F13714 F15599 | 6 | 2.77 × 106 | FeL |
FIsetin (3,3′,4′,7-tetra-hydroxy-flavone) | 6 | 1.53 × 107 | FeHL |
Fraxetin | 6 | 1.53 × 107 | FeHL+ |
Gallocatechin | 9.9 | 1.09 | FeL2 |
Garcinol | 6 | 1.53 × 107 | FeHL |
Glutamine | 6 | 7.54 × 105 | FeL+ |
Glutathione-hydroxy-quinoline compound | 6.9 | 1.35 × 103 | FeL+ |
Glutathione-l-DOPA compound | 6 | 1.53 × 107 | FeHL |
Gly-N-C-DOPA | 6.3 | 1.07 × 104 | FeL− |
Guanabenz | 6 | 2.07 × 107 | FeL |
8-HQ-MC-5 (VK28) | 6.9 | 1.35 × 103 | FeL |
4-Hydroxyisophthalic acid | 6 | 3.13 × 108 | FeL |
8-hydroxyquinoline | 6.9 | 1.35 × 103 | FeL+ |
8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone | 6.9 | 1.35 × 103 | FeL |
Hydroxy-quinoline-propargyl hybrids (HLA20) | 6.9 | 1.35 × 103 | FeL |
Hydroxytyrosol butyrate | 6 | 1.53 × 107 | FeHL+ |
Isochlorogenic acid | 6 | 2.93 × 106 | FeHL |
KR33493 | 6 | 1.20 × 107 | FeL |
Kukoamine | 6 | 1.53 × 107 | FeHL |
Lestaurtinib | 6 | 2.07 × 107 | FeL |
M10 M30 (VAR10303) M99 | 6.9 | 1.35 × 103 | FeL |
Macranthoin G | 6 | 1.53 × 107 | FeHL |
Magnesium lithospermate B | 6 | 1.53 × 107 | FeHL |
α-mangostin | 6 | 1.53 × 107 | FeHL |
γ-mangostin | 6 | 1.53 × 107 | FeHL |
MAOI-1 | 9.9 | 1.09 | FeL2 |
MAOI-2 | 6 | 2.07 × 107 | FeL |
Meclofenamic acid | 6 | 2.53 × 1015 | FeL2 |
Mildronate | 6 | 2.53 × 1015 | FeL2 |
Mitomycin C | 6 | 6.57 × 107 | FeL |
[18F]MPPF | 6 | 2.07 × 107 | FeL |
Nitecapone | 12.7 | 1.65 × 10−3 | FeL22− |
Nordihydroguaiaretic acid | 6 | 1.53 × 107 | FeHL |
Oleuropein | 6 | 1.53 × 107 | FeHL+ |
Opicapone | 12.7 | 1.65 × 10−3 | FeL2 |
PBF-509 | 6 | 2.07 × 107 | FeL |
PBT2 | 6.9 | 1.35 × 103 | FeL |
PBT434 | 6.2 | 1.80 × 104 | FeL+ |
Petunidin | 6 | 1.53 × 107 | FeHL |
Phenothiazine 2Bc (n=0) | 6 | 2.07 × 107 | FeL2+ |
Phenylhydroxamates | 6 | 5.96 × 107 | FeL2 |
Piceatannol | 6 | 1.53 × 107 | FeHL |
Piperazine-8-OH-quinolone hybrid | 6.9 | 1.35 × 103 | FeL |
Preladenant | 6 | 2.07 × 107 | FeL |
Promethazine | 6 | 2.07 × 107 | FeL2+ |
Protosappanin A | 6 | 1.53 × 107 | FeHL |
Pyridoxal isonicotinoyl hydrazone (PIH) | 7.1 | 6.37 × 102 | FeH2L2 |
Pyridoxal isonicotinoyl hydrazone derivatives: PCIH PCTH H2NPH H2PPH | 7.1 | 6.37 × 102 | FeH2L22+ |
Pyrimidinone 8 | 6 | 2.07 × 107 | FeL |
Q1 Q4 | 6.9 | 1.35 × 103 | FeL |
Radotinib | 6.1 | 4.62 × 104 | FeL2 |
Riboflavin | 6 | 1.22 × 105 | FeL2+ |
Rifampicin (ASI-3) | 6 | 4.07 × 108 | FeL |
Rimonabant | 6 | 4.85 × 1011 | FeL |
Rosmarinic acid | 6 | 1.53 × 107 | FeLH |
Salicylate, sodium salt | 6 | 3.13 × 108 | FeL |
Salvianolic acid B | 6 | 1.53 × 107 | FeHL |
SCH58261SCH412348 | 6 | 2.07 × 107 | FeL |
ST1535 ST4206 | 6 | 2.07 × 107 | FeL |
Staurosporine | 6 | 2.07 × 107 | FeL |
Sulfuretin | 6 | 1.53 × 107 | FeHL |
Tanshinol | 6 | 1.53 × 107 | FeHL |
Tetracycline | 6 | 2.73 × 106 | FeL |
Tolcapone (ASI-7) | 12.7 | 1.65 × 10−3 | FeL22− |
Transilitin | 6 | 1.53 × 107 | FeHL |
2′,3′,4′-trihydroxyflavone | 9.9 | 1.09 | FeL22− |
2,3,3-trisphosphonate | 10.7 | 1.95 × 10−1 | FeL |
V81444 | 6 | 2.77 × 106 | FeL |
Verbascoside | 6 | 2.02 × 106 | FeL |
WIN 55, 212-2 | 6 | 2.07 × 107 | FeL2+ |
Compound Name(s) | pMn(II) | Kd (nmol/L) | Most Abundant Complex |
---|---|---|---|
7DH 7MH | 6.7 | 2.35 × 103 | MnL+ |
8A 8B 8C | 6.7 | 2.35 × 103 | MnL |
8E 8F | 6 | 2.40 × 106 | MnL |
N-Acetyl cysteine | 6 | 8.97 × 105 | MnHL+ |
ACPT-I | 6 | 2.25 × 108 | MnL |
Alvespimycin | 6 | 7.61 × 108 | MnL2+ |
Ambroxol | 6.7 | 2.47 × 103 | MnL+ |
3-(7-amino-5-(cyclohexylamino)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-2-yl)-2-cyanoacrylamide | 6 | 7.61 × 108 | MnL |
Aminothiazoles derivatives as SUMOylation activators | 6 | 7.64 × 107 | MnL |
AMN082 | 6 | 7.61 × 108 | MnL2+ |
Apomorphine | 6 | 7.16 × 108 | MnL |
l-Arginine | 6 | 1.45 × 108 | MnL2+ |
ASI-1 | 6 | 3.44 × 106 | MnL+ |
ASI-5 | 6 | 7.81 × 106 | MnL |
Astilbin | 6 | 7.16 × 108 | MnL |
Azilsartan | 6 | 3.71 × 109 | MnL |
Baicalein | 6 | 2.62 × 107 | MnL |
Benserazide | 6 | 2.62 × 107 | MnL |
(−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives | 6 | 7.61 × 108 | MnL2+ |
2,2′-bipyridyl | 6 | 2.40 × 106 | MnL2+ |
4-((5-bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid (LX007, ZL006) | 6 | 8.72 × 108 | MnL |
C-3 (α carboxyfullerene) | 6 | 5.06 × 106 | MnL |
Caffeic acid amide analogues | 6 | 6.62 × 107 | MnH−1L |
Carbazole-derived compounds | 6 | 7.61 × 108 | MnL2+ |
Carbidopa | 7.6 | 2.33 × 102 | MnHL |
Carnosic acid | 6 | 7.16 × 108 | MnL |
Catechin | 6 | 7.16 × 108 | MnL |
Ceftriaxone | 6 | 2.25 × 108 | MnL |
Celastrol | 6 | 7.16 × 108 | MnL |
CEP1347 | 6 | 3.71 × 109 | MnL |
Chebulagic acid | 6 | 2.62 × 107 | MnL |
Chlorogenic acid | 6 | 3.91 × 107 | MnL− |
Clioquinol | 6.7 | 2.35 × 103 | MnL+ |
Clovamide analogues (R1 and R2 = OH, and/or R3 and R4 = OH) | 6 | 7.16 × 108 | MnL |
“Compound 1” | 6 | 7.61 × 108 | MnL++ |
“Compound (−)-8a” | 6 | 7.16 × 108 | MnL |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one | 6 | 2.25 × 108 | MnL+ |
“Compound (−)-21a”, derivative of N-6-(2-(4-(1H -indol-5-yl)piperazin-1-yl)ethyl)-N-6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine | 6 | 7.61 × 108 | MnL++ |
Creatine | 6 | 2.25 × 108 | MnL+ |
Curcumin | 6 | 3.44 × 106 | MnL |
Cyanidin | 6 | 7.16 × 108 | MnL |
D512 | 6 | 7.61 × 108 | MnL2+ |
D607 (bipyridyl-D2R/D3R agonist hybrid) | 6 | 2.40 × 106 | MnL |
DA-2 (8D) | 6.7 | 2.35 × 103 | MnL |
DA-3 | 6 | 7.61 × 108 | MnL |
DA-4 | 6 | 7.61 × 108 | MnL |
Dabigatran etexilate | 6 | 7.61 × 108 | MnL |
(S)-3,4-DCPG | 6 | 5.91 × 106 | MnL |
Delphinidin | 6 | 2.62 × 107 | MnL |
Demethoxycurcumin | 6 | 3.44 × 106 | MnL |
Dendropanax morbifera active compound | 6 | 7.16 × 108 | MnL |
4,5-O-Dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid derivatives (R1, R2, R3, R4, or R5 = caffeoyl) | 6 | 7.16 × 108 | MnL |
Dihydromyricetin | 6 | 2.62 × 107 | MnL |
5-(3,4-Dihydroxybenzylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione | 6 | 7.16 × 108 | MnL |
7,8-Dihydroxycoumarin derivative DHC12 | 6 | 7.16 × 108 | MnL |
3′,4′-Dihydroxyflavone | 6 | 7.16 × 108 | MnL |
7,8-dihydroxyflavone | 6 | 7.16 × 108 | MnL |
(E)-3,4-Dihydroxystyryl aralkyl sulfones | 6 | 7.16 × 108 | MnL |
(E)-3,4-Dihydroxystyryl aralkyl sulfoxides | 6 | 7.16 × 108 | MnL |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine | 6 | 2.58 × 106 | MnL |
DKP | 6 | 1.00 × 106 | MnHL |
l-DOPA (levodopa, CVT-301) | 7.6 | 2.26 × 102 | MnHL |
DOPA-derived peptido-mimetics (deprotected) | 7.6 | 2.33 × 102 | MnHL |
DOPA-derived peptido-mimetics (protected) | 6 | 7.16 × 108 | MnL |
l-dopa deuterated | 7.6 | 2.26 × 102 | MnHL |
Droxidopa | 7.6 | 2.33 × 102 | MnHL |
Echinacoside | 6 | 7.16 × 108 | MnL |
Ellagic acid | 6 | 7.16 × 108 | MnL |
Entacapone (comtan, ASI-6) | 6 | 6.74 × 105 | MnL |
Enzastaurin | 6 | 7.61 × 108 | MnL |
Epicatechin | 6 | 7.16 × 108 | MnL |
Etidronate (HEDPA) | 6 | 1.03 × 106 | MnL2− |
F13714 F15599 | 6 | 7.64 × 107 | MnL |
Fisetin (3,3′,4′,7-tetra-hydroxy-flavone) | 6 | 7.16 × 108 | MnL |
Fraxetin | 6 | 7.16 × 108 | MnL |
Gallocatechin | 6 | 2.62 × 107 | MnL |
Garcinol | 6 | 7.16 × 108 | MnL |
Glutamine | 6 | 2.30 × 107 | MnL+ |
Glutathione derivatives | 6 | 4.07 × 105 | MnL− |
Glutathione-hydroxy-quinoline compound | 6.7 | 2.35 × 103 | MnL+ |
Glutathione-l-DOPA compound | 6 | 7.16 × 108 | MnL |
Gly-N-C-DOPA | 7.6 | 2.33 × 102 | MnHL |
Guanabenz | 6 | 7.61 × 108 | MnL |
Hinokitiol | 6.1 | 2.99 × 104 | MnL+ |
8-HQ-MC-5 (VK-28) | 6.7 | 2.35 × 103 | MnL |
4-Hydroxyisophthalic acid | 6 | 8.72 × 108 | MnL |
8-hydroxyquinoline | 6.7 | 2.35 × 103 | MnL+ |
8-Hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone | 6.7 | 2.35 × 103 | MnL |
Hydroxy-quinoline-propargyl hybrids (HLA20) | 6.7 | 2.35 × 103 | MnL |
Hydroxytyrosol butyrate | 6 | 7.16 × 108 | MnL |
Isobavachalcone | 6.2 | 1.55 × 104 | MnL+ |
Isochlorogenic acid | 6 | 3.91 × 107 | MnL− |
KR33493 | 6 | 2.25 × 108 | MnL |
Kukoamine | 6 | 7.16 × 108 | MnL |
Lestaurtinib | 6 | 7.61 × 108 | MnL |
Lipoic acid | 6 | 9.53 × 106 | MnL+ |
Luteolin | 6 | 7.16 × 108 | MnL |
M10 M30 (VAR10303) M99 | 6.7 | 2.35 × 103 | MnL |
Macranthoin G | 6 | 7.16 × 108 | MnL |
Magnesium lithospermate B | 6 | 7.16 × 108 | MnL |
α-mangostin | 6 | 7.16 × 108 | MnL |
γ-mangostin | 6 | 7.16 × 108 | MnL |
MAOI-1 | 6 | 2.62 × 107 | MnL |
MAOI-2 | 6 | 7.61 × 108 | MnL |
Meclofenamic acid | 6 | 3.71 × 109 | MnL |
Mildronate | 6 | 3.71 × 109 | MnL |
Mitomycin C | 6 | 7.46 × 107 | MnL |
MitoQ | 6 | 1.29 × 105 | MnL |
[18F]MPPF | 6 | 7.61 × 108 | MnL |
Nicotinamide adenine dinucleotide phosphate (NADPH) | 6 | 2.01 × 107 | MnL |
Nicotinamide mononucleotide | 6 | 6.59 × 106 | MnL |
Nitecapone | 6 | 6.74 × 105 | MnL |
Nordihydroguaiaretic acid | 6 | 7.16 × 108 | MnL |
Oleuropein | 6 | 7.16 × 108 | MnL |
Opicapone | 6 | 6.74 × 105 | MnL |
PBF-509 | 6 | 2.41 × 109 | MnL |
PBT2 | 6 | 5.22 × 105 | MnL+ |
Petunidin | 6 | 7.16 × 108 | MnL |
Phenothiazine 2Bc (n=0) | 6 | 7.61 × 108 | MnL2+ |
Phenylhydroxamates | 6 | 5.81 × 106 | MnL |
Piceatannol | 6 | 7.16 × 108 | MnL |
Piperazine-8-OH-quinolone hybrid | 6.7 | 2.35 × 103 | MnL |
Preladenant | 6 | 7.61 × 108 | MnL |
Promethazine | 6 | 7.61 × 108 | MnL2+ |
Protocatechuic acid | 6 | 3.66 × 108 | MnL− |
Protosappanin A | 6 | 7.16 × 108 | MnL |
Pyrimidinone 8 | 6 | 7.61 × 108 | MnL |
Q1 Q4 | 6.7 | 2.35 × 103 | MnL |
Radotinib | 6 | 2.40 × 106 | MnL |
Riboflavin | 6 | 5.75 × 105 | MnHL3+ |
Rifampicin (ASI-3) | 6 | 1.03 × 106 | MnL |
Rimonabant | 6 | 1.00 × 106 | MnHL |
Rosmarinic acid | 6 | 7.16 × 108 | MnL |
Salicylate, sodium salt | 6 | 8.72 × 108 | MnL |
Salvianolic acid B | 6 | 7.16 × 108 | MnL |
SCH58261 SCH412348 | 6 | 7.61 × 108 | MnL |
ST1535 ST4206 | 6 | 7.61 × 108 | MnL |
Staurosporine | 6 | 7.61 × 108 | MnL |
Sulfuretin | 6 | 7.16 × 108 | MnL |
Tanshinol | 6 | 7.16 × 108 | MnL |
Taurine | 6 | 6.39 × 1011 | MnL2 |
Tetracycline | 6 | 2.14 × 107 | MnL |
Tolcapone (ASI-7) | 6 | 6.74 × 105 | MnL |
Transilitin | 6 | 7.16 × 108 | MnL |
2′,3′,4′-Trihydroxyflavone | 6 | 2.62 × 107 | MnL |
V81444 | 6 | 7.64 × 107 | MnL |
Verbascoside | 6 | 6.62 × 107 | MnH−1L |
WIN 55,212-2 | 6 | 7.61 × 108 | MnL2+ |
Compound Name(s) | pZn(II) | Kd (nmol/L) | Most Abundant Complex |
---|---|---|---|
7DH 7MH | 7.5 | 3.16 × 102 | ZnL |
8A 8B 8C | 7.5 | 3.16 × 102 | ZnL |
8E 8F | 6.4 | 6.31 × 103 | ZnL |
N-acetyl cystein | 6 | 1.66 × 106 | ZnL |
ACPT-I | 6 | 1.46 × 107 | ZnL |
Alaternin | 6.8 | 1.83 × 103 | ZnL |
Alvespimycin | 6 | 7.85 × 105 | ZnL2+ |
AM-251 | 6 | 1.95 × 106 | ZnHL |
Ambroxol | 7.7 | 1.90 × 102 | ZnL2 |
3-(7-amino-5-(cyclohexylamino)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-2-yl)-2-cyanoacrylamide | 6 | 7.85 × 105 | ZnL |
Aminothiazoles derivatives as SUMOylation activators | 6 | 2.28 × 105 | ZnL |
AMN082 | 6 | 7.85 × 105 | ZnL2+ |
Antagonist of the A(2A) adenosine receptor - derivative 49 | 6 | 1.95 × 106 | ZnHL |
Apigenin | 6 | 1.23 × 1029 | ZnH3L |
Apomorphine | 6 | 7.76 × 106 | ZnL |
l-Arginine | 6 | 4.14 × 106 | ZnL2+ |
Ascorbic acid | 6.1 | 4.67 × 104 | ZnL+ |
ASI-1 | 6 | 5.76 × 105 | ZnL+ |
ASI-5 | 6 | 9.06 × 106 | ZnL |
Astilbin | 6 | 7.76 × 106 | ZnL |
Azilsartan | 6 | 5.22 × 105 | ZnL |
Baicalein | 6 | 2.71 × 105 | ZnL |
Benserazide | 6 | 2.71 × 105 | ZnL |
7H-Benzo[e] perimidin-7-one derivatives (R6 = OH) | 6.1 | 4.82 × 104 | ZnL2 |
4H-1-benzopyran-4-one | 6 | 3.56 × 1020 | ZnH3L |
8-Benzyl-tetrahydropyrazino[2,1-f]purinedione (derivative n. 57) | 6 | 9.67 × 1011 | ZnL |
Bikaverin | 6.3 | 1.07 × 104 | ZnH−2L2− |
(−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives | 6 | 7.85 × 105 | ZnL2+ |
2,2′-bipyridyl | 6.4 | 6.31 × 103 | ZnL2+ |
4-((5-Bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid (LX007, ZL006) | 6 | 8.04 × 108 | ZnH−1L |
C-3 (α carboxyfullerene) | 6 | 2.08 × 106 | ZnL |
Caffeic acid amide analogues | 6 | 9.29 × 105 | ZnH−1L |
Carbazole-derived compounds | 6 | 7.85 × 105 | ZnL2+ |
Carbidopa | 6 | 2.96 × 106 | ZnHL |
Carnosic acid | 6 | 7.76 × 106 | ZnL |
Cathechin | 6 | 7.76 × 106 | ZnL |
Ceftriaxone | 6.1 | 3.68 × 104 | ZnL |
Celastrol | 6 | 7.76 × 106 | ZnL |
Chebulagic acid | 6 | 1.81 × 1013 | Zn2L |
Chlorogenic acid | 6 | 6.86 × 105 | ZnL− |
3′-O-(3-Chloropivaloyl) quercetin | 6 | 5.69 × 1016 | ZnH3L |
Chlorpromazine | 6 | 1.95 × 106 | ZnHL3+ |
Chrysin | 6 | 5.69 × 1016 | ZnH3L |
Clioquinol | 7.5 | 3.16 × 102 | ZnL+ |
Clovamide analogues (R1 and R2 = OH, and/or R3 and R4 = OH) | 6 | 7.76 × 106 | ZnL |
“Compound 1” | 6 | 7.85 × 105 | ZnL2+ |
“Compound (−)-8a” | 6 | 7.76 × 106 | ZnL |
“Compound 8” | 6.4 | 6.47 × 103 | ZnH−1L |
“Compound 21”, derivative of 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one | 6 | 1.54 × 106 | ZnL+ |
“Compound (−)-21a”, derivative of N-6-(2-(4-(1H -indol-5-yl)piperazin-1-yl)ethyl)-N-6-propyl-4,5,6,7-tetrahydrobenzo [d]thiazole-2,6-diamine | 6 | 7.85 × 105 | ZnL2+ |
Creatine | 6 | 1.54 × 106 | ZnL+ |
Cudraflavone B | 6 | 5.69 × 1016 | ZnH3L |
Curcumin | 6 | 5.76 × 105 | ZnL |
Cyanidin | 6 | 7.76 × 106 | ZnL |
D512 | 6 | 7.85 × 105 | ZnL2+ |
D607 (bipyridyl-D2R/D3R agonist hybrid) | 6.4 | 6.31 × 103 | ZnL |
DA-2 (8D) | 7.5 | 2.80 × 102 | ZnL |
DA-3 | 6 | 7.85 × 105 | ZnL |
DA-4 | 6 | 7.85 × 105 | ZnL |
Dabigatran etexilate | 6 | 7.85 × 105 | ZnL |
Dabrafenib | 6 | 8.23 × 107 | ZnL |
(S)-3,4-DCPG | 6 | 6.84 × 106 | ZnL |
Deferricoprogen | 8.3 | 4.35 × 101 | ZnHL |
Delphinidin | 6 | 2.71 × 105 | ZnL |
Demethoxycurcumin | 6 | 5.76 × 105 | ZnL |
Dendropanax morbifera active compound | 6 | 7.76 × 106 | ZnL |
Desferrioxamine (Deferoxamine, Desferal, DFO) | 7.4 | 3.97 × 102 | ZnH2L+ |
(S)-N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl) -6-methoxypyridin-2-amine | 6 | 1.95 × 106 | ZnHL |
4,5-O-Dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid derivatives (R1, R2, R3, R4, or R5 = caffeoyl) | 6 | 7.76 × 106 | ZnL |
Dihydromyricetin | 6 | 2.71 × 105 | ZnL |
5-(3,4-Dihydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione | 6 | 7.76 × 106 | ZnL |
7,8-Dihydroxycoumarin derivative DHC12 | 6 | 7.76 × 106 | ZnL |
3′,4′-Dihydroxyflavone | 6 | 7.76 × 106 | ZnL |
7,8-Dihydroxyflavone | 6 | 7.76 × 106 | ZnL |
(E)-3,4-Dihydroxystyryl aralkyl sulfones | 6 | 7.76 × 106 | ZnL |
(E)-3,4-Dihydroxystyryl aralkyl sulfoxides | 6 | 7.76 × 106 | ZnL |
2-[[(1,1-Dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine | 6 | 2.20 × 106 | ZnL |
DKP | 6 | 1.52 × 106 | ZnL |
l-DOPA (levodopa, CVT-301) | 6 | 2.96 × 106 | ZnHL |
DOPA-derived peptido-mimetics (deprotected) | 6 | 2.96 × 106 | ZnHL |
DOPA-derived peptido-mimetics (protected) | 6 | 7.76 × 106 | ZnL |
l-dopa deuterated | 6 | 2.96 × 106 | ZnHL |
Doxycycline | 6.1 | 3.88 × 104 | ZnL |
Droxidopa | 10.9 | 1.18 × 10−1 | ZnHL |
Echinacoside | 6 | 7.76 × 106 | ZnL |
Ellagic acid | 6 | 7.76 × 106 | ZnL |
Entacapone (comtan, ASI-6) | 6.2 | 2.62 × 104 | ZnL |
Enzastaurin | 6 | 7.85 × 105 | ZnL |
Epicatechin | 6 | 7.76 × 106 | ZnL |
Epigallocatechin-3-gallate | 6 | 1.81 × 1013 | Zn2L |
Etidronate (HEDPA) | 7.4 | 4.32 × 102 | ZnL2− |
Exifone | 6 | 1.81 × 1013 | Zn2L |
F13714, F15599 | 6 | 2.28 × 105 | ZnL |
Fisetin (3,3′,4′,7-tetra-hydroxy-flavone) | 6 | 7.76 × 106 | ZnL |
Fraxetin | 6 | 7.76 × 106 | ZnL |
Gallic acid derivatives | 6 | 1.81 × 1013 | Zn2L |
Gallocatechin | 6 | 2.71 × 105 | ZnL |
Garcinol | 6 | 7.76 × 106 | ZnL |
Glutamine | 6 | 8.61 × 105 | ZnL+ |
Glutathione derivatives | 14.8 | 1.20 × 10−5 | ZnH−2L22− |
Glutathione-hydroxy-quinoline compound | 7.8 | 1.37 × 102 | ZnH−1L+ |
Glutathione-l-DOPA compound | 6.3 | 1.20 × 104 | ZnH−1L |
Gly-N-C-DOPA | 6 | 2.96 × 106 | ZnHL |
GSK2795039 | 9.7 | 1.64 | ZnL2 |
Guanabenz | 6 | 7.85 × 105 | ZnL |
Hinokitiol | 6.2 | 2.06 × 104 | ZnL+ |
8-HQ-MC-5 (VK-28) | 7.5 | 3.16 × 102 | ZnL |
4-Hydroxyisophthalic acid | 6 | 9.02 × 107 | ZnL |
1-Hydroxy-2-pyridinone derivatives | 6.3 | 1.01 × 104 | ZnL |
3-Hydroxy-4(1H)pyridinone (Deferiprone) | 6.2 | 1.45 × 104 | ZnL+ |
3-Hydroxy-4(1H)pyridinone derivatives (R = H) | 6.2 | 1.45 × 104 | ZnL |
8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone | 7.5 | 3.16 × 102 | ZnL |
Hydroxy-quinoline-propargyl hybrids (HLA20) | 7.5 | 3.16 × 102 | ZnL |
Hydroxytyrosol butyrate | 6 | 7.76 × 106 | ZnL |
l-(7-Imino-3-propyl-2,3-dihydrothiazolo [4,5-d] pyrimidin-6(7H)-yl)urea | 6.5 | 5.10 × 103 | ZnH−1L |
Imipramine | 6 | 1.95 × 106 | ZnHL3+ |
Isobavachalcone | 6 | 2.12 × 105 | ZnL+ |
Isochlorogenic acid | 6 | 6.86 × 105 | ZnL− |
Isoquercetin (isoquercitrin) | 6 | 3.94 × 1024 | ZnH4L |
Kaempferol | 6 | 3.94 × 1024 | ZnH4L+ |
Kaempferol, 3-O-a-L arabino-furanoside-7-O-a- L-rhamno-pyranoside | 6 | 3.56 × 1020 | ZnH3L |
KR33493 | 6 | 1.54 × 106 | ZnL |
Kukoamine | 6 | 7.76 × 106 | ZnL |
Lestaurtinib | 6 | 7.85 × 105 | ZnL |
Lipoic acid | 6 | 3.84 × 106 | ZnL+ |
LY354740 | 6 | 1.46 × 107 | ZnL |
M10 M30 (VAR10303) M99 | 7.5 | 3.16 × 102 | ZnL |
Macranthoin G | 6 | 7.76 × 106 | ZnL |
Magnesium lithospermate B | 6 | 7.76 × 106 | ZnL |
α-mangostin | 6 | 7.76 × 106 | ZnL |
γ- mangostin | 6 | 7.76 × 106 | ZnL |
MAOI-1 | 6 | 2.71 × 105 | ZnL |
MAOI-2 | 6 | 7.85 × 105 | ZnL |
MAOI-4 | 6 | 5.88 × 105 | ZnHL |
Metformin (Met) | 6 | 1.87 × 106 | ZnL+ |
Methoxy-6-acetyl-7-methylijuglone | 6.1 | 4.82 × 104 | ZnL2 |
N′-(4-methylbenzylidene)-5-phenylisoxazole-3-carbohydrazide | 6 | 1.76 × 106 | ZnL |
Minocycline | 6.4 | 7.52 × 103 | ZnHL |
Mitomycin C | 6 | 3.49 × 106 | ZnL |
MitoQ | 7.1 | 8.74 × 102 | ZnL |
Morin | 6 | 5.69 × 1016 | ZnH3L |
[18F]MPPF | 6 | 7.85 × 105 | ZnL |
MSX-3 | 6 | 8.19 × 106 | ZnL |
Nicotinamide adenine dinucleotide phosphate (NADPH) | 6.1 | 3.72 × 104 | ZnL |
Nicotinamide mononucleotide | 6 | 8.19 × 106 | ZnL |
Nitecapone | 6.2 | 2.62 × 104 | ZnL |
Nordihydroguaiaretic acid | 6 | 7.76 × 106 | ZnL |
Oleuropein | 6 | 7.76 × 106 | ZnL |
Opicapone | 6.2 | 2.62 × 104 | ZnL |
P7C3 | 6 | 1.96 × 107 | ZnL2+ |
PBF-509 | 6 | 7.85 × 105 | ZnL |
PBT2 | 7.5 | 3.16 × 102 | ZnL |
PBT434 | 7.9 | 1.19 × 102 | ZnL2 |
Petunidin | 6 | 7.76 × 106 | ZnL |
Phenothiazine 2Bc (n=0) | 6 | 7.85 × 105 | ZnL2+ |
Phenothiazine 2Bc (n=1) | 6 | 1.95 × 106 | ZnHL3+ |
Phenylhydroxamates | 6 | 2.07 × 105 | ZnL |
Piceatannol | 6 | 7.76 × 106 | ZnL |
Piperazine-8-OH-quinolone hybrid | 7.5 | 3.16 × 102 | ZnL |
Preladenant | 6 | 7.85 × 105 | ZnL |
Promethazine | 6 | 7.85 × 105 | ZnL2+ |
Protocatechuic acid | 6 | 1.25 × 107 | ZnL− |
Protosappanin A | 6 | 7.76 × 106 | ZnL |
Pyrazolobenzothiazine-based carbothioamides | 6 | 4.73 × 107 | ZnL |
Pyrimidinone 8 | 6 | 7.85 × 105 | ZnL |
Q1 Q4 | 7.5 | 3.16 × 102 | ZnL |
Quercetin | 6 | 3.94 × 1024 | ZnH4L+ |
Quinoline derivatives as SUMOylation activators | 6 | 3.94 × 106 | ZnL2+ |
Radotinib | 6.4 | 6.31 × 103 | ZnL |
Riboflavin | 6 | 2.16 × 105 | ZnHL3+ |
Rifampicin (ASI-3) | 6.1 | 7.04 × 104 | ZnL |
Rimonabant | 6 | 1.52 × 106 | ZnL |
Rosmarinic acid | 6 | 7.76 × 106 | ZnL |
Rutin | 6 | 3.94 × 1024 | ZnH4L+ |
Salicylate, sodium salt | 6 | 9.02 × 107 | ZnL |
Salvianolic acid B | 6 | 7.76 × 106 | ZnL |
SCH58261 SCH412348 | 6 | 7.85 × 105 | ZnL |
ST1535 ST4206 | 6 | 7.85 × 105 | ZnL |
Staurosporine | 6 | 7.85 × 105 | ZnL |
Stemazole | 6 | 4.73 × 107 | ZnL |
Sulfuretin | 6 | 7.76 × 106 | ZnL |
Tannic acid | 6 | 1.22 × 105 | ZnL |
Tanshinol | 6 | 7.76 × 106 | ZnL |
Taurine | 6 | 1.26 × 1012 | ZnL2 |
Tetracycline | 6 | 7.01 × 106 | ZnL |
Tolcapone (ASI-7) | 6.2 | 2.62 × 104 | ZnL |
Tozadenant | 8.7 | 1.62 × 101 | ZnL2 |
Transilitin | 6.1 | 8.21 × 104 | ZnL |
o-Trensox | 21.7 | 1.95 × 10−12 | ZnL4− |
2′, 3′, 4′-Trihydroxyflavone | 6 | 2.71 × 105 | ZnL |
2,3,3-Trisphosphonate | 12.1 | 7.93 × 10−3 | ZnL |
V81444 | 6 | 2.28 × 105 | ZnL |
VAS3947 VAS2870 | 6.5 | 5.10 × 103 | ZnH−1L |
Verbascoside | 6 | 9.29 × 105 | ZnH−1L |
WIN 55,212-2 | 6 | 7.85 × 105 | ZnL2+ |
WR-1065 | 6 | 1.95 × 106 | ZnHL3+ |
Zonisamide | 8 | 8.81 × 101 | ZnL |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosato, M.; Di Marco, V. Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019, 9, 269. https://doi.org/10.3390/biom9070269
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules. 2019; 9(7):269. https://doi.org/10.3390/biom9070269
Chicago/Turabian StyleTosato, Marianna, and Valerio Di Marco. 2019. "Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs" Biomolecules 9, no. 7: 269. https://doi.org/10.3390/biom9070269
APA StyleTosato, M., & Di Marco, V. (2019). Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules, 9(7), 269. https://doi.org/10.3390/biom9070269