[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Effects of the Serotonin 5-HT1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l-DOPA Administration in Hemi-Parkinsonian Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Peak-dose dyskinesia is associated with the dramatic increase in striatal dopamine levels that follows l-DOPA administration. The ‘false neurotransmitter’ hypothesis postulates that the latter is likely due to an aberrant processing of l-DOPA by serotonergic neurons. In keeping with this hypothesis, two highly selective ‘biased agonists’ of 5-HT1A receptors—namely F13714 and F15599 (NLX-101)—were recently shown to exhibit exceptionally potent anti-dyskinetic activity without impairing l-DOPA therapeutic properties despite their differential targeting of 5-HT1A receptor sub-populations. In this study, we investigated whether these two compounds dampened peak l-DOPA-induced dopamine microdialysate levels in the striatum of hemi-parkinsonian rats. Acute administration of either F13714 (0.04 and 0.16 mg/kg i.p.) or F15599 (0.16 and 0.64 mg/kg, i.p.) blunted l-DOPA (2 mg/kg)-induced increases in dopamine microdialysate levels in the denervated striatum (following unilateral injection of 6-OHDA into the medial forebrain bundle). No significant changes were observed on the intact side of the brain. Concurrently, both drugs profoundly reduced striatal serotonin levels on both sides of the brain. In addition, F13714 and F15599, in the presence of l-DOPA, produced a dose-dependent increase in glutamate levels, but this effect was restricted to later time points. These finding support the interpretation that F13714 and F15599 mediate their anti-dyskinetic effects by blunting of the peak in dopamine levels via activation of somatodendritic serotonin 5-HT1A receptors and the consequent inhibition of serotonergic neurons. This study adds to the growing body of evidence supporting the development of a potent 5-HT1A receptor agonist for treatment of peak-dose dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(Suppl 1):325–337

    Article  CAS  PubMed  Google Scholar 

  2. Vijayakumar D, Jankovic J (2016) Drug-induced dyskinesia, Part 1: treatment of levodopa-induced dyskinesia. Drugs 76:759–777

    Article  CAS  PubMed  Google Scholar 

  3. Cenci AM (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharma S, Singh S, Sharma V, Singh VP, Deshmukh R (2015) Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother 70:283–293

    Article  CAS  PubMed  Google Scholar 

  5. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431

    Article  PubMed  PubMed Central  Google Scholar 

  6. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754

    Article  PubMed  Google Scholar 

  7. Lee J, Zhu WM, Stanic D, Finkelstein DI, Horne MH, Henderson J, Lawrence AJ, O’Connor L, Tomas D, Drago J, Horne MK (2008) Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain 131:1574–1587

    Article  PubMed  Google Scholar 

  8. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131

    PubMed  Google Scholar 

  9. Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68:619–628

    Article  CAS  PubMed  Google Scholar 

  10. Cheshire PA, Williams DR (2012) Serotonergic involvement in levodopa-induced dyskinesias in Parkinson’s disease. J Clin Neurosci 19:343–348

    Article  CAS  PubMed  Google Scholar 

  11. Cheshire P, Ayton S, Bertram KL, Ling H, Li A, McLean C, Halliday GM, O’Sullivan SS, Revesz T, Finkelstein DI, Storey E, Williams DR (2015) Serotonergic markers in Parkinson’s disease and levodopa-induced dyskinesias. Mov Disord 30:796–804

    Article  CAS  PubMed  Google Scholar 

  12. Lee JY, Seo S, Lee JS, Kim HJ, Kim YK, Jeon BS (2015) Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease. Neurology 85:853–860

    Article  CAS  PubMed  Google Scholar 

  13. Pagano G, Niccolini F, Politis M (2017) The serotonergic system in Parkinson’s patients with dyskinesia: evidence from imaging studies. J Neural Transm. https://doi.org/10.1007/s00702-017-1823-7

    PubMed  Google Scholar 

  14. Roussakis AA, Politis M, Towey D, Piccini P (2016) Serotonin-to-dopamine transporter ratios in Parkinson disease: relevance for dyskinesias. Neurology 86:1152–1158

    Article  CAS  PubMed  Google Scholar 

  15. Carta M, Tronci E (2014) Serotonin system implication in l-DOPA-induced dyskinesia: from animal models to clinical investigations. Front Neurol 5:78

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lanza K, Bishop C (2018) Serotonergic targets for the treatment of l-DOPA-induced dyskinesia. J Neural Transm. https://doi.org/10.1007/s00702-017-1837-1

    PubMed  Google Scholar 

  17. Andrade R, Huereca D, Lyons JG, Andrade EM, McGregor KM (2015) 5-HT1A receptor-mediated autoinhibition and the control of serotonergic cell firing. ACS Chem Neurosci 6:1110–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bibbiani F, Oh JD, Chase TN (2001) Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834

    Article  CAS  PubMed  Google Scholar 

  19. Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT(1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 87:306–314

    Article  CAS  PubMed  Google Scholar 

  20. Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230:463–476

    Article  CAS  PubMed  Google Scholar 

  21. Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339:2–8

    Article  CAS  PubMed  Google Scholar 

  22. Huot P, Johnston TH, Fox SH, Newman-Tancredi A, Brotchie JM (2015) The highly-selective 5-HT agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology 97:306–311

    Article  CAS  PubMed  Google Scholar 

  23. Iderberg H, McCreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Activity of serotonin 5-HT1A receptor ‘biased agonists’ in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharmacology 93:52–67

    Article  CAS  PubMed  Google Scholar 

  24. Iderberg H, McCreary AC, Varney MA, Kleven MS, Koek W, Bardin L, Depoortère R, Cenci MA, Newman-Tancredi A (2015) NLX-112, a novel 5-HT1A receptor agonist for the treatment of l-DOPA-induced dyskinesia: behavioral and neurochemical profile in rat. Exp Neurol 271:335–350

    Article  CAS  PubMed  Google Scholar 

  25. Meadows SM, Chambers NE, Conti MM, Bossert SC, Tasber C, Sheena E, Varney M, Newman-Tancredi A, Bishop C (2017) Characterizing the differential roles of striatal 5-HT1A auto- and hetero-receptors in the reduction of l-DOPA-induced dyskinesia. Exp Neurol 292:168–178

    Article  CAS  PubMed  Google Scholar 

  26. McCreary AC, Varney MA, Newman-Tancredi A (2016) The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: a chronic administration study with microdialysis measurements. Neuropharmacology 105:651–660

    Article  CAS  PubMed  Google Scholar 

  27. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P (2006) Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67:1612–1617

    Article  CAS  PubMed  Google Scholar 

  28. Assie MB, Lomenech H, Ravailhe V, Faucillon V, Newman-Tancredi A (2006) Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. Br J Pharmacol 149:170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newman-Tancredi A (2011) Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry 1:149–164

    Article  Google Scholar 

  30. Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors. Br J Pharmacol 160:1929–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156:338–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huot P, Brotchie JM (2011) 5-HT(1A) receptor stimulation and l-DOPA-induced dyskinesia in Parkinson’s disease: bridging the gap between serotonergic and glutamatergic mechanisms. Exp Neurol 231:195–198

    Article  CAS  PubMed  Google Scholar 

  33. Iderberg H, McCreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Activity of serotonin 5-HT receptor ‘biased agonists’ in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharmacology 93C:52–67

    Article  Google Scholar 

  34. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, Cambridge

    Google Scholar 

  35. Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19:777–785

    Article  CAS  PubMed  Google Scholar 

  36. Moore NA, Rees G, Sanger G, Perrett L (1993) 5-HT1A-mediated lower lip retraction: effects of 5-HT1A agonists and antagonists. Pharmacol Biochem Behav 46:141–143

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in l-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634

    Article  CAS  PubMed  Google Scholar 

  38. Nahimi A, Holtzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AK, Vang K, Moller A, Wegener G, Gjedde A, Doudet DJ (2012) Serotonergic modulation of receptor occupancy in rats treated with l-DOPA after unilateral 6-OHDA lesioning. J Neurochem 120:806–817

    Article  CAS  PubMed  Google Scholar 

  39. Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833

    Article  PubMed  Google Scholar 

  40. Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered l-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353

    Article  CAS  PubMed  Google Scholar 

  41. Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C (2009) The role of the dorsal raphe nucleus in the development, expression, and treatment of l-DOPA-induced dyskinesia in hemiparkinsonian rats. Synapse 63:610–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22:1406–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro L (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58:193–199

    Article  CAS  PubMed  Google Scholar 

  44. Mignon LJ, Wolf WA (2005) 8-hydroxy-2-(di-n-propylamino)tetralin reduces striatal glutamate in an animal model of Parkinson’s disease. Neuroreport 16:699–703

    Article  CAS  PubMed  Google Scholar 

  45. Dupre KB, Ostock CY, Eskow Jaunarajs KL, Button T, Savage LM, Wolf W, Bishop C (2011) Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol 229:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ostock CY, Dupre KB, Jaunarajs KL, Walters H, George J, Krolewski D, Walker PD, Bishop C (2011) Role of the primary motor cortex in l-Dopa-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology 61:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Celada P, Bortolozzi A, Artigas F (2013) Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 27:703–716

    Article  CAS  PubMed  Google Scholar 

  48. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

    Article  PubMed  Google Scholar 

  49. Brys I, Halje P, Scheffer-Teixeira R, Varney M, Newman-Tancredi A, Petersson P (2018) Neurophysiological effects in cortico-basal ganglia-thalamic circuits of antidyskinetic treatment with 5-HT1A receptor biased agonists. Exp Neurol 302:155–168

    Article  CAS  PubMed  Google Scholar 

  50. Marin C, Aguilar E, Rodriguez-Oroz MC, Bartoszyk GD, Obeso JA (2009) Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacology 204:241–250

    Article  CAS  PubMed  Google Scholar 

  51. Nelson AB, Kreitzer AC (2014) Reassessing models of basal ganglia function and dysfunction. Annu Rev Neurosci 37:117–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Isbister GK, Buckley NA (2005) The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clin Neuropharmacol 28:205–214

    Article  CAS  PubMed  Google Scholar 

  53. Green AR, Backus LI (1990) Animal models of serotonin behavior. Ann N Y Acad Sci 600:237–248 discussion 248 – 239

    Article  CAS  PubMed  Google Scholar 

  54. Bijl D (2004) The serotonin syndrome. Neth J Med 62:309–313

    CAS  PubMed  Google Scholar 

  55. Arvidsson LE, Hacksell U, Nilsson JL, Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikstrom H (1981) 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. J Med Chem 24:921–923

    Article  CAS  PubMed  Google Scholar 

  56. Tricklebank MD, Forler C, Fozard JR (1984) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106:271–282

    Article  CAS  PubMed  Google Scholar 

  57. Assie MB, Bardin L, Auclair AL, Carilla-Durand E, Depoortere R, Koek W, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2010) F15599, a highly selective post-synaptic 5-HT1A receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int J Neuropsychopharmacol 13:1285–1298

    Article  CAS  PubMed  Google Scholar 

  58. Berendsen HH, Bourgondien FG, Broekkamp CL (1994) Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol 263:315–318

    Article  CAS  PubMed  Google Scholar 

  59. Higgins GA, Elliott PJ (1991) Differential behavioural activation following intra-raphe infusion of 5-HT1A receptor agonists. Eur J Pharmacol 193:351–356

    Article  CAS  PubMed  Google Scholar 

  60. Assié M-B, Ravailhe V, Benas C, Newman-Tancredi A (2008) Differential effects of 5-HT1A receptor agonists on extracellular levels of 5-HT in hippocampus and of dopamine in frontal cortex of freely moving rats. In: British Association for Psychopharmacology Summer Meeting. Harrogate, Poster ID 59

  61. Becker G, Bolbos R, Costes N, Redoute J, Newman-Tancredi A, Zimmer L (2016) Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study. Sci Rep 6:26633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Michael J. Fox Foundation for Parkinson’s Research and in vivo and bioanalytical support of the respective teams at Brain OnLine B.V. We thank Alexandre Seillier for assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Newman-Tancredi.

Ethics declarations

Conflict of interest

Adrian Newman-Tancredi and Mark A. Varney are employees of Neurolixis Inc. At the time the studies were conducted, Andrew C. McCreary was an employee of Brain OnLine B.V.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman-Tancredi, A., Varney, M.A. & McCreary, A.C. Effects of the Serotonin 5-HT1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l-DOPA Administration in Hemi-Parkinsonian Rats. Neurochem Res 43, 1035–1046 (2018). https://doi.org/10.1007/s11064-018-2514-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2514-y

Keywords

Navigation