Abstract
Peak-dose dyskinesia is associated with the dramatic increase in striatal dopamine levels that follows l-DOPA administration. The ‘false neurotransmitter’ hypothesis postulates that the latter is likely due to an aberrant processing of l-DOPA by serotonergic neurons. In keeping with this hypothesis, two highly selective ‘biased agonists’ of 5-HT1A receptors—namely F13714 and F15599 (NLX-101)—were recently shown to exhibit exceptionally potent anti-dyskinetic activity without impairing l-DOPA therapeutic properties despite their differential targeting of 5-HT1A receptor sub-populations. In this study, we investigated whether these two compounds dampened peak l-DOPA-induced dopamine microdialysate levels in the striatum of hemi-parkinsonian rats. Acute administration of either F13714 (0.04 and 0.16 mg/kg i.p.) or F15599 (0.16 and 0.64 mg/kg, i.p.) blunted l-DOPA (2 mg/kg)-induced increases in dopamine microdialysate levels in the denervated striatum (following unilateral injection of 6-OHDA into the medial forebrain bundle). No significant changes were observed on the intact side of the brain. Concurrently, both drugs profoundly reduced striatal serotonin levels on both sides of the brain. In addition, F13714 and F15599, in the presence of l-DOPA, produced a dose-dependent increase in glutamate levels, but this effect was restricted to later time points. These finding support the interpretation that F13714 and F15599 mediate their anti-dyskinetic effects by blunting of the peak in dopamine levels via activation of somatodendritic serotonin 5-HT1A receptors and the consequent inhibition of serotonergic neurons. This study adds to the growing body of evidence supporting the development of a potent 5-HT1A receptor agonist for treatment of peak-dose dyskinesia.
Similar content being viewed by others
References
Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(Suppl 1):325–337
Vijayakumar D, Jankovic J (2016) Drug-induced dyskinesia, Part 1: treatment of levodopa-induced dyskinesia. Drugs 76:759–777
Cenci AM (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242
Sharma S, Singh S, Sharma V, Singh VP, Deshmukh R (2015) Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother 70:283–293
Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431
de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754
Lee J, Zhu WM, Stanic D, Finkelstein DI, Horne MH, Henderson J, Lawrence AJ, O’Connor L, Tomas D, Drago J, Horne MK (2008) Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain 131:1574–1587
Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131
Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68:619–628
Cheshire PA, Williams DR (2012) Serotonergic involvement in levodopa-induced dyskinesias in Parkinson’s disease. J Clin Neurosci 19:343–348
Cheshire P, Ayton S, Bertram KL, Ling H, Li A, McLean C, Halliday GM, O’Sullivan SS, Revesz T, Finkelstein DI, Storey E, Williams DR (2015) Serotonergic markers in Parkinson’s disease and levodopa-induced dyskinesias. Mov Disord 30:796–804
Lee JY, Seo S, Lee JS, Kim HJ, Kim YK, Jeon BS (2015) Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease. Neurology 85:853–860
Pagano G, Niccolini F, Politis M (2017) The serotonergic system in Parkinson’s patients with dyskinesia: evidence from imaging studies. J Neural Transm. https://doi.org/10.1007/s00702-017-1823-7
Roussakis AA, Politis M, Towey D, Piccini P (2016) Serotonin-to-dopamine transporter ratios in Parkinson disease: relevance for dyskinesias. Neurology 86:1152–1158
Carta M, Tronci E (2014) Serotonin system implication in l-DOPA-induced dyskinesia: from animal models to clinical investigations. Front Neurol 5:78
Lanza K, Bishop C (2018) Serotonergic targets for the treatment of l-DOPA-induced dyskinesia. J Neural Transm. https://doi.org/10.1007/s00702-017-1837-1
Andrade R, Huereca D, Lyons JG, Andrade EM, McGregor KM (2015) 5-HT1A receptor-mediated autoinhibition and the control of serotonergic cell firing. ACS Chem Neurosci 6:1110–1115
Bibbiani F, Oh JD, Chase TN (2001) Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834
Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT(1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 87:306–314
Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230:463–476
Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339:2–8
Huot P, Johnston TH, Fox SH, Newman-Tancredi A, Brotchie JM (2015) The highly-selective 5-HT agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology 97:306–311
Iderberg H, McCreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Activity of serotonin 5-HT1A receptor ‘biased agonists’ in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharmacology 93:52–67
Iderberg H, McCreary AC, Varney MA, Kleven MS, Koek W, Bardin L, Depoortère R, Cenci MA, Newman-Tancredi A (2015) NLX-112, a novel 5-HT1A receptor agonist for the treatment of l-DOPA-induced dyskinesia: behavioral and neurochemical profile in rat. Exp Neurol 271:335–350
Meadows SM, Chambers NE, Conti MM, Bossert SC, Tasber C, Sheena E, Varney M, Newman-Tancredi A, Bishop C (2017) Characterizing the differential roles of striatal 5-HT1A auto- and hetero-receptors in the reduction of l-DOPA-induced dyskinesia. Exp Neurol 292:168–178
McCreary AC, Varney MA, Newman-Tancredi A (2016) The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: a chronic administration study with microdialysis measurements. Neuropharmacology 105:651–660
Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P (2006) Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67:1612–1617
Assie MB, Lomenech H, Ravailhe V, Faucillon V, Newman-Tancredi A (2006) Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. Br J Pharmacol 149:170–178
Newman-Tancredi A (2011) Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry 1:149–164
Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors. Br J Pharmacol 160:1929–1940
Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156:338–353
Huot P, Brotchie JM (2011) 5-HT(1A) receptor stimulation and l-DOPA-induced dyskinesia in Parkinson’s disease: bridging the gap between serotonergic and glutamatergic mechanisms. Exp Neurol 231:195–198
Iderberg H, McCreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Activity of serotonin 5-HT receptor ‘biased agonists’ in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharmacology 93C:52–67
Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, Cambridge
Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19:777–785
Moore NA, Rees G, Sanger G, Perrett L (1993) 5-HT1A-mediated lower lip retraction: effects of 5-HT1A agonists and antagonists. Pharmacol Biochem Behav 46:141–143
Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in l-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634
Nahimi A, Holtzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AK, Vang K, Moller A, Wegener G, Gjedde A, Doudet DJ (2012) Serotonergic modulation of receptor occupancy in rats treated with l-DOPA after unilateral 6-OHDA lesioning. J Neurochem 120:806–817
Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833
Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered l-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353
Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C (2009) The role of the dorsal raphe nucleus in the development, expression, and treatment of l-DOPA-induced dyskinesia in hemiparkinsonian rats. Synapse 63:610–620
Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22:1406–1412
Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro L (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58:193–199
Mignon LJ, Wolf WA (2005) 8-hydroxy-2-(di-n-propylamino)tetralin reduces striatal glutamate in an animal model of Parkinson’s disease. Neuroreport 16:699–703
Dupre KB, Ostock CY, Eskow Jaunarajs KL, Button T, Savage LM, Wolf W, Bishop C (2011) Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol 229:288–299
Ostock CY, Dupre KB, Jaunarajs KL, Walters H, George J, Krolewski D, Walker PD, Bishop C (2011) Role of the primary motor cortex in l-Dopa-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology 61:753–760
Celada P, Bortolozzi A, Artigas F (2013) Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 27:703–716
Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109
Brys I, Halje P, Scheffer-Teixeira R, Varney M, Newman-Tancredi A, Petersson P (2018) Neurophysiological effects in cortico-basal ganglia-thalamic circuits of antidyskinetic treatment with 5-HT1A receptor biased agonists. Exp Neurol 302:155–168
Marin C, Aguilar E, Rodriguez-Oroz MC, Bartoszyk GD, Obeso JA (2009) Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacology 204:241–250
Nelson AB, Kreitzer AC (2014) Reassessing models of basal ganglia function and dysfunction. Annu Rev Neurosci 37:117–135
Isbister GK, Buckley NA (2005) The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clin Neuropharmacol 28:205–214
Green AR, Backus LI (1990) Animal models of serotonin behavior. Ann N Y Acad Sci 600:237–248 discussion 248 – 239
Bijl D (2004) The serotonin syndrome. Neth J Med 62:309–313
Arvidsson LE, Hacksell U, Nilsson JL, Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikstrom H (1981) 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. J Med Chem 24:921–923
Tricklebank MD, Forler C, Fozard JR (1984) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106:271–282
Assie MB, Bardin L, Auclair AL, Carilla-Durand E, Depoortere R, Koek W, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2010) F15599, a highly selective post-synaptic 5-HT1A receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int J Neuropsychopharmacol 13:1285–1298
Berendsen HH, Bourgondien FG, Broekkamp CL (1994) Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol 263:315–318
Higgins GA, Elliott PJ (1991) Differential behavioural activation following intra-raphe infusion of 5-HT1A receptor agonists. Eur J Pharmacol 193:351–356
Assié M-B, Ravailhe V, Benas C, Newman-Tancredi A (2008) Differential effects of 5-HT1A receptor agonists on extracellular levels of 5-HT in hippocampus and of dopamine in frontal cortex of freely moving rats. In: British Association for Psychopharmacology Summer Meeting. Harrogate, Poster ID 59
Becker G, Bolbos R, Costes N, Redoute J, Newman-Tancredi A, Zimmer L (2016) Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study. Sci Rep 6:26633
Acknowledgements
We gratefully acknowledge the financial support of the Michael J. Fox Foundation for Parkinson’s Research and in vivo and bioanalytical support of the respective teams at Brain OnLine B.V. We thank Alexandre Seillier for assistance in preparation of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Adrian Newman-Tancredi and Mark A. Varney are employees of Neurolixis Inc. At the time the studies were conducted, Andrew C. McCreary was an employee of Brain OnLine B.V.
Rights and permissions
About this article
Cite this article
Newman-Tancredi, A., Varney, M.A. & McCreary, A.C. Effects of the Serotonin 5-HT1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l-DOPA Administration in Hemi-Parkinsonian Rats. Neurochem Res 43, 1035–1046 (2018). https://doi.org/10.1007/s11064-018-2514-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11064-018-2514-y