Gramicidin A in Asymmetric Lipid Membranes
<p>Configurations of two gA molecules located in opposing monolayers of the membrane: two monomers (left); conducting dimer (right); and coaxial pair (middle, top). The elastic energy of the membrane in these configurations is shown schematically. The states of two monomers and the conducting dimer are stable and metastable, respectively. These two configurations are in equilibrium with each other. The coaxial pair corresponds to the top of the energy barrier of the dimerization/dissociation process. The energy barrier of dimerization is the difference in the energies of the coaxial pair and two monomers; the energy barrier of dissociation is the difference in the energies of the coaxial pair and dimer. The only ion-conducting configuration is the dimer. Ionic conductance is harmful to cells as it leads to homeostasis violation.</p> "> Figure 2
<p>Dependences of logarithms of normalized dimer lifetime <span class="html-italic">τ</span><sub>0</sub>/<span class="html-italic">τ</span><sub>00</sub> and normalized equilibrium constant <span class="html-italic">K</span><sub>0</sub>/<span class="html-italic">K</span><sub>00</sub> at almost zero lateral tensions, <span class="html-italic">σ<sub>u</sub></span> = <span class="html-italic">σ<sub>l</sub></span> ≈ 0 (corresponding to plasma membranes of cells or deflated GUVs) on spontaneous curvatures of the outer (<span class="html-italic">J<sub>u</sub></span>) and inner (<span class="html-italic">J<sub>l</sub></span>) monolayers. Larger <span class="html-italic">K</span><sub>0</sub> corresponds to larger equilibrium number of dimers and higher integral conductance of the membrane.</p> "> Figure 3
<p>Dependence of normalized gA dimer lifetime <span class="html-italic">τ</span>/<span class="html-italic">τ</span><sub>0</sub> on lateral tensions in the outer (<span class="html-italic">σ<sub>u</sub></span>) and inner (<span class="html-italic">σ<sub>l</sub></span>) monolayers for different values of spontaneous curvature of the outer (<span class="html-italic">J<sub>u</sub></span>) and inner (<span class="html-italic">J<sub>l</sub></span>) monolayers. The values of <span class="html-italic">τ</span><sub>0</sub> were obtained as the limit of <span class="html-italic">τ</span> when (<span class="html-italic">σ<sub>u</sub></span>, <span class="html-italic">σ<sub>l</sub></span>) → (0, 0), corresponding to plasma membranes of cells or deflated GUVs. In white triangles in left-lower corners of the plots, <span class="html-italic">σ<sub>u</sub></span> + <span class="html-italic">σ<sub>l</sub></span> < 0, and the membrane is mechanically unstable. Thus, only right-upper halves of the plots are displayed.</p> "> Figure 4
<p>Dependence of normalized gA dimer–monomer equilibrium constant <span class="html-italic">K</span>/<span class="html-italic">K</span><sub>0</sub> on lateral tensions in the outer (<span class="html-italic">σ<sub>u</sub></span>) and inner (<span class="html-italic">σ<sub>l</sub></span>) monolayers for different values of spontaneous curvature of the outer (<span class="html-italic">J<sub>u</sub></span>) and inner (<span class="html-italic">J<sub>l</sub></span>) monolayers. The values of <span class="html-italic">K</span><sub>0</sub> were obtained as the limit of <span class="html-italic">K</span> when (<span class="html-italic">σ<sub>u</sub></span>, <span class="html-italic">σ<sub>l</sub></span>) → (0, 0), corresponding to plasma membranes of cells or deflated GUVs. In white triangles in left-lower corners of the plots, <span class="html-italic">σ<sub>u</sub></span> + <span class="html-italic">σ<sub>l</sub></span> < 0, and the membrane is mechanically unstable. Thus, only right-upper halves of the plots are displayed.</p> ">
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hladky, S.B.; Haydon, D.A. Ion transfer across lipid membranes in the presence of gramicidin A: I. Studies of the unit conductance channel. Biochim. Biophys. Acta 1972, 274, 294–312. [Google Scholar] [CrossRef]
- Bamberg, E.; Apell, H.J.; Alpes, H. Structure of the gramicidin A channel: Discrimination between the πL, D and the β helix by electrical measurements with lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 1977, 74, 2402–2406. [Google Scholar] [CrossRef]
- Arseniev, A.S.; Barsukov, I.L.; Bystrov, V.F.; Lomize, A.L.; Ovchinnikov, Y.A. 1H-NMR study of gramicidin A transmembrane ion channel: Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985, 186, 168–174. [Google Scholar] [CrossRef]
- Andersen, O.S.; Apell, H.J.; Bamberg, E.; Busath, D.D.; Koeppe, R.E.; Sigworth, F.J.; Szabo, G.; Urry, D.W.; Woolley, A. Gramicidin channel controversy—The structure in a lipid environment. Nat. Struct. Mol. Biol. 1999, 6, 609. [Google Scholar] [CrossRef] [PubMed]
- Bamberg, E.; Läuger, P. Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membr. Biol. 1973, 11, 177–194. [Google Scholar] [CrossRef]
- Sun, D.; He, S.; Bennett, W.D.; Bilodeau, C.L.; Andersen, O.S.; Lightstone, F.C.; Ingólfsson, H.I. Atomistic characterization of gramicidin channel formation. J. Chem. Theor. Comput. 2020, 17, 7–12. [Google Scholar] [CrossRef]
- Rokitskaya, T.I.; Antonenko, Y.N.; Kotova, E.A. Photodynamic inactivation of gramicidin channels: A flash-photolysis study. Biochim. Biophys. Acta 1996, 1275, 221–226. [Google Scholar] [CrossRef]
- Lundbæk, J.A.; Collingwood, S.A.; Ingólfsson, H.I.; Kapoor, R.; Andersen, O.S. Lipid bilayer regulation of membrane protein function: Gramicidin channels as molecular force probes. J. Royal. Soc. Interface 2010, 7, 373–395. [Google Scholar] [CrossRef]
- Park, S.; Yeom, M.S.; Andersen, O.S.; Pastor, R.W.; Im, W. Quantitative characterization of protein–lipid interactions by free energy simulation between binary bilayers. J. Chem. Theor. Comput. 2019, 15, 6491–6503. [Google Scholar] [CrossRef]
- Lundbæk, J.A.; Maer, A.M.; Andersen, O.S. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry 1997, 36, 5695–5701. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, O.V.; Galimzyanov, T.R.; Pavlov, K.V.; Kotova, E.A.; Antonenko, Y.N.; Akimov, S.A. Membrane elastic deformations modulate gramicidin A transbilayer dimerization and lateral clustering. Biophys. J. 2018, 115, 478–493. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, O.V.; Rokitskaya, T.I.; Batishchev, O.V.; Kotova, E.A.; Antonenko, Y.N.; Akimov, S.A. Peptide-induced membrane elastic deformations decelerate gramicidin dimer-monomer equilibration. Biophys. J. 2021, 120, 5309–5321. [Google Scholar] [CrossRef]
- Kondrashov, O.V.; Galimzyanov, T.R.; Molotkovsky, R.J.; Batishchev, O.V.; Akimov, S.A. Membrane-mediated lateral interactions regulate the lifetime of gramicidin channels. Membranes 2020, 10, 368. [Google Scholar] [CrossRef]
- Lundbæk, J.A.; Andersen, O.S. Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels. Biophys. J. 1999, 76, 889–895. [Google Scholar] [CrossRef]
- Maer, A.M.; Rusinova, R.; Providence, L.L.; Ingólfsson, H.I.; Collingwood, S.A.; Lundbæk, J.A.; Andersen, O.S. Regulation of gramicidin channel function solely by changes in lipid intrinsic curvature. Front. Physiol. 2022, 13, 836789. [Google Scholar] [CrossRef] [PubMed]
- Lundbaek, J.A.; Andersen, O.S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 1994, 104, 645–673. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.R.; Needham, D.; Dilger, J.P.; Haydon, D.A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta 1983, 735, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Goulian, M.; Mesquita, O.N.; Fygenson, D.K.; Nielsen, C.; Andersen, O.S.; Libchaber, A. Gramicidin channel kinetics under tension. Biophys. J. 1998, 74, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 1986, 50, 1061–1070. [Google Scholar] [CrossRef]
- Nielsen, C.; Andersen, O.S. Inclusion-induced bilayer deformations: Effects of monolayer equilibrium curvature. Biophys. J. 2000, 79, 2583–2604. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.; Goulian, M.; Andersen, O.S. Energetics of inclusion-induced bilayer deformations. Biophys. J. 1998, 74, 1966–1983. [Google Scholar] [CrossRef]
- Paulowski, L.; Donoghue, A.; Nehls, C.; Groth, S.; Koistinen, M.; Hagge, S.O.; Böhling, A.; Winterhalter, M.; Gutsmann, T. The beauty of asymmetric membranes: Reconstitution of the outer membrane of gram-negative bacteria. Front. Cell Dev. Biol. 2020, 8, 586. [Google Scholar] [CrossRef] [PubMed]
- Devaux, P.F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry 1991, 30, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Lorent, J.H.; Levental, K.R.; Ganesan, L.; Rivera-Longsworth, G.; Sezgin, E.; Doktorova, M.; Lyman, E.; Levental, I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Ingólfsson, H.I.; Melo, M.N.; Van Eerden, F.J.; Arnarez, C.; Lopez, C.A.; Wassenaar, T.A.; Periole, X.; De Vries, A.H.; Tieleman, D.P.; Marrink, S.J. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 2014, 136, 14554–14559. [Google Scholar] [CrossRef] [PubMed]
- Ingólfsson, H.I.; Carpenter, T.S.; Bhatia, H.; Bremer, P.T.; Marrink, S.J.; Lightstone, F.C. Computational lipidomics of the neuronal plasma membrane. Biophys. J. 2017, 113, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Fuller, N.; Rand, R.P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 2001, 81, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Kollmitzer, B.; Heftberger, P.; Rappolt, M.; Pabst, G. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 2013, 9, 10877–10884. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, R.; Miettinen, M.S.; Fricke, N.; Lipowsky, R.; Dimova, R. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc. Natl. Acad. Sci. USA 2018, 115, 5756–5761. [Google Scholar] [CrossRef]
- Lee, M.-T.; Sun, T.-L.; Hung, W.-C.; Huang, H.W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA 2013, 110, 14243–14248. [Google Scholar] [CrossRef] [PubMed]
- Antonenko, Y.N.; Borisenko, V.; Melik-Nubarov, N.S.; Kotova, E.A.; Woolley, G.A. Polyanions decelerate the kinetics of positively charged gramicidin channels as shown by sensitized photoinactivation. Biophys. J. 2002, 82, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Krylov, A.V.; Antonenko, Y.N.; Kotova, E.A.; Rokitskaya, T.I.; Yaroslavov, A.A. Polylysine decelerates kinetics of negatively charged gramicidin channels as shown by sensitized photoinactivation. FEBS Lett. 1998, 440, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Silachev, D.N.; Khailova, L.S.; Babenko, V.A.; Gulyaev, M.V.; Kovalchuk, S.I.; Zorova, L.D.; Plotnikov, E.Y.; Antonenko, Y.N.; Zorov, D.B. Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochim. Biophys. Acta 2014, 1840, 3434–3442. [Google Scholar] [CrossRef] [PubMed]
- Khailova, L.S.; Rokitskaya, T.I.; Kovalchuk, S.I.; Kotova, E.A.; Sorochkina, A.I.; Antonenko, Y.N. Role of mitochondrial outer membrane in the uncoupling activity of N-terminally glutamate-substituted gramicidin A. Biochim. Biophys. Acta 2019, 1861, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, O.V.; Akimov, S.A. Regulation of antimicrobial peptide activity via tuning deformation fields by membrane-deforming inclusions. Int. J. Mol. Sci. 2022, 23, 326. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, O.V.; Akimov, S.A. Gramicidin A as a mechanical sensor for mixed nonideal lipid membranes. Phys. Rev. E 2024, 109, 064404. [Google Scholar] [CrossRef]
- Hamm, M.; Kozlov, M.M. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 2000, 3, 323–335. [Google Scholar] [CrossRef]
- Nagle, J.F.; Wilkinson, D.A. Lecithin bilayers. Density measurement and molecular interactions. Biophys. J. 1978, 23, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Rawicz, W.; Olbrich, K.C.; McIntosh, T.; Needham, D.; Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 2000, 79, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Hamm, M.; Kozlov, M.M. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B 1998, 6, 519–528. [Google Scholar] [CrossRef]
- Kozlovsky, Y.; Efrat, A.; Siegel, D.A.; Kozlov, M.M. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 2004, 87, 2508. [Google Scholar] [CrossRef] [PubMed]
- Pfeffermann, J.; Eicher, B.; Boytsov, D.; Hannesschlaeger, C.; Galimzyanov, T.R.; Glasnov, T.N.; Pabst, G.; Akimov, S.A.; Pohl, P. Photoswitching of model ion channels in lipid bilayers. J. Photochem. Photobiol. B 2021, 224, 112320. [Google Scholar] [CrossRef] [PubMed]
- Doktorova, M.; Heberle, F.A.; Marquardt, D.; Rusinova, R.; Sanford, R.L.; Peyear, T.A.; Katsaras, J.; Feigenson, G.W.; Weinstein, H.; Andersen, O.S. Gramicidin increases lipid flip-flop in symmetric and asymmetric lipid vesicles. Biophys. J. 2019, 116, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Montal, M.; Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 1972, 69, 3561–3566. [Google Scholar] [CrossRef]
- Saitov, A.; Akimov, S.A.; Galimzyanov, T.R.; Glasnov, T.; Pohl, P. Ordered lipid domains assemble via concerted recruitment of constituents from both membrane leaflets. Phys. Rev. Lett. 2020, 124, 108102. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondrashov, O.V.; Akimov, S.A. Gramicidin A in Asymmetric Lipid Membranes. Biomolecules 2024, 14, 1642. https://doi.org/10.3390/biom14121642
Kondrashov OV, Akimov SA. Gramicidin A in Asymmetric Lipid Membranes. Biomolecules. 2024; 14(12):1642. https://doi.org/10.3390/biom14121642
Chicago/Turabian StyleKondrashov, Oleg V., and Sergey A. Akimov. 2024. "Gramicidin A in Asymmetric Lipid Membranes" Biomolecules 14, no. 12: 1642. https://doi.org/10.3390/biom14121642
APA StyleKondrashov, O. V., & Akimov, S. A. (2024). Gramicidin A in Asymmetric Lipid Membranes. Biomolecules, 14(12), 1642. https://doi.org/10.3390/biom14121642