Summary
Previous studies have given evidence that the active form of gramicidin A in lipid bilayer membranes is a dimer which acts as an ion channel; it has been further shown that the mean lifetime of the channel strongly depends on the membrane thickness. As the thickness slightly decreases when a voltage is applied to the membrane, the equilibrium between conducting dimers and nonconducting monomers may be displaced by a voltage jump. From the relaxation of the electrical current after the voltage jump, information about the kinetics of channel formation is obtained. For a dioleoyllecithin/n-decane membrane the rate constant of association is found to be 2×1014 cm2 mole−1 sec−1, which is by three orders of magnitude below the limiting value of a diffusion-controlled reaction in a two-dimensional system. The dissociation rate constant is equal to 2 sec−1, a value which is consistent with the channel lifetime as obtained from electrical fluctuation measurements.
Similar content being viewed by others
References
Adam, G., Delbrück, M. 1968. Reduction of dimensionality in biological diffusion processes.In: Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, editors. p. 198. W. H. Freeman, San Francisco.
Andrews, D. M., Manev, E. D., Haydon, D. A. 1970. Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces.Spec. Discussions Faraday Soc. 1:46.
Babakov, A. V., Ermiskin, L. N., Liberman, E. A. 1966. Influence of electric field on the capacity of phospholipid membranes.Nature 210:953.
Benson, S. W. 1960. The Foundations of Chemical Kinetics. Ch. 15. McGraw-Hill Book Co., Inc., New York.
Cogan, U., Shinitzky, M. 1972. Microviscosity and order in the hydrocarbon region of micelles and membranes with fluorescent probes. II. Phospholipid and phospholipid-cholesterol dispersions.Biochemistry (In press).
Cone, R. A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane.Nature New Biol. 236:39.
Fettiplace, R., Andrews, D. M., Haydon, D. A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277.
Frank, P., Mises, R. von. 1961. Die Differential- und Integralgleichungen der Mechanik und Physik. Vol. II, p. 555. Dover Publications Inc., New York.
Frye, L. D., Edidin, E. 1970. The rapid intermixing of cell surface antigens after formation of mouse-human heterocaryons.J. Cell Sci. 7:319.
Glasstone, G., Laidler, K. J., Eyring, H. 1941. The Theory of Rate Processes. Ch. 9. McGraw-Hill Book Co., Inc., New York.
Glickson, J. D., Mayers, D. F., Settine, J. M., Urry, D. W. 1972. Spectroscopie studies on the conformation of gramicidin A′. Proton magnetic resonance assignments, coupling constants, and H−D exchange.Biochemistry 11:477.
Goodall, M. C. 1970. Structural effects on the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidin “A” and “S”, and lipid specificity.Biochim. Biophys. Acta 219:471.
Goodall, M. C. 1971. Thickness dependence in the action of gramicidin A on lipid bilayers.Arch. Biochem. Biophys. 147:129.
Henderson, P. J. F., McGivan, J. D., Chappel, J. B. 1969. The action of certain antibiotics on mitochondria, erythrocyte and artificial phospholipid membranes.Biochem. J. 111:521.
Hladky, S. B., Haydon, D. A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics.Nature 225:451.
Hladky, S. B., Haydon, D. A. 1971. Studies of the unit conductance channel of gramicidin A.In: Molecular Mechanisms of Antibiotic Action on Protein Synthesis and Membranes. E. Munoz, F. García-Ferrandiz and F. Vasquez, editors. Elsevier, Amsterdam. (In press).
Hladky, S. B., Haydon, D. A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294.
Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225.
Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin.Science 174:412.
Läuger, P. 1972. Carrier-mediated ion transport.Science 178:24.
Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20.
Liberman, E. A., Topaly, V. P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125.
Mueller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.
Myers, V. B., Haydon, D. A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity.Biochim. Biophys. Acta 274:313.
Podleski, T., Changeux, J.-P. 1969. Effects associated with permeability changes caused by gramicidin A in the electroplax membrane.Nature 221:541.
Pressman, B. C. 1965. Induced active transport of ions in mitochondria.Proc. Nat. Acad. Sci. 53:1076.
Rosen, D., Sutton, A. M. 1968. The effects of a direct current potential bias on the electrical properties of bimolecular lipid membranes.Biochim. Biophys. Acta 163:226.
Sarges, R., Witkop, B. 1965a. Gramicidin A. V. The structure of valine- and isoleucine-gramicidin A.J. Amer. Chem. Soc. 87:2011.
Sarges, R., Witkop, B. 1965b. Gramicidin VII. The structure of valine- and isoleucine-gramicidin B.J. Amer. Chem. Soc. 87:2027.
Sarges, R., Witkop, B. 1965c. Gramicidin VIII. The structure of valine- and isoleucine-gramicidin C.Biochemistry 4:2491.
Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. Kinetic analysis of carrier-mediated ion transport through artificial lipid membranes.Biophys. J. 11:981.
Tosteson, D. C., Andreoli, T. E., Tieffenberg, M., Cook, P. 1968. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.J. Gen. Physiol. 51:373S.
Träuble, H., Sackmann, E. 1972. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transition.J. Amer. Chem. Soc. 94:4499.
Urry, D. W. 1971. The gramicidin A transmembrane channel: A proposedπ (L,D) helix.Proc. Nat. Acad. Sci. 68:672.
Urry, D. W. 1972a. Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions.Biochim. Biophys. Acta 265:115.
Urry, D. W. 1972b. A molecular theory of ion-conducting channels: A field-dependent transition between conducting and nonconducting conformations.Proc. Nat. Acad. Sci. 69:1610.
Urry, D. W., Goodall, M. C., Glickson, J. S., Mayers, D. F. 1971. The gramicidin A transmembrane channel: Characteristics of head-to-head dimerizedπ (L,D) helices.Proc. Nat. Acad. Sci. 68:1907.
Wenner, C. E., Hackney, J. H. 1969. Mitochondrial energy flux and ion-induced adenosine triphosphatase activity and light-scattering changes mediated by gramicidin.Biochemistry 8:930.
White, S. A. 1970a. Thickness changes in lipid bilayer membranes.Biochim. Biophys. Acta 196:354.
White, S. A. 1970b. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.Biophys. J. 10:1127.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bamberg, E., Läuger, P. Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membrain Biol. 11, 177–194 (1973). https://doi.org/10.1007/BF01869820
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01869820