An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems
<p>NAVSTAR/GPS major segments.</p> "> Figure 2
<p>Navstar GPS IIF.</p> "> Figure 3
<p>GPS master control center and monitoring stations.</p> "> Figure 4
<p>GPS satellite constellation: (<b>a</b>) orbital planes; (<b>b</b>) satellite positions on the orbital planes.</p> "> Figure 5
<p>Two-dimensional user position.</p> "> Figure 6
<p>Three-dimensional user position.</p> "> Figure 7
<p>Comparisons of CEI.</p> ">
Abstract
:1. Introduction
- (1)
- The space segment comprises a cluster of 24 Navstar satellites;
- (2)
- The control segment is composed of a network of tracking and governing equipment;
- (3)
- The user segment receives, interprets, and processes the GPS satellite data with a specially designed variety of navigational radio receivers.
Measurement of Pseudorange
2. Development of Method
Derivation of the Scheme
3. Efficiency of the Schemes
Schemes | EI | CEI |
---|---|---|
Numerical Solutions to Nonlinear Pseudorange Equations
k | |||
---|---|---|---|
3 | 2.49299 × | 2.05341 × | |
3 | 6.33085 × | 1.65211 × | |
3 | 1.34284 × | 3.510800 × | |
3 | 8.64970 × | 2.25679 × | |
25 | 7.66582 × | 9.99000 × | |
3 | 1.09788 × | 1.75257 × |
k | |||
---|---|---|---|
2 | 8.83524 × | 6.700200 × | |
2 | 1.40267 × | 3.21847 × | |
2 | 1.26051 × | 3.95511 × | |
2 | 3.20383 × | 9.59700 × | |
7 | 8.14721 × | 2.09318 × | |
2 | 6.43427 × | 1.16939 × |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition. Numer. Algorithms 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 2006, 183, 199–208. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Iterative methods of order four and five for systems of nonlinear equations. Comput. Appl. Math. 2009, 231, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Darvishi, M.T.; Barati, A. A third-order Newton-type method to solve systems of non-linear equations. Appl. Math. Comput. 2007, 187, 630–635. [Google Scholar] [CrossRef]
- Grau-Sanchez, M.; Grau, A.; Noguera, M. On the computational efficiency index and some iterative methods for solving systems of non-linear equations. Comput. Appl. Math. 2011, 236, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Homeier, H.H.H. A modified Newton method with cubic convergence:the multivariable case. Comput. Appl. Math. 2004, 169, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.R.; Arora, H. Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 2014, 51, 193–210. [Google Scholar] [CrossRef]
- Sharma, J.R.; Guna, R.K.; Sharma, R. An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 2013, 2, 307–323. [Google Scholar] [CrossRef]
- Soleymani, F.; Sharifi, M.; Shateyi, S.; Haghani, F.K. Iterative methods for nonlinear equations or systems and their applications. J. Appl. Math. 2014, 2014, 705375. [Google Scholar] [CrossRef]
- Behl, R.; Argyros, I.K. A new higher order iterative scheme for the solutions of nonlinear systems. Mathematics 2020, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Behl, R.; Sarría, I.; González, R.; Magreñán, A.A. Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 2019, 346, 110–132. [Google Scholar] [CrossRef]
- Kansal, M.; Cordero, A.; Bhalla, S.; Torregrosa, J.R. New fourth and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis. Numer. Algorithms 2021, 87, 1017–1060. [Google Scholar] [CrossRef]
- Lee, M.; Kim, Y.I. Development of a family of Jarratt-like sixth-order iterative methods for solving nonlinear systems with their basins of attraction. Algorithms 2020, 55, 303. [Google Scholar] [CrossRef]
- Awange, J.L.; Grafarend, E.W. Algebraic Solution of GPS Pseudo-Ranging Equations. GPS Solut. 2002, 5, 20–32. [Google Scholar] [CrossRef]
- Pachter, M.; Nguyen, T.Q. An Efficient GPS Position Determination Algorithm. J. Inst. Navig. 2003, 50, 131–141. [Google Scholar] [CrossRef]
- Yang, M. Noniterative Method of Solving the GPS Double-Differenced Pseudorange Equations. J. Surv. Eng. 2005, 131, 130–134. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.H.; Li, D.; Xu, Y.W.; Zhao, W. Design and Analysis of a New GPS Algorithm. In Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems, Genova, Italy, 21–25 June 2010. [Google Scholar]
- Ko, K.S.; Choi, C.M. Mathematical Algorithms for Two-Dimensional Positioning Based on GPS Pseudorange Technique. J. Inf. Commun. Converg. Eng. 2010, 8, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Jwoa, D.; Hsiehb, M.; Leea, Y. GPS navigation solution using the iterative least absolute deviation approach. Sci. Iran. B 2015, 22, 2103–2111. [Google Scholar]
- Bancroft, S. An algebraic solution of the GPS equations. IEEE Trans. Aerosp. Electron. Syst. 1986, 21, 56–59. [Google Scholar] [CrossRef]
- Dailey, D.J.; Bell, B.M. A method for GPS positioning. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1148–1154. [Google Scholar] [CrossRef]
- Leva, J.L. An alternative closed-form solution to the GPS pseudorange equations. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1430–1439. [Google Scholar] [CrossRef]
- Lundberg, J.B. Alternative algorithms for the GPS static positioning solution. Appl. Math. Comput. 2001, 119, 21–34. [Google Scholar] [CrossRef]
- Nardi, S.; Pachter, M. GPS estimation algorithm using stochastic modeling. In Proceedings of the 37th Conference on Decision and Control, Tampa, FL, USA, 18 December 1998; pp. 4498–4502. [Google Scholar]
- Tsui, J.B. Fundamentals of Global Positioning System Receivers, a Software Approach, 2nd ed.; Wiley Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kaplan, E.D. Understanding GPS: Principles and Applications Norwood; Artech House Publishers: Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Misra, P. The Role of the Clock in a GPS Receiver. GPS World 1996, 7, 60–66. [Google Scholar]
- Sturza, M.A. GPS navigation using three satellites and a precise clock, Navigation. J. Inst. Navig. 1983, 30, 146–156. [Google Scholar] [CrossRef]
- Yaseen, S.; Zafar, F. A new sixth-order Jarratt-type iterative method for systems of nonlinear equations. Arab. J. Math. 2022, 11, 585–599. [Google Scholar] [CrossRef]
- Capdevila, R.R.; Cordero, A.; Torregrosa, J.R. A new three-step class of iterative methods for solving nonlinear systems. Mathematics 2019, 7, 1221. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, A.M. An alternative methodology for the mathematical treatment of gps positioning. Alexandria Eng. J. 2011, 50, 359–366. [Google Scholar] [CrossRef] [Green Version]
Satellite one | 1.7934 × | 1.2016 × | 2.5412 × | 2.6063 × |
Satellite two | 1.3642 × | 6.2412 × | 2.7327 × | 2.5880 × |
Satellite three | 9.0781 × | 1.6940 × | 2.3258 × | 2.4898 × |
Satellite four | 1.3950 × | 2.2815 × | 4.8765 × | 2.2162 × |
Satellite one | 15,600 | 7540 | 20,140 | 0.07074 |
Satellite two | 18,760 | 2750 | 18,610 | 0.07220 |
Satellite three | 17,610 | 14,630 | 13,480 | 0.07690 |
Satellite four | 19,170 | 610 | 18,390 | 0.07242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, S.; Zafar, F.; Alsulami, H.H. An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems. Axioms 2023, 12, 562. https://doi.org/10.3390/axioms12060562
Yaseen S, Zafar F, Alsulami HH. An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems. Axioms. 2023; 12(6):562. https://doi.org/10.3390/axioms12060562
Chicago/Turabian StyleYaseen, Saima, Fiza Zafar, and Hamed H. Alsulami. 2023. "An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems" Axioms 12, no. 6: 562. https://doi.org/10.3390/axioms12060562
APA StyleYaseen, S., Zafar, F., & Alsulami, H. H. (2023). An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems. Axioms, 12(6), 562. https://doi.org/10.3390/axioms12060562