Extreme Weather Patterns in Ethiopia: Analyzing Extreme Temperature and Precipitation Variability
<p>Map of Ethiopia Highlighting 103 Meteorological Stations Elevation (m).</p> "> Figure 2
<p>Shows scatter plots for data validation between observed values (ground measurements) and satellite datasets for (<b>a</b>) rainfall, (<b>b</b>) maximum temperature and (<b>c</b>) minimum temperature on a monthly time scale in Ethiopia from 1998 to 2020.</p> "> Figure 3
<p>Spatial patterns of severe temperature indices in Ethiopia from 1994 to 2023 include (<b>a</b>) TXx, (<b>b</b>) TXn, (<b>c</b>) TNx, (<b>d</b>) TNn, (<b>e</b>) TX10p, (<b>f</b>) TN10p, (<b>g</b>) TN90p, and (<b>h</b>) DTR. Upward green and black triangles indicate significant and non-significant increasing trends, respectively, while downward blue and red triangles represent significant and non-significant decreasing trends. Yellow circles indicate no trend. ‘Sig’ and ‘No Sig’ denote significant and non-significant trends.</p> "> Figure 4
<p>This time series displays the annual average trends of severe temperature indicators in Ethiopia, including (<b>a</b>) TXx, (<b>b</b>) TXn, (<b>c</b>) TNx, (<b>d</b>) TNn, (<b>e</b>) TX10p, (<b>f</b>) TN10p, (<b>g</b>) TN90p, and (<b>h</b>) DTR over time.</p> "> Figure 5
<p>Spatial patterns of severe temperature indices in Ethiopia from 1994 to 2023, including (<b>a</b>) CDD, (<b>b</b>) CWD, (<b>c</b>) PRCPTOT, (<b>d</b>) RX1day, (<b>e</b>) RX5day, (<b>f</b>) R10mm, (<b>g</b>) R95p and (<b>h</b>) R99p. Upward green and black triangles indicate significant and non-significant increasing trends, respectively, while downward blue and red triangles represent significant and non-significant decreasing trends. Yellow circles indicate no trend. ‘Sig’ and ‘No Sig’ denote significant and non-significant trends.</p> "> Figure 6
<p>This time series displays the annual average trends of severe precipitation indicators in Ethiopia, including (<b>a</b>) CDD, (<b>b</b>) CWD, (<b>c</b>) PRCPTOT, (<b>d</b>) RX1day, (<b>e</b>) RX5day, (<b>f</b>) R10mm, (<b>g</b>) R95p and (<b>h</b>) R99p over time.</p> "> Figure 7
<p>This displays the three key modes of empirical orthogonal functions (EOFs) and principal component analyses (PCAs) for seasonal precipitation during the JJAS (<b>a</b>–<b>f</b>) periods. (The red color represents positive anomalies, while blue indicates negative anomalies).</p> "> Figure 8
<p>This displays the three key modes of empirical orthogonal functions (EOFs) and principal component analyses (PCAs) for seasonal precipitation during the FMAM (<b>a</b>–<b>f</b>) periods. (The red color represents positive anomalies, while blue indicates negative anomalies).</p> ">
Abstract
:1. Introduction
2. Study Area, Data, Quality Control and Methods
2.1. Study Area
2.2. Data
2.3. Data Quality Control
2.4. Methods
2.4.1. Mann–Kendall Test
2.4.2. Climate Change Indices
3. Results and Discussion
3.1. Validation of Satellite Temperature and Rainfall Products
3.2. Spatial and Temporal Annual Analysis of the Extreme Temperature
3.3. Spatial and Temporal Annual Analysis of the Extreme Precipitation
3.4. Variability of Rainfall
3.5. Implications for Adaptation and Mitigation Policies
- The study’s findings will aid Ethiopia’s National Adaptation Plan (NAP-ETH) in increasing climate resilience and adaptation capabilities. Policymakers ought to emphasize efforts to address critical climate problems by integrating extreme weather patterns with the NAP’s strategic goals in agriculture, water management, and healthcare.
- This study underlines the need for early warning systems for managing extreme weather events, as well as the necessity of community preparedness and disaster risk management systems, which are congruent with Ethiopia’s Climate Resilient Green Economy program.
- This study highlighted the need for active community participation in effective adaptation, as well as community-based efforts that allow local stakeholders to adopt context-specific solutions through training programs and capacity-building activities.
- Finally, the paper proposes areas for future research to better understand the complexities of climate impacts on vulnerable populations. Continuous monitoring and evaluation of climate changes will be essential for refining adaptation strategies and guaranteeing their relevance in a fast-changing environment.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadi, D.K.; Tesfaye, K.; Alemayehu, Y.; Getnet, M.; Jeleta, M.; Birhan, D.A. Observed and projected trends of rainfall and temperature in the Central Ethiopia. Arab. J. Geosci. 2024, 17, 45. [Google Scholar] [CrossRef]
- Tabari, H.J. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, Q. Recent emerging shifts in precipitation intensity and frequency in the global tropics observed by satellite precipitation data sets. Geophys. Res. Lett. 2024, 51, e2023GL107916. [Google Scholar] [CrossRef]
- Bonaldo, D.; Bellafiore, D.; Ferrarin, C.; Ferretti, R.; Ricchi, A.; Sangelantoni, L.; Vitelletti, M.L. The summer 2022 drought: A taste of future climate for the Po valley (Italy)? Reg. Environ. Change 2023, 23, 1. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Butt, N.; Maron, M.; McAlpine, C.A.; Chapman, S.; Ullmann, A.; Segan, D.B.; Watson, J.E. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 2019, 25, 613–625. [Google Scholar] [CrossRef]
- Trenberth, K.E. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law 2018, 36, 463–481. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett. 2021, 16, 024013. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, S.; Luo, P.; Zha, X.; Cao, Z.; Lyu, J.; Zhou, M.; He, B.; Nover, D. A quantitative analysis of the influence of temperature change on the extreme precipitation. Atmosphere 2022, 13, 612. [Google Scholar] [CrossRef]
- Arnell, N.W.; Lowe, J.A.; Challinor, A.J.; Osborn, T.J. Global and regional impacts of climate change at different levels of global temperature increase. Clim. Change 2019, 155, 377–391. [Google Scholar] [CrossRef]
- Mohorji, A.M.; Şen, Z.; Almazroui, M. Trend analyses revision and global monthly temperature innovative multi-duration analysis. Earth Syst. Environ. 2017, 1, 9. [Google Scholar] [CrossRef]
- Burić, D.; Luković, J.; Bajat, B.; Kilibarda, M.; Živković, N. Recent trends in daily rainfall extremes over Montenegro (1951–2010). Nat. Hazards Earth Syst. Sci. 2015, 15, 2069–2077. [Google Scholar] [CrossRef]
- Ahmed, T.; Zounemat-Kermani, M.; Scholz, M. Climate change, water quality and water-related challenges: A review with focus on Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 8518. [Google Scholar] [CrossRef]
- Seife, T.J. The impact of climate change on agriculture and food security in the greater horn of Africa. Politikon 2021, 48, 98–114. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A global, continental, and regional analysis of changes in extreme precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Frame, D.J.; Rosier, S.M.; Noy, I.; Harrington, L.J.; Carey-Smith, T.; Sparrow, S.N.; Stone, D.A.; Dean, S.M. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 2020, 162, 781–797. [Google Scholar] [CrossRef]
- Mal, S.; Singh, R.; Huggel, C.; Grover, A. Introducing linkages between climate change, extreme events, and disaster risk reduction. In Climate Change, Extreme Events and Disaster Risk Reduction: Towards Sustainable Development Goals; Springer: Cham, Switzerland, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, Q.; Shen, B. Natural HazardsRisk, Spatio-temporal variability of drought and effect of large scale climate in the source region of Yellow River. Geomat. Nat. Hazards Risk. 2019, 10, 678–698. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, J.; Zhi, X.; Wang, X.; Zhang, H.; Wen, Y.; Park, E.; Lee, J.; Wan, X.; Zhu, S.; et al. The characterization, mechanism, predictability, and impacts of the unprecedented 2023 Southeast Asia heatwave. Npj Clim. Atmos. Sci. 2024, 7, 246. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef]
- Bell, J.E.; Brown, C.L.; Conlon, K.; Herring, S.; Kunkel, K.E.; Lawrimore, J.; Luber, G.; Schreck, C.; Smith, A.; Uejio, C. Changes in extreme events and the potential impacts on human health. J. Air Waste Manag. Assoc. 2018, 68, 265–287. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.V. Climate extremes and impacts on agriculture. Agroclimatol. Link. Agric. Clim. 2020, 60, 621–647. [Google Scholar] [CrossRef]
- Berihu, T.; Chen, W.; Wang, L. Rainfall variability and its teleconnection with atmospheric circulation anomalies over southern and southeastern region, Ethiopia. Theor. Appl. Climatol. 2024, 155, 5819–5834. [Google Scholar] [CrossRef]
- Bouteska, A.; Sharif, T.; Bhuiyan, F.; Abedin, M.Z. Impacts of the changing climate on agricultural productivity and food security: Evidence from Ethiopia. J. Clean. Prod. 2024, 449, 141793. [Google Scholar] [CrossRef]
- Gaznayee, H.A.A.; Al-Quraishi, A.M.F.; Mahdi, K.; Messina, J.P.; Zaki, S.H.; Razvanchy, H.A.S.; Hakzi, K.; Huebner, L.; Ababakr, S.H.; Riksen, M.; et al. Drought Severity and Frequency Analysis Aided by Spectral and Meteorological Indices in the Kurdistan Region of Iraq. Water 2022, 14, 3024. [Google Scholar] [CrossRef]
- Brown, M.E.; Funk, C.; Pedreros, D.; Korecha, D.; Lemma, M.; Rowland, J.; Williams, E.; Verdin, J. climate trend analysis of Ethiopia: Examining subseasonal climate impacts on crops and pasture conditions. Clim. Change 2017, 142, 169–182. [Google Scholar] [CrossRef]
- Wolde, S.G.; D’Odorico, P.; Rulli, M.C. Environmental drivers of human migration in Sub-Saharan Africa. Glob. Sustain. 2023, 6, e9. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Change 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 2, p. 2391. [Google Scholar] [CrossRef]
- Gummadi, S.; Rao, K.; Seid, J.; Legesse, G.; Kadiyala, M.; Takele, R.; Amede, T.; Whitbread, A. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980–2010. Theor. Appl. Climatol. 2018, 134, 1315–1328. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2019, 135, 839–854. [Google Scholar] [CrossRef]
- Alemu, T.; Mengistu, A. Impacts of climate change on food security in Ethiopia: Adaptation and mitigation options: A review. In Climate Change-Resilient Agriculture and Agroforestry: Ecosystem Services and Sustainability; Springer: Cham, Switzerland, 2019; pp. 397–412. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Bernhofer, C.; Hülsmann, S. Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Sci. Total Environ. 2020, 742, 140504. [Google Scholar] [CrossRef]
- Degefu, M.A.; Rowell, D.P.; Bewket, W. Teleconnections between Ethiopian rainfall variability and global SSTs: Observations and methods for model evaluation. Meteorol. Atmos. Phys. 2017, 129, 173–186. [Google Scholar] [CrossRef]
- Van Wart, J.; Grassini, P.; Yang, H.; Claessens, L.; Jarvis, A.; Cassman, K.G. Creating long-term weather data from thin air for crop simulation modeling. Agric. For. Meteorol. 2015, 209, 49–58. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Eitzen, Z.A.; Xu, K.-M.; Wong, T. An estimate of low-cloud feedbacks from variations of cloud radiative and physical properties with sea surface temperature on interannual time scales. J. Clim. 2011, 24, 1106–1121. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Shah, S.H.; Rehman, A.; Rashid, T.; Karim, J.; Shah, S. A comparative study of ordinary least squares regression and Theil-Sen regression through simulation in the presence of outliers. J. Sci. Technol. 2016, 137, 142. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. Available online: https://ir.cwi.nl/pub/18446/18446A.pdf (accessed on 15 December 2024).
- Lenth, R.V. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Dabanlı, İ.; Şen, Z.; Yeleğen, M.Ö.; Şişman, E.; Selek, B.; Güçlü, Y.S. Trend assessment by the innovative-Şen method. J. Water Resour. Res. 2016, 30, 5193–5203. [Google Scholar] [CrossRef]
- Costa, R.L.; de Mello Baptista, G.M.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Yang, L.; Mao, W. Intensification of extreme precipitation in arid Central Asia. J. Hydrol. 2021, 598, 125760. [Google Scholar] [CrossRef]
- Retalis, A.; Tymvios, F.; Katsanos, D.; Michaelides, S. Downscaling CHIRPS precipitation data: An artificial neural network modelling approach. Int. J. Remote Sens. 2017, 38, 3943–3959. [Google Scholar] [CrossRef]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. Roy. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Bağçaci, S.Ç.; Yucel, I.; Duzenli, E.; Yilmaz, M.T. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmos. Res. 2021, 256, 105576. [Google Scholar] [CrossRef]
- Teshome, A.; Zhang, J. Increase of extreme drought over Ethiopia under climate warming. Adv. Meteorol. 2019, 2019, 5235429. [Google Scholar] [CrossRef]
- Sein, Z.M.M.; Zhi, X.; Ogou, F.K.; Nooni, I.K.; Paing, K.H.; Yeboah, E. Covariability of decadal surface air temperature variability over Myanmar with sea surface temperature based on singular value decomposition analysis. Environ. Res. Lett. 2024, 19, 044056. [Google Scholar] [CrossRef]
- Mohammed, J.A.; Gashaw, T.; Tefera, G.W.; Dile, Y.T.; Worqlul, A.W.; Addisu, S. Changes in observed rainfall and temperature extremes in the Upper Blue Nile Basin of Ethiopia. Weather Clim. Extrem. 2022, 37, 100468. [Google Scholar] [CrossRef]
- Wubaye, G.B.; Gashaw, T.; Worqlul, A.W.; Dile, Y.T.; Taye, M.T.; Haileslassie, A.; Zaitchik, B.; Birhan, D.A.; Adgo, E.; Mohammed, J.A.; et al. Trends in rainfall and temperature extremes in Ethiopia: Station and agro-ecological zone levels of analysis. J. Atmos. 2023, 14, 483. [Google Scholar] [CrossRef]
- Mohammed, Y.; Yimer, F.; Tadesse, M.; Tesfaye, K. Variability and trends of rainfall extreme events in north east highlands of Ethiopia. Int. J. Hydrol. 2018, 2, 594–605. [Google Scholar] [CrossRef]
- Abatan, A.A.; Abiodun, B.J.; Lawal, K.A.; Gutowski, W.J., Jr. Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int. J. Climatol. 2016, 36, 2527–2540. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 3. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Mallick, J.; Salam, R.; Islam, H.T.; Shahid, S.; Kamruzzaman, M.; Pal, S.C.; Bhat, S.A.; Elbeltagi, A.; Rodrigues, T.R.; Ibrahim, S.; et al. Recent changes in temperature extremes in subtropical climate region and the role of large-scale atmospheric oscillation patterns. Theor. Appl. Climatol. 2022, 148, 329–347. [Google Scholar] [CrossRef]
- Wang, S.; Jiao, L.; Jiang, Y.; Chen, K.; Liu, X.; Qi, C.; Xue, R. Extreme climate historical variation based on tree-ring width record in the Tianshan Mountains of northwestern China. Int. J. Biometeorol. 2020, 64, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Doan, Q.V.; Chen, F.; Asano, Y.; Gu, Y.; Nishi, A.; Kusaka, H.; Niyogi, D. Causes for asymmetric warming of sub-diurnal temperature responding to global warming. Geophys. Res. Lett. 2022, 49, e2022GL100029. [Google Scholar] [CrossRef]
- Dunn, R.J.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.; et al. Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Shelton, S.; Pushpawela, B.; Liyanage, G. The long-term trend in the diurnal temperature range over Sri Lanka from 1985 to 2017 and its association with total cloud cover and rainfall. J. Atmos. Sol.-Terr. Phys. 2022, 227, 105810. [Google Scholar] [CrossRef]
- Ojara, M.A.; Yunsheng, L.; Babaousmail, H.; Wasswa, P. Trends and zonal variability of extreme rainfall events over East Africa during 1960–2017. Nat. Hazards 2021, 109, 33–61. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Wen, K.; Tian, Z.; Wei, P.; Zhang, B. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. J. 2018, 161, 381–391. [Google Scholar] [CrossRef]
- Beyene, T.K.; Jain, M.K.; Yadav, B.K.; Agarwal, A. Multiscale investigation of precipitation extremes over Ethiopia and teleconnections to large-scale climate anomalies. Stoch. Environ. Res. Risk Assess. 2022, 36, 1503–1519. [Google Scholar] [CrossRef]
- Adane, G.B.; Hirpa, B.A.; Song, C.; Lee, W.-K. Rainfall characterization and trend analysis of wet spell length across varied landscapes of the Upper Awash River Basin, Ethiopia. Sustainability 2020, 12, 9221. [Google Scholar] [CrossRef]
- Hussain, A.; Hussain, I.; Ali, S.; Ullah, W.; Khan, F.; Rezaei, A.; Ullah, S.; Abbas, H.; Manzoom, A.; Cao, J.; et al. Assessment of precipitation extremes and their association with NDVI, monsoon and oceanic indices over Pakistan. Atmos. Res. 2023, 292, 106873. [Google Scholar] [CrossRef]
- Likinaw, A.; Alemayehu, A.; Bewket, W. Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods. J. Clim. 2023, 11, 164. [Google Scholar] [CrossRef]
- Hou, G.; Kobe, F.T.; Zhang, Z.; Crabbe, M.J.C. Patterns and Teleconnection Mechanisms of Extreme Precipitation in Ethiopia during 1990–2020. Water 2023, 15, 3874. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Isa, Z.; Sawa, B.A.; Abdussalam, A.F.; Ibrahim, M.; Babati, A.-H.; Baba, B.M.; Ugya, A.Y. Impact of climate change on climate extreme indices in Kaduna River basin, Nigeria. Environ. Sci. Pollut. Res. 2023, 30, 77689–77712. [Google Scholar] [CrossRef]
- Kim, H.-R.; Moon, M.; Yun, J.; Ha, K.-J. Trends and spatio-temporal variability of summer mean and extreme precipitation across South Korea for 1973–2022. J. Atmos. Sci. 2023, 59, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Alavinia, S.H.; Zarei, M. Analysis of spatial changes of extreme precipitation and temperature in Iran over a 50-year period. Int. J. Climatol. 2021, 41, E2269–E2289. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Tippett, M.K.; Robertson, A.W.; Almazroui, M.; Ismail, M.; Dinku, T.; Acharya, N.; Siebert, A.; Ahmed, J.S.; Teshome, A. Seasonal predictability of Ethiopian Kiremt rainfall and forecast skill of ECMWF’s SEAS5 model. Clim. Dyn. 2021, 57, 3075–3091. [Google Scholar] [CrossRef]
- Sein, Z.M.M.; Zhi, X.; Ullah, I.; Azam, K.; Ngoma, H.; Saleem, F.; Xing, Y.; Iyakaremye, V.; Syed, S.; Hina, S.; et al. Recent variability of sub-seasonal monsoon precipitation and its potential drivers in Myanmar using in-situ observation during 1981–2020. Int. J. Climatol. 2022, 42, 3341–3359. [Google Scholar] [CrossRef]
- Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theor. Appl. Climatol. 2019, 137, 1869–1882. [Google Scholar] [CrossRef]
- Shu, X.; Wang, S.; Wang, H.; Hu, Y.; Pang, Y.; Huang, J. South-North dipole in summer precipitation over Northeast China. Clim. Dyn. 2024, 62, 6913–6930. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J.; Leslie, L.M. Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June-September rainfall. Int. J. Climatol. 2009, 29, 1075. [Google Scholar] [CrossRef]
- Uwizewe, C.; Jianping, L.; Habumugisha, T.; Bello, A.A. Investigation of the Historical Trends and Variability of Rainfall Patterns during the March–May Season in Rwanda. J. Atmos. 2024, 15, 609. [Google Scholar] [CrossRef]
Code | Description | Definitions | Units |
---|---|---|---|
Temperature | |||
TXx | Warmest/Hottest days | Annual maximum value of daily maximum temperature | °C |
TNx | Warmest nights | Annual maximum value of daily minimum temperature | °C |
TXn | Coldest days | Annual maximum value of daily maximum temperature | °C |
TNn | Coldest nights | Annual minimum value of daily minimum temperature | °C |
Tn10p | Cold nights | Percentage of days when Tn < 10th percentile | % |
Tx10p | Cold days | Percentage of days when Tx < 10th percentile | % |
Tn90p | Warm nights | Percentage of days when Tn > 90th percentile | % |
DTR | Diurnal temperature range | Annual mean difference between Tx and Tn. | °C |
Precipitation | |||
PRCPTOT | Annual total precipitation | Annual total precipitation in wet days (pr > 1 mm) | mm |
Rx1day | Max 1-day precipitation | Annual maximum 1-day precipitation | mm |
Rx5day | Max 5-day precipitation | Annual maximum consecutive 5-day precipitation | mm |
R10 | Number of heavy precipitation days | Annual count of days when pr ≥ 10 mm | Days |
CDD | Consecutive dry days | Annual maximum number of consecutive days with pr < 1 mm | Days |
CWD | Consecutive wet days | Annual maximum number of consecutive days with pr ≥ 1 mm | Days |
R95p | Very wet days | Total precipitation when pr > 95th percentile | mm |
R99p | Extremely wet days | Total precipitation when pr > 99th percentile | mm |
Positive Trend | Negative Trend | No Trend | Both Positive and Negative Trend | ||||||
---|---|---|---|---|---|---|---|---|---|
Indices | Total (%) | Sig. (%) | Non Sig. (%) | Total (%) | Sig. (%) | Non Sig. (%) | Total (%) | Total Sig. (%) | Total Non Sig. (%) |
TXx | 59.22 | 13.59 | 45.63 | 38.83 | 0.97 | 37.86 | 1.94 | 14.56 | 83.50 |
TXn | 47.57 | 0.00 | 47.57 | 51.46 | 0.00 | 51.46 | 0.97 | 0.00 | 99.03 |
TNx | 77.67 | 17.48 | 60.19 | 20.39 | 0.97 | 19.42 | 1.94 | 18.45 | 79.61 |
TNn | 50.49 | 2.91 | 47.57 | 46.60 | 2.91 | 43.69 | 2.91 | 5.83 | 91.26 |
TX10p | 63.11 | 4.85 | 58.25 | 34.95 | 5.83 | 29.13 | 1.94 | 10.68 | 87.38 |
TN10p | 8.74 | 0.00 | 8.74 | 90.29 | 50.49 | 39.81 | 0.97 | 50.49 | 48.54 |
TN90p | 88.35 | 22.33 | 66.02 | 10.68 | 0.00 | 10.68 | 0.97 | 22.33 | 76.70 |
DTR | 13.59 | 1.94 | 11.65 | 85.44 | 12.62 | 72.82 | 0.97 | 14.56 | 84.47 |
Positive Trend | Negative Trend | No Trend | Both Positive and Negative Trend | ||||||
---|---|---|---|---|---|---|---|---|---|
Indices | Total (%) | Sig. (%) | Non Sig.(%) | Total (%) | Sig. (%) | Non Sig. (%) | Total (%) | Total Sig. (%) | Total Non Sig. (%) |
PRCPTOT | 72.82 | 8.74 | 64.08 | 26.21 | 0.97 | 25.24 | 0.97 | 9.71 | 89.32 |
R10mm | 54.37 | 2.91 | 51.46 | 44.66 | 4.85 | 39.81 | 0.97 | 7.77 | 91.26 |
RX1day | 42.72 | 3.88 | 38.83 | 55.34 | 6.80 | 48.54 | 1.94 | 10.68 | 87.38 |
RX5day | 42.72 | 5.83 | 36.89 | 56.31 | 11.65 | 44.66 | 0.97 | 17.48 | 81.55 |
CDD | 36.89 | 4.85 | 32.04 | 61.17 | 9.71 | 51.46 | 1.94 | 14.56 | 83.50 |
CWD | 73.79 | 16.50 | 57.28 | 25.24 | 0.00 | 25.24 | 0.97 | 16.50 | 82.52 |
R95p | 33.01 | 5.83 | 27.18 | 66.02 | 9.71 | 56.31 | 0.97 | 15.53 | 83.50 |
R99p | 42.72 | 5.83 | 36.89 | 52.43 | 2.91 | 49.51 | 4.85 | 8.74 | 86.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, E.A.; Zhi, X.; Abdela, K.A. Extreme Weather Patterns in Ethiopia: Analyzing Extreme Temperature and Precipitation Variability. Atmosphere 2025, 16, 133. https://doi.org/10.3390/atmos16020133
Mohammed EA, Zhi X, Abdela KA. Extreme Weather Patterns in Ethiopia: Analyzing Extreme Temperature and Precipitation Variability. Atmosphere. 2025; 16(2):133. https://doi.org/10.3390/atmos16020133
Chicago/Turabian StyleMohammed, Endris Ali, Xiefei Zhi, and Kemal Adem Abdela. 2025. "Extreme Weather Patterns in Ethiopia: Analyzing Extreme Temperature and Precipitation Variability" Atmosphere 16, no. 2: 133. https://doi.org/10.3390/atmos16020133
APA StyleMohammed, E. A., Zhi, X., & Abdela, K. A. (2025). Extreme Weather Patterns in Ethiopia: Analyzing Extreme Temperature and Precipitation Variability. Atmosphere, 16(2), 133. https://doi.org/10.3390/atmos16020133