Development of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index
<p>Empirical relationship between the volumetric sweat rate, skin temperature, and ambient temperature, as per Equation (1).</p> "> Figure 2
<p>Theoretical behavior of the XHW Index.</p> "> Figure 3
<p>Domain and numerical grids used in the WRF simulations for the city of Rio de Janeiro. As the WRF is a regional model, it was nested using three grids, spatially arranged as illustrated in this figure. The outer yellow rectangle corresponds to the area of the grid with the lowest spatial resolution (9 km), the intermediate rectangle represents the medium-resolution grid (3 km), and the smallest rectangle indicates the area with the highest resolution (1 km), which was the grid used to calculate the HWI.</p> "> Figure 4
<p>Map illustrating the geographical position of the five cities in Spain chosen for this study.</p> "> Figure 5
<p>-Example of applying the XHWI for detecting HW episodes during the summer of 2003 in the cities of Teruel (<b>a</b>), Córdoba (<b>b</b>), Cáceres (<b>c</b>), Madrid (<b>d</b>), and Murcia (<b>e</b>).</p> "> Figure 6
<p>Results of the WRF simulations for air temperature at 2 m in degrees Celsius at 3 PM (maximum diary value) on 15 March (<b>a</b>), 16 (<b>b</b>), 17 (<b>c</b>), and 18 (<b>d</b>), 2024, for the Metropolitan Region of Rio de Janeiro, Brazil. On the x-axis are the longitude values, and on the y-axis are the latitude values.</p> "> Figure 7
<p>Simulated values by the WRF of maximum temperature, hours when the XHW index was greater than zero, and the value of <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mrow> <mi mathvariant="normal">X</mi> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">W</mi> <mi mathvariant="normal">I</mi> </mrow> <mrow> <mi>N</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> for the period between 15 and 18 March 2024.</p> "> Figure 8
<p>Temporal evolution of the accumulative summer XHWI (June-July-August) in the cities of Córdoba, Murcia, Madrid, Teruel, and Caceres between 1950 and 2022.</p> "> Figure 9
<p>Temporal evolution of the accumulative summer maximum temperatures (June-July-August) in the cities of Córdoba, Murcia, Madrid, Teruel, and Caceres between 1950 and 2022.</p> ">
Abstract
:1. Introduction
2. Theoretical Background—Relationship Between Body Water Loss and Temperature
3. Methodology
3.1. Index Calculation
3.1.1. Obtaining the Probability Distribution Function (PDF) of Maximum Temperatures
3.1.2. Mathematical Formulation of the Index
3.2. Application of the XHWI in the Detection of the Intensity and Duration of HW Episodes in the Summer of 2003 in Spain
3.3. Application of the XHWI Under Weather Forecast Conditions
3.4. Use of the XHWI for Climate Studies
4. Results
4.1. Assessment of the Index During the Summer of 2003 in Spain
4.2. Application of the XHWI Weather Forecast Conditions
4.3. Use of the Index for Climate Studies
5. Discussion
- Conceptual evaluation of XHWI
- Results of XHWI and its applications in assessing risk prevention and alert emission
- Further studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Kamel Boulos, M.N.; Wilson, J.P. Geospatial techniques for monitoring and mitigating climate change and its effects on human health. Int. J. Health Geogr. 2023, 22, 2. [Google Scholar] [CrossRef]
- Bi, X.; Wu, C.; Wang, C.; Wang, Y.; Wang, X.; Song, C.; Li, J.; Fu, C. Impacts of air temperature and its extremes on human mortality in Shanghai, China. Urban Clim. 2022, 41, 101072. [Google Scholar] [CrossRef]
- Lu, R.; Xu, K.; Chen, R.; Chen, W.; Li, F.; Lv, C. Heat waves in summer 2022 and increasing concern regarding heat waves in general. Atmos. Ocean. Sci. Lett. 2023, 16, 100290. [Google Scholar] [CrossRef]
- Moraes, S.L.; Almendra, R.; Barrozo, L.V. Impact of heat waves and cold spells on cause-specific mortality in the city of São Paulo, Brazil. Int. J. Hyg. Environ. Health 2022, 239, 113861. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Twardosz, R.; Wałach, P.; Czarnecka, K.; Błażejczyk, A. Heat strain and mortality effects of prolonged central European heat wave-an example of June 2019 in Poland. Int. J. Biometeorol. 2022, 66, 149–161. [Google Scholar] [CrossRef]
- Winklmayr, C.; Muthers, S.; Niemann, H.; Mücke, H.G.; an der Heiden, M. Heat-related mortality in Germany from 1992 to 2021. Dtsch. Arztebl. Int. 2022, 119, 451–457. [Google Scholar] [CrossRef]
- Wedler, M.; Pinto, J.G.; Hochman, A. More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Sci. Total Environ. 2023, 870, 161883. [Google Scholar] [CrossRef]
- Foroni, M.; Salvioli, G.; Rielli, R.; Goldoni, C.A.; Orlandi, G.; Sajani, S.Z.; Guerzoni, A.; Maccaferri, C.; Daya, G.; Mussi, C. A Retrospective Study on Heat-Related Mortality in an Elderly Population During the 2003 Heat Wave in Modena, Italy: The Argento Project. J. Gerontol. Ser. A 2007, 62, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Palinkas, L.A.; Hurlburt, M.S.; Fernandez, C.; De Leon, J.; Yu, K.; Salinas, E.; Garcia, E.; Johnston, J.; Rahman, M.M.; Silva, S.J.; et al. Vulnerable, Resilient, or Both? A Qualitative Study of Adaptation Resources and Behaviors to Heat Waves and Health Outcomes of Low-Income Residents of Urban Heat Islands. Int. J. Environ. Res. Public Health 2022, 19, 11090. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T.; Li, H. Informing the planning of rotating power outages in heat waves through data analytics of connected smart thermostats for residential buildings. Environ. Res. Lett. 2021, 16, 74003. [Google Scholar] [CrossRef]
- Zhao, L.; Oleson, K.; Bou-Zeid, E.; Krayenhoff, E.S.; Bray, A.; Zhu, Q.; Zheng, Z.; Chen, C. Global multi-model projections of local urban climates. Nat. Clim. Chang. 2021, 11, 152–157. [Google Scholar] [CrossRef]
- Rahman, M.M.; McConnell, R.; Schlaerth, H.; Ko, J.; Silva, S.; Lurmann, F.W.; Palinkas, L.; Johnston, J.; Hurlburt, M.; Yin, H.; et al. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: Implications for climate change. Am. J. Respir. Crit. Care Med. 2022, 206, 1117–1127. [Google Scholar] [CrossRef]
- Xu, R.; Huang, S.; Shi, C.; Wang, R.; Liu, T.; Li, Y.; Zheng, Y.; Lv, Z.; Wei, J.; Sun, H.; et al. Extreme Temperature Events, Fine Particulate Matter, and Myocardial Infarction Mortality. Circulation 2023, 148, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Smoyer-Tomic, K.E.; Kuhn, R.; Hudson, A. Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada. Nat. Hazards 2003, 28, 465–486. [Google Scholar] [CrossRef]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes. Rendus. Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Hoag, H. Russian summer tops ‘universal’ heatwave index. Nature 2014, 16, 636. [Google Scholar] [CrossRef]
- Li, M.; Gu, S.; Bi, P.; Yang, J.; Liu, Q. Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review. Int. J. Environ. Res. Public Health 2015, 12, 5256–5283. [Google Scholar] [CrossRef] [PubMed]
- Mazdiyasni, O.; AghaKouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; Sengupta, A.; Ghosh, S.; Dhanya, C.T.; et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 2017, 3, e1700066. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- IPCC. 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Our World in Data. (n.d.). Our World in Data. Available online: https://ourworldindata.org/ (accessed on 8 March 2024).
- Casanueva, A.; Burgstall, A.; Kotlarski, S.; Messeri, A.; Morabito, M.; Flouris, A.D.; Nybo, L.; Spirig, C.; Schwierz, C. Overview of Existing Heat-Health Warning Systems in Europe. Int. J. Environ. Res. Public Health 2019, 16, 2657. [Google Scholar] [CrossRef]
- Keatinge, W.R. Death in heat waves. BMJ 2003, 327, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Keatinge, W.R.; Coleshaw, S.R.K.; Easton, J.C.; Cotter, F.; Mattock, M.B.; Chelliah, R. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Am. J. Med. 1986, 81, 795–800. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Muthers, S.; Laschewski, G.; Matzarakis, A. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change. Atmosphere 2017, 8, 224. [Google Scholar] [CrossRef]
- Schaeffer, L.; de Crouy-Chanel, P.; Wagner, V.; Desplat, J.; Pascal, M. How to estimate exposure when studying the temperature-mortality relationship? A case study of the Paris area. Int. J. Biometeorol. 2016, 60, 73–83. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 7. [Google Scholar] [CrossRef]
- Mora, C.; Counsell, C.W.W.; Bielecki, C.R.; Louis, L.V. Twenty-Seven Ways a Heat Wave Can Kill You: Deadly Heat in the Era of Climate Change. Cardiovasc. Qual. Outcomes 2017, 10, e004233. [Google Scholar] [CrossRef]
- Wenger, C.B. Human heat acclimatization. In Human Performance Physiology and Environmental Medicine at Terrestrial Extremes; Benchmark Press: Concord, NC, USA, 1988; pp. 153–197. [Google Scholar]
- Wyndham, C.H.; Atkins, A.R. A Physiological Scheme and Mathematical Model of Temperature Regulation in Man. Pflügers Arch. Eur. J. Physiol. 1968, 303, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Cengel, Y.A.; Ghajar, A. Heat and Mass Transfer: Fundamentals and Applications, 6th ed.; McGraw Hill: New York, NY, USA, 2021. [Google Scholar]
- Sphaier, L.A.; Worek, W.M. Analysis of heat and mass transfer in porous sorbents used in rotary regenerators. Int. J. Heat Mass Transf. 2004, 47, 3415–3430. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Handbook Fundamentals; American Society of Heating, Refrigerating and Air-conditioning Engineers: Atlanta, GA, USA, 2005. [Google Scholar]
- Nadel, E.R.; Stolwijk, J.A. Effect of exposure to hot environments on the level of dehydration in resting and exercising men. J. Appl. Physiol. 1973, 35, 698–704. [Google Scholar]
- Sawka, M.N.; Montain, S.J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 2000, 72, 564S–572S. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Jay, O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr. Physiol. 2013, 3, 1689–1719. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Awasthi, A.; Vishwakarma, K.; Pattnayak, K.C. Retrospection of heatwave and heat index. Theor. Appl. Clim. 2022, 147, 589–604. [Google Scholar] [CrossRef]
- Weather Underground. (n.d.). World Record for Low Humidity: 116 °F with 0.36% Humidity in Iran. Available online: https://www.wunderground.com/cat6/world-record-low-humidity-116f-036-humidity-iran- (accessed on 21 February 2024).
- Chen, X.; Li, N.; Liu, J.; Zhang, Z.; Liu, Y. Global Heat Wave Hazard Considering Humidity Effects during the 21st Century. Int. J. Environ. Res. Public Health 2019, 16, 1513. [Google Scholar] [CrossRef]
- Rastogi, D.; Lehner, F.; Ashfaq, M. Revisiting recent U.S. heat waves in a warmer and more humid climate. Geophys. Res. Lett. 2020, 47, e2019GL086736. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Poso, A.; Lorenzo, N.; Royé, D. Spatio-temporal evolution of heat waves severity and expansion across the Iberian Peninsula and Balearic islands. Environ. Res. 2023, 217, 114864. [Google Scholar] [CrossRef]
- Tobías, A.; Royé, D.; Iñiguez, C. Heat-attributable Mortality in the Summer of 2022 in Spain. Epidemiology 2023, 34, e5–e6. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Tejedor, E.; Sarricolea, P.; Meseguer-Ruiz, O.; de Luis, M.; Saz, M.Á.; Longares, L.A.; Olcina, J. Unprecedented warmth: A look at Spain’s exceptional summer of 2022. Atmos. Res. 2023, 293, 106931. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mishra, A.K. How unusual is the 2022 European compound drought and heatwave event? Geophys. Res. Lett. 2023, 50, e2023GL105453. [Google Scholar] [CrossRef]
- European Statistical Office (Eurostat). 2024. Database. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 30 May 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. 2019: A Description of the Advanced Research WRF Version 4; NCAR Tech. Note NCAR/TN-556+STR; 2019; 145p. [Google Scholar] [CrossRef]
- Down To Earth. (n.d.). Climate Crisis Everywhere All at Once: Record-Breaking Temperature in 10 Countries Across 4 Continents. Available online: https://www.downtoearth.org.in/news/climate-change/climate-crisis-everywhere-all-at-once-record-breaking-temperature-in-10-countries-across-4-continents-95110 (accessed on 10 June 2024).
- Perkins, S.E.; Alexander, L.V. On the Measurement of Heat Waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L.; Lee, J.-T. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Royé, D.; Codesido, R.; Tobías, A.; Taracido, M. Heat wave intensity and daily mortality in four of the largest cities of Spain. Environ. Res. 2020, 182, 109027. [Google Scholar] [CrossRef]
- Paredes-Fortuny, L.; Khodayar, S. Understanding the Magnification of Heatwaves over Spain: Relevant changes in the most extreme events. Weather Clim. Extrem. 2023, 42, 100631. [Google Scholar] [CrossRef]
- López-Bueno, J.A.; Díaz, J.; Follos, F.; Vellón, J.M.; Navas, M.A.; Culqui, D.; Luna, M.Y.; Sánchez-Martínez, G. Evolution of the threshold temperature definition of a heat wave vs. evolution of the minimum mortality temperature: A case study in Spain during the 1983–2018 period. Environ. Sci. Eur. 2021, 33, 101. [Google Scholar] [CrossRef]
- Díaz, J.; García-Herrera, R.; Trigo, R.M.; Linares, C.; Valente, M.A.; De Miguel, J.M.; Hernández, E. The impact of the summer 2003 heat wave in Iberia: How should we measure it? Int. J. Biometeorol. 2006, 50, 159–166. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Clavel, J.; Jougla, E. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 2006, 80, 16–24. [Google Scholar] [CrossRef]
- Santé Publique France. (2022, December 20). Bulletin de Santé Publique—Heatwaves, France—Summer 2022. Santé Publique France. Available online: https://www.santepubliquefrance.fr/en/bulletin-de-sante-publique-heatwaves-france-summer-2022 (accessed on 12 June 2024).
- Guo, Y.; Gasparrini, A.; Armstrong, B.G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho, M.; Pan, X.; Kim, H.; Hashizume, M.; et al. Heat Wave and Mortality: A Multicountry, Multicommunity Study. Environ. Health Perspect. 2017, 125, 87006. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.M.; Belém, A.L.; Marton Cataldi, M. Dynamics-based regression models for the South Atlantic Convergence Zone. Clim. Dyn. 2019, 52, 5527–5553. [Google Scholar] [CrossRef]
- Cataldi, M.; Ribeiro, E.M.; Andrade, L.S.; Pandolfi de Lima, A.; Almeida, G.L.M.; Pereira, T.R.A. Creation and Assessment of an Index for Atmospheric Blockings in Brazil’s Central Region. Adv. Hydro Meteorol. 2024, 1. [Google Scholar] [CrossRef]
- Da Silveira, L.H.M.; Cataldi, M.; de Farias, W.C.M. Development of multi-scale indices of human mobility restriction during the COVID-19 based on air quality from local and global NO2 concentration. ISCIENCE 2023, 26, 107599. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca Aguiar, L.; Cataldi, M. Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone. Nat. Hazards 2021, 109, 2423–2437. [Google Scholar] [CrossRef]
Physics | Option |
---|---|
Cloud Microphysics | WRF Single moment 3-class (3) |
Shortwave and Longwave Radiation | Dudhia Shortwave (1) e RRTM Longwave scheme (1) |
Surface Layer | Revised MM5 Scheme (2) |
Land Surface | Unified Loah Land Surface Model (1) |
Planetary Boundary Layer | Yonsei University Scheme (YSU) (1) |
Cumulus and Convection | Kain-Fritsch Scheme (1) |
City | 1950–1977 (P1) | 1978–2002 (P2) | 2003–2022 (P3) | Percentage Increase P1 -> P2 | Percentage Increase P2 -> P3 | Percentage Increase P1 -> P3 |
---|---|---|---|---|---|---|
Cordoba | 1.9 | 7.5 | 31.8 | 301% | 326% | 1611% |
Murcia | 5.6 | 4.7 | 17.8 | −17% | 279% | 217% |
Madrid | 0.9 | 8.4 | 20.3 | 820% | 141% | 2116% |
Teruel | 0.8 | 3.9 | 23.6 | 382% | 508% | 2831% |
Carceres | 1.9 | 9.9 | 18.5 | 419% | 87% | 872% |
Average | 2.2 | 6.9 | 22.4 | 381% | 268% | 1529% |
City | 1950–1977 °C (P1) | 1978–2002 °C (P2) | 2003–2022 °C (P3) | Percentage Increase P1 -> P2 | Percentage Increase P2 -> P3 | Percentage Increase P1 -> P3 |
---|---|---|---|---|---|---|
Cordoba | 31.6 | 32.5 | 34.5 | 3% | 6% | 9% |
Murcia | 30.7 | 31.2 | 32.4 | 1% | 4% | 5% |
Madrid | 29.0 | 30.8 | 31.9 | 6% | 4% | 10% |
Teruel | 24.6 | 26.0 | 28.1 | 6% | 8% | 14% |
Carceres | 30.1 | 30.9 | 32.3 | 3% | 4% | 7% |
Average | 29.2 | 30.3 | 31.8 | 4% | 5% | 9% |
Trend | P | Z | Tau | |||||
---|---|---|---|---|---|---|---|---|
XHWI | Max T | XHWI | Max T | XHWI | Max T | XHWI | Max T | |
Murcia | increasing | increasing | 0.002 | 6.16 × 10−10 | 2.990 | 6.186 | 0.239 | 0.495 |
Caceres | increasing | increasing | 1.61 × 10−6 | 7.50 × 10−7 | 4.797 | 4.948 | 0.384 | 0.396 |
Cordoba | increasing | increasing | 4.82 × 10−10 | 2.15 × 10−9 | 6.225 | 5.986 | 0.498 | 0.479 |
Madrid | increasing | increasing | 1.62 × 10−10 | 3.30 × 10−13 | 6.394 | 7.282 | 0.510 | 0.582 |
Teruel | increasing | increasing | 4.00 × 10−10 | 1.01 × 10−11 | 6.254 | 6.805 | 0.495 | 0.544 |
City | 1950–1977 (P1) | 1978–2002 (P2) | 2003–2022 (P3) |
---|---|---|---|
Córdoba | 29% | 84% | 100% |
Murcia | 79% | 52% | 95% |
Madrid | 14% | 84% | 85% |
Teruel | 11% | 56% | 100% |
Cáceres | 39% | 72% | 90% |
City | 1950–1977 (P1) | 1978–2002 (P2) | 2003–2022 (P3) |
---|---|---|---|
Córdoba | 7% | 60% | 100% |
Murcia | 25% | 16% | 80% |
Madrid | 0% | 60% | 75% |
Teruel | 0% | 4% | 60% |
Cáceres | 18% | 52% | 80% |
City | 1950–1977 (P1) | 1978–2002 (P2) | 2003–2022 (P3) |
---|---|---|---|
Córdoba | 0% | 24% | 90% |
Murcia | 0% | 0% | 60% |
Madrid | 0% | 16% | 60% |
Teruel | 0% | 0% | 35% |
Cáceres | 4% | 28% | 60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldi, M.; Galves, V.L.V.; Sphaier, L.A.; Garnés-Morales, G.; Gallardo, V.; Párraga, L.M.; Montávez, J.P.; Jimenez-Guerrero, P. Development of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index. Atmosphere 2024, 15, 1541. https://doi.org/10.3390/atmos15121541
Cataldi M, Galves VLV, Sphaier LA, Garnés-Morales G, Gallardo V, Párraga LM, Montávez JP, Jimenez-Guerrero P. Development of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index. Atmosphere. 2024; 15(12):1541. https://doi.org/10.3390/atmos15121541
Chicago/Turabian StyleCataldi, Marcio, Vitor Luiz Victalino Galves, Leandro Alcoforado Sphaier, Ginés Garnés-Morales, Victoria Gallardo, Laurel Molina Párraga, Juan Pedro Montávez, and Pedro Jimenez-Guerrero. 2024. "Development of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index" Atmosphere 15, no. 12: 1541. https://doi.org/10.3390/atmos15121541
APA StyleCataldi, M., Galves, V. L. V., Sphaier, L. A., Garnés-Morales, G., Gallardo, V., Párraga, L. M., Montávez, J. P., & Jimenez-Guerrero, P. (2024). Development of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index. Atmosphere, 15(12), 1541. https://doi.org/10.3390/atmos15121541