Extension of the Discrete Electron Transport Capabilities of the Geant4-DNA Toolkit to MeV Energies
<p>Schematic of the different correction terms implemented into the present inelastic model (DNA-Opt4X). To reduce the computational burden, corrections are turned “ON/OFF” only within the energy range (regime) in which they have an effect larger/smaller than 1% to the electronic stopping power (SP).</p> "> Figure 2
<p>Electron inelastic cross sections for each (outer) ionization shell (<span class="html-italic">j</span> = 1–4) and excitation level (<span class="html-italic">k</span> = 1–5) of liquid water in the energy range from threshold (~10 eV) to 10 MeV calculated by the present model (DNA-Opt4X).</p> "> Figure 3
<p>The longitudinal and transverse contribution to the electron inelastic cross section for each outer ionization shell (<b>top</b> panel) and excitation level (<b>bottom</b> panel) of liquid water in the energy range from 100 keV to 10 MeV calculated by the present model (DNA-Opt4X).</p> "> Figure 4
<p>The contribution (in %) of the longitudinal and transverse terms to the total electron inelastic cross section of liquid water in the energy range from 100 keV to 10 MeV calculated by the present model (DNA-Opt4X).</p> "> Figure 5
<p>Comparison of the total ionization cross section (<b>top</b> panel) and the total excitation cross section (<b>bottom</b> panel) of liquid water as a function of electron energy calculated by different Geant4-DNA constructors, namely, DNA-Opt2 (default), DNA-Opt4X (present/new), and DNA-Opt6. Note that each constructor has a different upper energy limit of application (see text).</p> "> Figure 6
<p>(<b>Top</b> panel) Electronic stopping power (SP) of liquid water for electrons over the energy range from 20 eV to 10 MeV simulated by different Geant4-DNA constructors, namely, DNA-Opt2 (default), DNA-Opt4X (present/new), and DNA-Opt6, and compared against the SP values of ICRU Report 90 [<a href="#B59-applsci-15-01183" class="html-bibr">59</a>]. (<b>Bottom</b> panel) Percentage difference in the various Geant4-DNA constructors from ICRU [<a href="#B59-applsci-15-01183" class="html-bibr">59</a>].</p> "> Figure 7
<p>Percentage difference in the electronic stopping power (SP) calculated by the present model (DNA-Opt4X) with and without the various correction terms from the values of ICRU Report 90 [<a href="#B59-applsci-15-01183" class="html-bibr">59</a>]. The notation is as follows: “Mott-Co” denotes the Mott–Coulomb low-energy correction (see <a href="#sec2dot3-applsci-15-01183" class="html-sec">Section 2.3</a>), “Asy” refers to the high-energy asymptotic correction (see <a href="#sec2dot4-applsci-15-01183" class="html-sec">Section 2.4</a>), “Fermi” refers to the (relativistic) Fermi density correction (see <a href="#sec2dot4-applsci-15-01183" class="html-sec">Section 2.4</a>).</p> "> Figure 8
<p>The ratio of the electronic stopping power (SP) with the low-energy corrections (i.e., the Mott and/or the Coulomb corrections) to the SP without the corrections is calculated by the present model (DNA-Opt4X).</p> "> Figure 9
<p>(<b>Top</b> panel) range (or average pathlength) of electrons in liquid water over the energy range from 20 eV up to 10 MeV simulated by different Geant4-DNA constructors, namely, DNA-Opt2 (default), DNA-Opt4X (present/new), and DNA-Opt6, and compared against the range values of ICRU Report 90 [<a href="#B59-applsci-15-01183" class="html-bibr">59</a>]; (<b>Bottom</b> panel) Percentage difference in the various Geant4-DNA constructors from ICRU [<a href="#B59-applsci-15-01183" class="html-bibr">59</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Features of the Present Model
2.2. Implementation of the Plane Wave Born Approximation (PWBA)
2.3. Low-Energy Corrections
2.4. Relativistic Corrections
2.5. Stopping Power (SP) and Range (R)
3. Results and Discussion
3.1. Inelastic Cross Sections
3.2. Stopping Power Simulations
3.3. Range Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
BEAX | Binary Encounter Approximation with Exchange |
DCS | Differential Cross Section |
EBRT | Electron Beam Radiation Therapy |
ELF | Energy Loss Function |
ICRU | International Commission on Radiation Units and Measurements |
Geant | Geometry And Tracking |
MCTS | Monte Carlo Trak Structure |
PWBA | Plane Wave Born Approximation |
RPWBA | Relativistic Plane Wave Born Approximation |
RT | Radiation Therapy |
SP | Stopping Power |
TCS | Total Cross Section |
CSDA | Continuous Slowing Down Approximation |
List of Nomenclature
symbol | nomenclature | dimensional units |
T | kinetic energy | energy |
E | energy transfer | energy |
q | momentum transfer | (mass)·(length)·(time)−1 |
ε | dielectric function | – |
σ | cross section | (length)2 |
Bohr radius | length | |
N | density of water molecules | (length)−3 |
Β | binding energy | energy |
U | average kinetic energy in shell | energy |
m | electron rest mass | mass |
β | particle velocity over speed of light | – |
c | speed of light | (length)·(time)−1 |
Q | recoil energy | energy |
R | range | length |
References
- Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation track, DNA damage and response-a review. Rep. Prog. Phys. 2016, 79, 116601. [Google Scholar] [CrossRef]
- Nikjoo, H.; O’Neill, P.; Terrissol, M.; Goodhead, D.T. Modelling of radiation induced DNA damage: The early physical and chemical event. Int. J. Radiat. Biol. 1994, 66, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Muroya, Y.; Meesugnoen, J.; Jay-Gerin, J.P.; Filali-Mouhim, A.; Goulet, T.; Katsumura, Y.; Mankhetkorn, S. Radiolysis of liquid water: An attempt to reconcile Monte-Carlo simulations with new experimental hydrated electron yield data at early times. Can. J. Chem. 2002, 80, 1367–1374. [Google Scholar] [CrossRef]
- Plante, I. A review of simulation codes and approaches for radiation chemistry. Phys. Med. Biol. 2021, 66, 03TR02. [Google Scholar] [CrossRef]
- Tran, H.N.; Archer, J.; Baldacchino, G.; Brown, J.M.; Chappuis, F.; Cirrone, G.A.P.; Desorgher, L.; Dominguez, N.; Fattori, S.; Guatelli, S.; et al. Review of chemical models and applications in Geant4-DNA: Report from the ESA BioRad III Project. Med. Phys. 2024, 51, 5873–5889. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, H.; Uehara, S.; Emfietzoglou, D.; VCucinotta, F.A. Track structure codes in radiation research. Radiat. Meas. 2006, 41, 1052–1074. [Google Scholar] [CrossRef]
- Chatzipapas, K.P.; Papadimitroulas, P.; Emfietzoglou, D.; Kalospyros, S.A.; Hada, M.; Georgakilas, A.G.; Kagadis, G.C. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers 2020, 12, 799. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, I.; Sakata, D.; Tran, H.N.; Perrot, Y.; Shin, W.G.; Lampe, N.; Zein, S.; Bordage, M.C.; Guatelli, S.; Villagrasa, C.; et al. Review of the Geant4-DNA simulation toolkit for radiobiological applications at the cellular and DNA level. Cancers 2022, 14, 35. [Google Scholar] [CrossRef]
- Emfietzoglou, D.; Nikjoo, H. The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat. Res. 2005, 163, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Dingfelder, M.; Ritchie, R.H.; Turner, J.E.; Friedland, W.; Paretzke, H.G.; Hamm, R.N. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water. Radiat. Res. 2008, 169, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Emfietzoglou, D.; Kyriakou, I.; Abril, I.; Garcia-Molina, R.; Nikjoo, H. Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface. Int. J. Radiat. Biol. 2011, 88, 22–28. [Google Scholar] [CrossRef]
- Emfietzoglou, D.; Papamichael, G.; Nikjoo, H. Monte Carlo electron track structure calculations in liquid water using a new model dielectric response function. Radiat. Res. 2017, 188, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Pater, P.; Seuntjens, J.; Naqa, I.E.; Bernal, M.A. On the consistency of Monte Carlo track structure DNA damage simulations. Med. Phys. 2014, 41, 121708. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. The Geant4-DNA project. Int. J. Model. Simul. Sci. Comput. 2010, 1, 157–178. [Google Scholar] [CrossRef]
- Incerti, S.; Ivanchenko, A.; Karamitros, M.; Mantero, A.; Moretto, P.; Tran, H.N.; Mascialino, B.; Champion, C.; Ivanchenko, V.N.; Bernal, M.A.; et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med. Phys. 2010, 37, 4692–4708. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.A.; Bordage, M.C.; Brown, J.M.C.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.A.; Francis, Z.; Guatelli, S.; Ivanchenko, V.N.; et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 2015, 31, 861–874. [Google Scholar] [CrossRef]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA example applications for track-structure simulations in liquid water. A report from the Geant4-DNA project. Med. Phys. 2018, 45, 722–739. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, I.; Ivanchenko, V.; Sakata, D.; Bordage, M.C.; Guatelli, S.; Incerti, S.; Emfietzoglou, D. Influence of track structure and condensed history physics models of Geant4 to nanoscale electron transport in liquid water. Phys. Med. 2019, 58, 149–154. [Google Scholar] [CrossRef]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef]
- Schuler, E.; Trovati, S.; King, G.; Lartey, F.; Rafat, M.; Villegas, M.; Praxel, A.J.; Loo, B.W., Jr.; Maxim, P.G. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Radiat. Oncol. Biol. Phys. 2017, 97, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Vozenin, M.C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef]
- Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-High Dose Rate (FLASH) radiotherapy: Silver Bullet or Fool’s Gold? Front. Oncol. 2020, 9, 1563. [Google Scholar] [CrossRef]
- Nikjoo, H.; Emfietzoglou, D.; Watanabe, R.; Uehara, S. Can Monte Carlo track structure codes reval reaction mechanism in DNA damage and improve radiation therapy? Radiat. Phys. Chem. 2008, 77, 1270–1279. [Google Scholar] [CrossRef]
- El Naqa, I.; Pater, P.; Seuntjens, J. Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Phys. Med. Biol. 2012, 57, R75. [Google Scholar] [CrossRef]
- Brahme, A. Optimized radiation therapy based on radiobiological objectives. Semin. Radiat. Oncol. 1999, 9, 35–47. [Google Scholar] [CrossRef]
- Friendland, W.; Aschmidtt, E.; Kundrat, P.; Dingfelder, M.; Baiocco, G.; Barbieri, S.; Ottolenghi, A. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci. Rep. 2017, 7, 45161. [Google Scholar]
- Huq, M.S.; Sing, H.; Andreo, P.; Houser, C.J. Reference dosimetry in clinical high-energy beams: Comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols. Med. Phys. 2001, 28, 2077–2087. [Google Scholar] [CrossRef]
- Durante, M.; Cucinotta, F. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 2011, 83, 1245–1281. [Google Scholar] [CrossRef]
- McKenna-Lawlor, S.; Concalves, P.; Keating, A.; Reitz, G.; Matthia, D. Overview of energetic partic;e hazards during prospective manned missions to Mars. Planet. Space Sci. 2012, 63–64, 123–132. [Google Scholar] [CrossRef]
- Straume, T.; Slaba, T.C.; Bhattacharya, S.; Braby, L.A. Cosmic -ray interaction data for designing biological experiments in space. Life Sci. Space Res. 2017, 13, 51–59. [Google Scholar] [CrossRef]
- Walsh, L.; Schneider, U.; Fogtman, A.; Kausch, C.; McKenna-Lawlor, S.; Narici, L.; Ngo-Anh, J.; Reitz, G.; Sabatier, L.; Santin, G.; et al. Research plans in Europe for radiation health hazard assessment in exploratory space missions. Life Sci. Space Res. 2019, 21, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Strigari, L.; Strolin, S.; Morganti, A.G.; Bartoloni, A. Dose-effects models for space radiobiology: An overview on dose-effects relationships. Front. Public Health 2021, 9, 733337. [Google Scholar] [CrossRef] [PubMed]
- Cuccinotta, F.A. Flying without a net: Space radiation cancer risk predictions without a gamma-ray basis. Int. J. Mol. Sci. 2022, 23, 4324. [Google Scholar] [CrossRef]
- Chancellor, J.; Nowadly, C.; Williams, J.; Aunon-Chancellor, S.; Chesal, M.; Looper, J.; Newhauser, W. Everything you wanted to know about space radiation but were afraid to ask. J. Environ. Sci. Health Part C 2021, 39, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Shuryak, I.; Slaba, T.C.; Plante, I.; Poignant, F.; Blattnig, S.R.; Brenner, D.J. A practical approach for conituous in situ characterization of radiation quality factors in space. Sci. Rep. 2022, 12, 1453. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Kyriakou, I.; Incerti, S.; Santin, G.; Nieminen, P.; Daglis, I.A.; Li, W.; Emfietzoglou, D. Space radiation qualiy factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach. Radiat. Environ. Biophys. 2023, 62, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, F.; Tran, H.N.; Zein, S.A.; Bailat, C.; Incerti, S.; Bochud, F.; Desorgher, L. The general-purpose Geant4 Monte Carlo toolkit and its Geant4-DNA extension to investigate mechanisms underlying the FLASH effect in radiotherapy: Current status and challenges. Phys. Med. 2023, 110, 102601. [Google Scholar] [CrossRef] [PubMed]
- Spitz, D.R.; Buettner, G.R.; Petronek, M.S.; St-Aubin, J.J.; Flynn, R.T.; Waldron, T.J.; Limoli, C.L. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother. Oncol. 2019, 139, 23–27. [Google Scholar] [CrossRef]
- Alanazi, A.; Meesungnoen, J.; Jay-Gerin, J.-P. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy. Radiat. Res. 2021, 95, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Bug, M.U.; Baek, W.Y.; Rabus, H.; Villagrasa, C.; Meylan, S.; Rosenfeld, A. An electron-impact cross section data set (10 eV–1 keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations. Radiat. Phys. Chem. 2017, 130, 459–479. [Google Scholar] [CrossRef]
- Zein, S.A.; Bordage, M.-C.; Francis, Z.; Macetti, G.; Genoni, A.; Cappello, C.D.; Shin, W.-G.; Incerti, S. Electron transport in DNA bases: An extension of the Geant4-DNA Monte Carlo toolkit. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2021, 488, 70–82. [Google Scholar] [CrossRef]
- Kyriakou, I.; Incerti, S.; Francis, Z. Technical note: Improvements in Geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Med. Phys. 2015, 42, 3870–3876. [Google Scholar] [CrossRef]
- Kyriakou, I.; Šefl, M.; Nourry, V.; Incerti, S. The impact of new geant4-DNA cross section models on electron track structure simulations in liquid water. J. Appl. Phys. 2016, 119, 194902. [Google Scholar] [CrossRef]
- Bordage, M.C.; Bordes, J.; Edel, S.; Terrissol, M.; Franceries, X.; Bardiès, M.; Lampe, N.; Incerti, S. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Phys. Med. 2016, 32, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, H.; Uehara, S.; Emfietzoglou, D. Interaction of Radiation with Matter; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Powell, C.J.; Jablonski, A. Evaluation of calculated and measured electron inelastic mean free paths near solid surfaces. J. Phys. Chem. Ref. Data 1999, 28, 19–62. [Google Scholar] [CrossRef]
- De Vera, P.; Garcia-Molina, R. Electron inelastic mean free paths in condensed matter down to a few electronvolts. J. Phys. Chem. C 2019, 123, 2075–2083. [Google Scholar] [CrossRef]
- Dingfelder, M. Updated model for dielectric response function of liquid water. Appl. Radiat. Isot. 2014, 83, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, I.; Emfietzoglou, D.; Incerti, S. Status and Extension of the Geant4-DNA Dielectric Models for Application to Electron Transport. Front. Phys. 2022, 9, 711317. [Google Scholar] [CrossRef]
- Taioli, S.; Trevisanutto, P.E.; de Vera, P.; Simonucci, S.; Abril, I.; Garcia-Molina, R.; Dapor, M. Relative Role of Phsyical Mechanisms on Complex Biodamage Induced by Carbon Irradiation. J. Phys. Chem. Lett. 2021, 12, 487–493. [Google Scholar] [CrossRef]
- Koval, N.E.; Koval, P.; Da Pieve, F.; Kohanoff, J.; Artacho, E.; Emfietzoglou, D. Inelastic scattering of electrons in water from first-principles: Cross sections and inelaqstic mean free path for use in Monte Carlo track-structure simulations of biological damage. R. Soc. Open Sci. 2021, 9, 212011. [Google Scholar] [CrossRef]
- Semenenko, V.A.; Turner, J.E.; Borak, T.B. NOREC, a Monte Carlo code for simulating electron tracks in liquid water. Radiat. Environ. Biophys. 2003, 42, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Dingfelder, M.; Hantke, D.; Inokuti, M.; Paretzke, H.G. Electron inelastic-scattering cross sections in liquid water. Radiat. Phys. Chem. 1998, 53, 1–18. [Google Scholar] [CrossRef]
- Liamsuwan, T.; Emfietzoglou, D.; Uehara, S.; Nikjoo, H. Microdosimetry of low-energy electrons. Int. J. Radiat. Biol. 2012, 88, 899–907. [Google Scholar] [CrossRef]
- ICRU. Secondary Electron Spectra from Charged Particle Interactions; Report 55; International Commission of Radiation Units and Measurements: Bethesda, MD, USA, 1996. [Google Scholar]
- Llovet, X.; Powell, C.J.; Salvat, F.; Jablonski, A. Cross Sections for Inner Shell Ionization by Electron Impact. J. Phys. Chem. Ref. Data 2014, 43, 013102. [Google Scholar] [CrossRef]
- Fernández-Varea, J.M.; Llovet, X.; Salvat, F. Cross sections for electron interactions in condensed matter. Surf. Interface Anal. 2005, 27, 824–832. [Google Scholar] [CrossRef]
- ICRU. Key Data for Ionizing Radiation Dosimetry: Measurement Standards and Applications; Report 90; International Commission of Radiation Units and Measurements: Bethesda, MD, USA, 2016. [Google Scholar]
- Fano, U. Differential inelastic scattering of relativistic charged particles. Phys. Rev. 1956, 102, 385–387. [Google Scholar] [CrossRef]
- Fano, U. Penetration of protons, alpha particles, and mesons. Annu. Rev. Nucl. Sci. 1963, 13, 1–66. [Google Scholar] [CrossRef]
- Steinheimer, R.M.; Berger, M.J.; Seltzer, S.M. Density effect for the ionization loss of charged particles in various substances. At. Data Nucl. Data Tables 1984, 30, 261–271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakou, I.; Tran, H.N.; Desorgher, L.; Ivantchenko, V.; Guatelli, S.; Santin, G.; Nieminen, P.; Incerti, S.; Emfietzoglou, D. Extension of the Discrete Electron Transport Capabilities of the Geant4-DNA Toolkit to MeV Energies. Appl. Sci. 2025, 15, 1183. https://doi.org/10.3390/app15031183
Kyriakou I, Tran HN, Desorgher L, Ivantchenko V, Guatelli S, Santin G, Nieminen P, Incerti S, Emfietzoglou D. Extension of the Discrete Electron Transport Capabilities of the Geant4-DNA Toolkit to MeV Energies. Applied Sciences. 2025; 15(3):1183. https://doi.org/10.3390/app15031183
Chicago/Turabian StyleKyriakou, Ioanna, Hoang N. Tran, Laurent Desorgher, Vladimir Ivantchenko, Susanna Guatelli, Giovanni Santin, Petteri Nieminen, Sebastien Incerti, and Dimitris Emfietzoglou. 2025. "Extension of the Discrete Electron Transport Capabilities of the Geant4-DNA Toolkit to MeV Energies" Applied Sciences 15, no. 3: 1183. https://doi.org/10.3390/app15031183
APA StyleKyriakou, I., Tran, H. N., Desorgher, L., Ivantchenko, V., Guatelli, S., Santin, G., Nieminen, P., Incerti, S., & Emfietzoglou, D. (2025). Extension of the Discrete Electron Transport Capabilities of the Geant4-DNA Toolkit to MeV Energies. Applied Sciences, 15(3), 1183. https://doi.org/10.3390/app15031183