Peniotron: A Promising Microwave Source with Potential That Has Yet to Be Realized
<p>Two typical configurations of peniotron interaction circuits: (<b>a</b>) double-ridge waveguide peniotron and (<b>b</b>) <math display="inline"><semantics> <msub> <mi>TE</mi> <mn>11</mn> </msub> </semantics></math>—mode peniotron with a rectangular waveguide. Figures reproduced from [<a href="#B18-applsci-14-11246" class="html-bibr">18</a>] (copyright ©2016 IEICE).</p> "> Figure 2
<p>Circular interaction structures: (<b>a</b>) smooth-wall waveguide (cavity) used in gyropeniotrons with helical electron beams (<math display="inline"><semantics> <msub> <mi>R</mi> <mi>c</mi> </msub> </semantics></math>—cavity radius, <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mi>c</mi> </mrow> </msub> </semantics></math>—guiding center radius of gyrating electrons); (<b>b</b>,<b>c</b>) slotted (vane-loaded) waveguide and rising-sun cavity, respectively, used with uniaxial electron beams. Here, <span class="html-italic">a</span> and <span class="html-italic">b</span> are the inner and outer radius of the slots and <math display="inline"><semantics> <msub> <mi>r</mi> <mi>L</mi> </msub> </semantics></math> is the Larmor radius of the electron orbits.</p> "> Figure 3
<p>Asynchronism in the peniotron due to the fact that the electrons gyrate faster than the cyclotron resonance wave: (<b>a</b>) angular frequencies of the gyrating electrons and the rotating electromagnetic wave; (<b>b</b>) motion of the electron with respect to a coordinate system associated with the wave (in this example, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>); (<b>c</b>) the field amplitude that the electron “sees” at different moments (indicated by dots) during one cyclotron period.</p> "> Figure 4
<p>On the operating principle of peniotron. The guiding center of the electron orbit drifts in such a way as to bring the electron into a stronger field at the decelerating phase and conversely into a weaker field at the accelerating phase. The orbits of an initially accelerated and an initially decelerated electron are shown in the panes (<b>a</b>,<b>b</b>), respectively. Below them, the distribution of the electric field <math display="inline"><semantics> <msub> <mi>E</mi> <mi>y</mi> </msub> </semantics></math> in the vertical <span class="html-italic">Y</span> direction along the horizontal axis <span class="html-italic">X</span> is shown.</p> "> Figure 5
<p>Brillouin diagram for the case of electron cyclotron autoresonance.</p> "> Figure 6
<p>Azimuthal electric fields in the vanes of the circuit. Here, the azimuthal angle (0–360°) is linearly stretched.</p> "> Figure 7
<p>Example of concurrent research on LOG and gyro-peniotron development: (<b>a</b>) EOS of LOG with a permanent magnet (shown are a photo of the device, a drawing of the tube, and results from the ray-tracing analysis of the EOS); and (<b>b</b>) a rising-sun cavity of a peniotron (shown is the electric field distribution calculated by the computer program for the evaluation of RF SUPERFISH cavities [<a href="#B80-applsci-14-11246" class="html-bibr">80</a>]).</p> "> Figure 7 Cont.
<p>Example of concurrent research on LOG and gyro-peniotron development: (<b>a</b>) EOS of LOG with a permanent magnet (shown are a photo of the device, a drawing of the tube, and results from the ray-tracing analysis of the EOS); and (<b>b</b>) a rising-sun cavity of a peniotron (shown is the electric field distribution calculated by the computer program for the evaluation of RF SUPERFISH cavities [<a href="#B80-applsci-14-11246" class="html-bibr">80</a>]).</p> ">
Abstract
:1. Introduction
2. Genealogy, History of Discovery, and Varieties of Peniotrons
3. Principle of Operation and Theory of Peniotron
3.1. Qualitative Description of the Peniotron Interaction
3.2. Some Basics of the Linear and Nonlinear Theory of the Peniotron and a Brief Overview of the Literature on This Subject
4. Remarkable Successful Realizations of Peniotrons
5. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kartikeyan, M.; Borie, E.; Thumm, M. GYROTRONS High Power Microwave and Millimeter Wave Technology; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Nusinovich, G. Introduction to the Physics of Gyrotrons; The Johns Hopkins University Press: Baltimore, MD, USA, 2004. [Google Scholar] [CrossRef]
- Chu, K.R. The Electron Cyclotron Maser. Rev. Mod. Phys 2004, 76, 489. [Google Scholar] [CrossRef]
- Tsimring, S.E. Electron Beams and Microwave Vacuum Electronics; Wiley-Interscience: New York, NY, USA, 2007. [Google Scholar]
- Du, C.-H.; Liu, P.-K. Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Gilmour, A.S. Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons; Artech House: Norwood, MA, USA, 2011. [Google Scholar]
- Grigoriev, A.D.; Ivanov, V.; Molokovsky, S. Microwave Electronics; Springer Series in Advanced Microelectronics; Springer: Berlin/Heidelberg, Germany, 2018; Volume 61. [Google Scholar] [CrossRef]
- Dattoli, G.; Palma, E.; Sabchevski, S.; Spassovsky, I. An overview of the gyrotron theory. In High Frequency Sources of Coherent Radiation for Fusion Plasmas; IOP Publishing: Bristol, UK, 2021; p. 51. [Google Scholar] [CrossRef]
- Temkin, R. Development of terahertz gyrotrons for spectroscopy at MIT. Terahertz Sci. Technol. 2014, 7, 1. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, U.; Bera, A.; Sinha, A. A review on the sub-THz/THz gyrotrons. Infrared Phys. Technol. 2016, 76, 38. [Google Scholar] [CrossRef]
- Glyavin, M.; Sabchevski, S.; Idehara, T.; Mitsudo, S. Gyrotron-Based Technological Systems for Material Processing-Current Status and Prospects. J. Infrared Millim. Terahertz Waves 2020, 41, 1022. [Google Scholar] [CrossRef]
- Idehara, T.; Sabchevski, S.; Glyavin, M.; Mitsudo, S. The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging. Appl. Sci. 2020, 10, 980. [Google Scholar] [CrossRef]
- Sabchevski, S.; Glyavin, M.; Mitsudo, S.; Tatematsu, Y.; Idehara, T. Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects. J. Infrared Millim. Terahertz Waves 2021, 42, 715. [Google Scholar] [CrossRef]
- Litvak, A.G.; Denisov, G.; Glyavin, M. Russian Gyrotrons: Achievements and Trends. IEEE J. Microwaves 2021, 1, 260. [Google Scholar] [CrossRef]
- Karmakar, S.; Mudiganti, J. Gyrotron: The Most Suitable Millimeter-Wave Source for Heating of Plasma in Tokamak. In Plasma Science and Technology; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Sabchevski, S.; Glyavin, M. Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods. Photonics 2023, 10, 189. [Google Scholar] [CrossRef]
- Pierce, J.R. History of the microwave-tube art. Proc. IRE 1962, 50, 978. [Google Scholar] [CrossRef]
- Yokoo, K.; Mizuno, K. History of the microwave-tube art at Tohoku University. IEICE Trans. Electron. 2015, E98-C, 613. [Google Scholar] [CrossRef]
- Yamanouchi, K.; Ono, S.; Shibata, Y. Cyclotron fast wave tube:the double ridge travelling wave peniotron. In Proceedings of the 5th International Congress on Microwave Tubes, Paris, France, 14–18 September 1964; p. 96. [Google Scholar]
- Razeghi, M.; Sato, N.; Yokoo, K.; Ono, S. Modified peniotron using a TE 11 rectangular waveguide cavity. Int. J. Electron. 1985, 59, 533. [Google Scholar] [CrossRef]
- Ishihara, T.; Sagae, K.; Sato, N.; Shimawaki, H.; Yokoo, K. Highly efficient operation of space harmonic peniotron at cyclotron high harmonics. IEEE Trans. Electron Devices 1999, 46, 798. [Google Scholar] [CrossRef]
- Lau, Y.Y. Simple macroscopic theory of cyclotron maser instabilities. IEEE Trans. Electron Devices 1982, 29, 320. [Google Scholar] [CrossRef]
- Döhler, G.; Friz, W. Physics and classification of fast-wave devices. Int. J. Electron. 1983, 55, 505. [Google Scholar] [CrossRef]
- Döhler, G.; Gallagher, D. The cyclotron maser and beam boundary conditions. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 1–4 December 1985; p. 539. [Google Scholar] [CrossRef]
- Zenggui, C. Preliminary analysis on operation characteristics of a gyromagnetron. J. Electron. 1987, 4, 200. [Google Scholar] [CrossRef]
- Eremka, V. Peniomagnetron with the homogeneous magnetostatic field at the high harmonics. In Proceedings of the 16th International Conference on Infrared and Millimeter Waves, Lausanne, Switzerland, 26–30 August 1991; Volume 1576, p. 15764R. [Google Scholar] [CrossRef]
- Chen, Z. Analysis and simulation on the performance of a gyro-penitron amplifier. Int. J. Infrared Millim. Waves 1993, 14, 197–211. [Google Scholar] [CrossRef]
- Kolosov, S. Large-orbit gyrotrons and peniotrons with traveling waves. In Proceedings of the 9th International Crimean Microwave Conference Microwave and Telecommunication Technology, Sevastopol, Ukraine, 13–16 September 1999; p. 17. [Google Scholar] [CrossRef]
- Rilong, H. Operating principles for peniotrons. Vac. Electron. 2002, 6, 19. [Google Scholar]
- Namkung, W.; Choe, J.Y. Experimental Results of Cusptron Microwave Tube Study. IEEE Trans. Nucl. Sci. 1985, 32, 2885. [Google Scholar] [CrossRef]
- Gallagher, D.; Döhler, G. The Peniotron. In Handbook of Microwave Technology. Volume 2, Applications; Ishii, K., Ed.; Academic Press: Oxford, UK, 1995; Chapter 5; pp. 122–136. [Google Scholar]
- Döhler, G. Peniotron interactions in gyrotrons I. Qualitative analysis. Int. J. Electron. 1984, 56, 617. [Google Scholar] [CrossRef]
- Baird, J.; Barnett, L.; Grow, R.; Freudenberger, R. Harmonic auto-resonant peniotron (HARP) interactions. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 6–9 December 1987; p. 913. [Google Scholar] [CrossRef]
- Yokoo, K.; Sato, N.; Ono, S. Auto-resonant peniotron oscillator (ARPO) for generation of millimetre and submillimetre waves. Int. J. Electron. 1990, 68, 461. [Google Scholar] [CrossRef]
- Sabchevski, S. Fundamentals of Electron Cyclotron Resonance and Cyclotron Autoresonance in Gyro-Devices: A Comprehensive Review of Theory. Appl. Sci. 2024, 14, 3443. [Google Scholar] [CrossRef]
- Dohler, G.; Gallagher, D. The small-signal theory of the cyclotron maser and other gyrotron-type devices. IEEE Trans. Electron Devices 1988, 35, 1730. [Google Scholar] [CrossRef]
- Pate, M.C.; Grow, R.W.; Baird, J.M. Comparative TE modal analysis and extended parameter calculations of magnetron-wall waveguide for gyro-peniotron applications. IEEE Trans. Electron Devices 1989, 36, 1976. [Google Scholar] [CrossRef]
- Namkung, W.; Ayres, V.; Choe, J.Y.; Uhm, H.S. Operation of Cusptron Oscillator for Sixth Harmonic Frequency Generation with Six Vane Circuit. In Proceedings of the 1987 IEEE Particle Accelerator Conference (PAC1987): Accelerator Engineering and Technology, Washington, DC, USA, 16–19 March 1987; p. 1860. [Google Scholar]
- Lin, C.; Chu, K. Modal analysis of a slotted waveguide: Comparison between analytic solution and computer simulations. Int. J. Infrared Millim. Waves 2006, 27, 1335. [Google Scholar] [CrossRef]
- Ono, S.; Kageyama, T. Proposal of a high efficiency tube for high power millimetre or submillimetre wave generation The gyro-peniotron. Int. J. Electron. 1984, 56, 507. [Google Scholar] [CrossRef]
- Shrivastava, U.A.; Grow, R.W. Gyrotron and peniotron modes in rotating-beam devices. Int. J. Electron. 1984, 57, 1077. [Google Scholar] [CrossRef]
- Brand, G.F. Slow equations of motion for gyrotron and peniotron interactions. Phys. Fluids B 1992, 4, 2983. [Google Scholar] [CrossRef]
- Yeddulla, M.; Nusinovich, G.; Antonsen, T. Excitation of a gyro-peniotron mode in the presence of a gyrotron mode. In Proceedings of the 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA, 19–23 September 2005; Volume 2, p. 614. [Google Scholar] [CrossRef]
- Zhang, S.C. Kinetic Theory of Traveling Wave Gyro-Peniotron. Int. J. Infrared Millim. Waves 1985, 6, 1217–1235. [Google Scholar] [CrossRef]
- Vitello, P.; Menyuk, C. Theory of high-harmonic gyrotron oscillators with slotted cross-section structure. IEEE Trans. Plasma Sci. 1988, 16, 105. [Google Scholar] [CrossRef]
- Lashmore-Davies, C. A unified theory of gyrotron and peniotron interactions. Phys. Fluids B Plasma Phys. 1992, 4, 1047. [Google Scholar] [CrossRef]
- Zenggui, C. Theory and simulation of beam-wave interaction of the gyro-peniotron. J. Electron. 1988, 5, 278. [Google Scholar] [CrossRef]
- Ganguly, A.K.; Ahn, S.; Park, S.Y. Nonlinear Theory of the Gyropeniotron Amplifier. Int. J. Electron. 1988, 65, 597. [Google Scholar] [CrossRef]
- Jiangming, G.; Liu, S. Linear and Nonlinear Analyses on Gyropeniotron in a Rectangular Waveguide. Int. J. Electron. 1988, 65, 637. [Google Scholar] [CrossRef]
- Chetverikov, A. Nonstationary theory and simulation of the backward wave peniotron oscillator. Int. J. Infrared Millim. Waves 1993, 14, 213. [Google Scholar] [CrossRef]
- Rha, P.S.; Barnett, L.R.; Baird, J.M.; Grow, R.W. Self-consistent simulation of harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity. IEEE Trans. Electron Devices 1989, 36, 789. [Google Scholar] [CrossRef]
- Warren, G.; Ludeking, L.; Nguyen, K.; Smithe, D.; Goplen, B. Advances/applications of MAGIC and SOS. AIP Conf. Proc. 1993, 297, 213. [Google Scholar] [CrossRef]
- Gallagher, D.; Richards, J.; Scafuri, F.; Armstrong, C. Peniotron oscillations in rising sun cavity. In Proceedings of the International Conference on Plasma Science, Madison, WI, USA, 5–8 June 1995; p. 125. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Zou, H.; Wang, H.; Wu, X.; Hu, B.; Li, H.; Li, T. A novel large-orbit electron beam generated by a Cuccia coupler for a Ka-band third-harmonic slotted peniotron. Phys. Plasmas 2010, 17, 123106. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, B.; Lin, H.; Meng, L. Design and Numerical Optimization of an 11th-Harmonic Slotted Peniotron. IEEE Trans. Plasma Sci. 2012, 40, 1972. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Wu, X.; Li, T.; Li, H.; Zhao, X. Numerical Analysis of a Ka-Band Third-Harmonic Magnetron-Type Slotted Peniotron. IEEE Trans. Plasma Sci. 2012, 40, 3056. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.Y.; Li, T.M.; Wu, X.H. A Comparative Study of a Ka-Band High Harmonic Peniotron. Adv. Mater. Res. 2013, 760–762, 170–173. [Google Scholar] [CrossRef]
- Hu, B.; Chen, R.; Li, T.; Li, J. Characteristics of a W-band sixth-harmonic peniotron with a nonideal electron beam. Appl. Phys. Express 2015, 8, 037301. [Google Scholar] [CrossRef]
- Thumm, M. State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers. J. Infrared Millim. Terahertz Waves 2020, 41, 1. [Google Scholar] [CrossRef]
- Dressman, L.; McDermott, D.; Luhmann, N.J.; Gallagher, D. UCD 34 GHz harmonic peniotron. In Proceedings of the 8th IEEE International Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 15–17 May 2007; pp. 253–254. [Google Scholar] [CrossRef]
- Ono, S.; Yamanouchi, K.; Shibata, Y.; Koike, Y. Cyclotron fast-wave tube usingspatial harmonic interaction- the traveling wave peniotronn. In Proceedings of the 4th International Congress Microwave Tubes, Scheveningen, The Netherlands, 3–7 September 1962; pp. 355–363. [Google Scholar] [CrossRef]
- Yokoo, K.; Razeghi, M.; Sato, N.; Ono, S. High efficiency operation of the modified peniotron using TE 11 rectangular waveguide cavity. In Proceedings of the 13th International Conference on Infrared and Millimeter Waves, Honolulu, HI, USA, 5–9 December 1988; Volume 1039, pp. 135–136. [Google Scholar] [CrossRef]
- Yokoo, K.; Musyoki, S.; Nakazato, Y.; Sato, N.; Ono, S. Design and experiments of auto-resonant peniotron oscillato. In Proceedings of the 15th International Conference on Infrared and Millimeter Waves, Orlando, FL, USA, 10–14 December 1990; Volume 1514, pp. 10–12. [Google Scholar] [CrossRef]
- Yokoo, K.; Shimawaki, H.; Tadano, H.; Ishihara, T.; Sagae, N.; Sato, N.; Ono, S. Design and experiments of higher cyclotron harmonic peniotron oscillators. In Proceedings of the Digest 17th International Conference on Infrared and Millimeter Waves, Pasadena, CA, USA, 14–17 December 1992; Volume 1929, pp. 498–499. [Google Scholar] [CrossRef]
- Musyoki, S.; Sagae, K.; Yokoo, K.; Sato, N.; Ono, S. Experiments on highly efficient operation of the auto-resonant peniotron oscillator. Int. J. Electron. 1992, 72, 1067. [Google Scholar] [CrossRef]
- Yokoo, K.; Ishihara, T.; Sagae, K.; Shimawaki, H.; Sato, N. Experiments of space harmonic peniotron for cyclotron high harmonic operation. In Proceedings of the Digest 22nd International Conference on Infrared and Millimeter Waves, Wintergreen, VI, USA, 20–25 July 1997; pp. 206–207. [Google Scholar]
- Yokoo, K.; Ishihara, T.; Sagae, K.; Sato, N.; Shimawki, H. Efficient operation of high harmonic peniotron in millimeter wave region. In Proceedings of the 8th ITG-Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht, Garmisch-Partenkirchen, Germany, 29–30 April 1998; Volume 150, pp. 4476–4522. [Google Scholar]
- Ono, S.; Ansai, H.; Sato, N.; Yokoo, K.; Henmi, K.; Idehara, T.; Tachikawa, T.; Okazaki, I.; Okamoto, T. Experimental study of the 3rd harmonic operation of gyro-peniotron at 70 GHz. In Proceedings of the Digest 11th International Conference on Infrared and Millimeter Waves, Pisa, Italy, 20–24 October 1986; Volume 150, pp. 37–39. [Google Scholar]
- Yokoo, K.; Razeghi, M.; Sato, N.; Ono, S. Experiments on the high efficiency operation of the modified peniotron oscillato. Int. J. Electron. Theor. Exp. 1989, 67, 485. [Google Scholar] [CrossRef]
- Sukhorukov, A.P.; Korolev, A.F.; Sheludchenkov, A.V.; Sergeev, G.I.; Golenitskii, I.I.; Evtushenko, O.V.; Kanevskii, E.I.; Karnaukh, O.I.; Chepurnykh, I.P. Characteristics of 3-mm Wave Band Peniotron in Permanent Magnet Focusing System. Mosc. Univ. Phys. Bull. 2000, 55, 11–16. [Google Scholar]
- Lawson, W.; Destler, W.; Striffler, C. High power microwave generation from a large orbit gyrotron. IEEE Trans. Nucl. Sci. 1985, 32, 2960. [Google Scholar] [CrossRef]
- Bratman, V.L.; Kalynov, Y.K.; Manuilov, V.N. Large-orbit gyrotron operation in the terahertz frequency range. Phys. Rev. Lett. 2009, 102 24, 245101. [Google Scholar] [CrossRef]
- Sabchevski, S.; Idehara, T.; Ogawa, I.; Glyavin, M.; Mitsudo, S.; Ohashi, K.; Kobayashi, H. Computer simulation of axis-encircling beams generated by an electron gun with a permanent magnet system. Int. J. Infrared Millim. Waves 2000, 21, 1191. [Google Scholar] [CrossRef]
- Bratman, V.L.; Kalynov, Y.K.; Manuilov, V.N. Electron-optical system of terahertz gyrotron. J. Commun. Technol. Electron. 2011, 56, 500–507. [Google Scholar] [CrossRef]
- Kalynov, Y.; Manuilov, V. A Wideband Electron-Optical System of a Subterahertz Large-Orbit Gyrotron. IEEE Trans. Electron Devices 2016, 63, 491–496. [Google Scholar] [CrossRef]
- Sabchevski, S.; Nusinovich, G.; Glyavin, M. Harmonic Gyrotrons: Pros and Cons. J. Infrared Millim. Terahertz Waves 2024, 45, 184–207. [Google Scholar] [CrossRef]
- Idehara, T.; Ogawa, I.; Mitsudo, S.; Watanabe, S.; Sato, N.; Ohashi, K.; Kobayashi, H.; Yokoyama, T.; Zapevalov, V.; Glyavin, M.; et al. A High Harmonic Gyrotron and Gyro-Peniotron with an Axis-Encircling Electron Beam and Permanent Magnet. In Proceedings of the The 10th Triennial ITG-Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, Germany, 3–4 May 2004; pp. 51–54. [Google Scholar]
- Sabchevski, S.P.; Idehara, T. Design of a Compact Sub-Terahertz Gyrotron for Spectroscopic Applications. J. Infrared, Millimeter, Terahertz Waves 2010, 31, 934–948. [Google Scholar] [CrossRef]
- Idehara, T.; Ogawa, I.; Mitsudo, S.; Iwata, Y.; Watanabe, S.; Itakura, Y.; Ohashi, K.; Kobayashi, H.; Yokoyama, T.; Zapevalov, V.; et al. A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet. IEEE Trans. Plasma Sci. 2004, 32, 903–909. [Google Scholar] [CrossRef]
- Halbach, K.; Holsinger, R.F. Superfish—A Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry. Part. Accel. 1976, 7, 213–222. [Google Scholar]
- Sabchevski, S.; Glyavin, M.; Nusinovich, G. The Progress in the Studies of Mode Interaction in Gyrotrons. J. Infrared Millim. Terahertz Waves 2022, 43, 1. [Google Scholar] [CrossRef]
- Vitello, P.; Ko, K. Mode Competition in the Gyro-Peniotron Oscillator. IEEE Trans. Plasma Sci. 1985, 13, 454–463. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.T.; Ye, F.; Ding, J.Q.; Li, S. W-band layered waveguide filters based on CNC-milling technology. IET Microwaves Antennas Propag. 2022, 16, 544–551. [Google Scholar] [CrossRef]
- Ives, R. Microfabrication of high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 2004, 32, 1277–1291. [Google Scholar] [CrossRef]
- Genolet, G.; Lorenz, H. UV-LIGA: From Development to Commercialization. Micromachines 2014, 5, 486–495. [Google Scholar] [CrossRef]
- Paoloni, C.; Gamzina, D.; Letizia, R.; Zheng, Y.; Luhmann, N.C.J. Millimeter wave traveling wave tubes for the 21st Century. J. Electromagn. Waves Appl. 2021, 35, 567–603. [Google Scholar] [CrossRef]
- García-Vigueras, M.; Polo-Lopez, L.; Stoumpos, C.; Dorlé, A.; Molero, C.; Gillard, R. Metal 3D-Printing of Waveguide Components and Antennas: Guidelines and New Perspectives. In Hybrid Planar; Fernandez, M.D., Ballesteros, J.A., Esteban, H., Ángel, B., Eds.; IntechOpen: Rijeka, Croatia, 2022; Chapter 6. [Google Scholar] [CrossRef]
- Stoumpos, C.; Gouguec, T.L.; Allanic, R.; García-Vigueras, M.; Amiaud, A.C. Compact Additively Manufactured Conformal Slotted Waveguide Antenna Array. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1843–1847. [Google Scholar] [CrossRef]
Institution | Type | Frequency [GHz] | Mode | Power [kW] | Efficiency [%] | Pulse Length [ms] |
---|---|---|---|---|---|---|
UC Davis [60] | Peniotron (cusp gun) | 34.0 () | 25.7 | 36 | 0.02 | |
Univ. Tohoku [21,40,61,62,63,64,65,66,67] | Peniotron (magnetron-type cavity) | 10.0 10 | 10.0 0.7 1.3 6.9 6.9 0.32 1.5 | 36 36 10 7 35 () () 1.7 () 25 | 0.02 | |
Univ. Tohoku and Toshiba | Gyro-peniotron | 69.85 () | 8 | 6.75 | 0.2 | |
Univ. Fukui [68] | Gyro-peniotron | 140 () | 8 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabchevski, S. Peniotron: A Promising Microwave Source with Potential That Has Yet to Be Realized. Appl. Sci. 2024, 14, 11246. https://doi.org/10.3390/app142311246
Sabchevski S. Peniotron: A Promising Microwave Source with Potential That Has Yet to Be Realized. Applied Sciences. 2024; 14(23):11246. https://doi.org/10.3390/app142311246
Chicago/Turabian StyleSabchevski, Svilen. 2024. "Peniotron: A Promising Microwave Source with Potential That Has Yet to Be Realized" Applied Sciences 14, no. 23: 11246. https://doi.org/10.3390/app142311246
APA StyleSabchevski, S. (2024). Peniotron: A Promising Microwave Source with Potential That Has Yet to Be Realized. Applied Sciences, 14(23), 11246. https://doi.org/10.3390/app142311246