Abstract
Because of the complicated geometry of the slotted structure, analytical theories of such structures are inevitably developed on the basis of simplifying assumptions. On the other hand, the accuracy of the theory is of importance to the design of microwave interaction structures. In this study, modes of the slotted waveguide are investigated analytically and simulated with the HFSS code. It is shown that, in spite of the approximations made, the dispersion relation and field patterns of the standard analytical theory are in excellent agreement with the HFSS simulations over the complete range of the slot depth. Modes not built into the theory will also be noted.
Similar content being viewed by others
References
K. R. Chu, “The Electron Cyclotron Maser,” Rev. of Modern Phys. vol. 76, pp. 489–540, 2004.
G. S. Nusinovich, Introduction to the Physics of Gyrotrons (John Hopkins University Press, Maryland, 2004).
Y. Y. Lau and L. R. Barnett, “Theory of a low magnetic field gyrotron (gyromagnetron),” Int. J. Infrared Millimeter Waves, vol.3, no. 5, pp. 619–643, 1982.
K. R. Chu and D. Dialetis, “Kinetic theory of harmonic gyrotron oscillation with slotted resonant structure,” in Infrared and Millimeter Waves (Academic Press, New York, 1985), pp. 45–75.
P. S. Rha, L. R. Barnett, J. M. Baird, and R. W. Grow, “Self-consistent simulation of harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity,” IEEE Trans. Electron Devices, vol. 36, pp. 789–801, 1989.
C. K. Chong, D. B. McDermott, A J. Balkcum, and N. C. Luhmann, Jr., “Nonlinear analysis of high-harmonic slotted gyro-TWT amplifier,” IEEE Trans. Plasma Sci., vol. 20, pp. 176–185, 1992.
D. B. McDermott, C. K. Chong, N. C. Luhmann, Jr., K. R. Chu, and D. Dialetis, “High-harmonic slotted gyroklystron amplifier: Linear and nonlinear simulation,” IEEE Trans. Plasma Sci., vol. 22, pp. 920–931, 1994.
C. K. Chong, D. B. McDermott, A. T. Lin, W. J. DeHope, Q. S. Wang, and N. C. Luhmann, Jr., “Stability of a 95-GHz slotted third-harmonic gyro-TWT amplifier,” IEEE Trans. Plasma Sci., vol. 24, pp. 735–743, 1996.
C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., “Slotted Third-harmonic gyro-TWT amplifier experiment,” IEEE Trans. Plasma Sci., vol. 24, pp. 727–734, 1996.
C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., “Large-signal operation of a third-harmonic slotted gyro-TWT amplifer,” IEEE Trans. Plasma Sci., vol. 26, pp. 500–507, 1998.
M. Agrawal, G. Singh, P. K. Jain, and B. N. Basu, “Analysis of a tapered vane loaded broadband gyro-TWT,” IEEE Trans. Plasma Sci., vol. 29, pp. 439–444, 2001.
S. C. Zhang, “Gyrokinetics of transverse-magnetic-mode gyrotron, gyropeniotron, cyclotron autoresonance maser, and nonwiggler free-electron laser amplifiers,” Phys. Fluids B, vol. 1, pp. 2502–2506, 1989.
A. K. Ganguly, S. Ahn, E. G. Zaidman, and A. S. Gilmour, Jr., “Design parameter of a high-efficiency 1.7-GHz gyropeniotron amplifier,” IEEE Trans. Electron Devices, vol. 38, pp. 2229–2233, 1991.
A. T. Lin and C. C. Lin, “Gyro peniotron forward wave oscillators,” IEEE Trans. Plasma Sci., vol. 22, pp. 889–894, 1994.
T. Ishihara, K. Sagae, N. Sato, H. Shimawaki, and K. Yokoo, “Highly efficient operation of space harmonic peniotron at cyclotron high harmonics,” IEEE Trans. Plasma Sci., vol. 46, pp. 798–802, 1999.
D. B. McDermott, Y. Hirata, L. J. Dressman, David A Gallapher, and N. C. Luhmann Jr., “Efficient Ka-band second-harmonic slotted peniotron,” IEEE Trans. Plasma Sci., vol. 28, pp. 953–958, 2000.
H. Guo, D. Wu, G. Liu, Y. Miao, S. Qian, and W. Qin, “Special complex open-cavity and low-magnetic-field high-power gyrotron,” IEEE Trans. Plasma Sci., vol. 18, pp. 326–333, 1990.
M. C. Pate, R. W. Grow, and J. M. Baird, “Comparative TE modal analysis and extended parameter calculations of magnetron-wall waveguide for gyropeniotron ampplications,” IEEE Trans. Electron Device, vol. 36, pp. 1976–1982, 1989.
R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes (D. Van Nostrand, Princeton, NJ, 1960).
J. J. Barroso, R. A. Correa, and P. J. Castro, “Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment,” IEEE Trans. Microwave Theory and Techniques, vol. 46, pp. 1221–1230, 1998.
C. R. Qiu, Z. B. Quyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, “Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier,” IEEE Trans. Plasma Sci. vol. 33, pp. 1013–1018, 2005.
P. Vitello and C. Menyuk, “Theory of high-harmonic gyrotron oscillators with cross-section structure,” IEEE Trans. Plasma Science, vol. 16, pp. 105–115, 1988.
A. K. Ganguly, G. S. Park, and C. M. Armstrong, “Nonlinear theory of harmonic peniotron and gyrotron interactions in a raising-sun slotted waveguide,” IEEE Trans. Plasma Sci. vol. 22, pp. 902–912, 1994.
G. F. Brand, “Resonant frequencies of a rising-sun gyrotron cavity,” Int. J. Infrared Millimeter Waves, vol. 17, no. 2, pp. 269–281, 1996.
W. Namkung, J. Y. Choe, H. S. Uhm, and Virginia Ayres, “Operation of cusptron at fundamental and harmonic cyclotron frequencies,” IEEE Trans. Plasma Sci. vol. 16, pp. 149–154, 1988.
T. Ishihara, H. Tadano, H. Shimawaki, K. Sagae, N. Sato, and K. Yokoo, “Space harmonic peniotron in a magnetron waveguide resonator,” IEEE Trans. Electron Devices. vol. 43, pp. 827–833, 1996.
For a detailed description of the HFSS code, see the article entitled “Addressing High Performance Design,” which appeared in Microwave Journal (Sept. 15, 2005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, C.K., Chu, K.R. MODAL ANALYSIS OF A SLOTTED WAVEGUIDE: COMPARISON BETWEEN ANALYTIC SOLUTION AND COMPUTER SIMULATIONS. Int J Infrared Milli Waves 27, 1335–1345 (2006). https://doi.org/10.1007/s10762-006-9144-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10762-006-9144-1