[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

MODAL ANALYSIS OF A SLOTTED WAVEGUIDE: COMPARISON BETWEEN ANALYTIC SOLUTION AND COMPUTER SIMULATIONS

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Because of the complicated geometry of the slotted structure, analytical theories of such structures are inevitably developed on the basis of simplifying assumptions. On the other hand, the accuracy of the theory is of importance to the design of microwave interaction structures. In this study, modes of the slotted waveguide are investigated analytically and simulated with the HFSS code. It is shown that, in spite of the approximations made, the dispersion relation and field patterns of the standard analytical theory are in excellent agreement with the HFSS simulations over the complete range of the slot depth. Modes not built into the theory will also be noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Chu, “The Electron Cyclotron Maser,” Rev. of Modern Phys. vol. 76, pp. 489–540, 2004.

    Article  ADS  Google Scholar 

  2. G. S. Nusinovich, Introduction to the Physics of Gyrotrons (John Hopkins University Press, Maryland, 2004).

    Google Scholar 

  3. Y. Y. Lau and L. R. Barnett, “Theory of a low magnetic field gyrotron (gyromagnetron),” Int. J. Infrared Millimeter Waves, vol.3, no. 5, pp. 619–643, 1982.

    Article  ADS  Google Scholar 

  4. K. R. Chu and D. Dialetis, “Kinetic theory of harmonic gyrotron oscillation with slotted resonant structure,” in Infrared and Millimeter Waves (Academic Press, New York, 1985), pp. 45–75.

    Google Scholar 

  5. P. S. Rha, L. R. Barnett, J. M. Baird, and R. W. Grow, “Self-consistent simulation of harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity,” IEEE Trans. Electron Devices, vol. 36, pp. 789–801, 1989.

    Article  ADS  Google Scholar 

  6. C. K. Chong, D. B. McDermott, A J. Balkcum, and N. C. Luhmann, Jr., “Nonlinear analysis of high-harmonic slotted gyro-TWT amplifier,” IEEE Trans. Plasma Sci., vol. 20, pp. 176–185, 1992.

    Article  ADS  Google Scholar 

  7. D. B. McDermott, C. K. Chong, N. C. Luhmann, Jr., K. R. Chu, and D. Dialetis, “High-harmonic slotted gyroklystron amplifier: Linear and nonlinear simulation,” IEEE Trans. Plasma Sci., vol. 22, pp. 920–931, 1994.

    Article  Google Scholar 

  8. C. K. Chong, D. B. McDermott, A. T. Lin, W. J. DeHope, Q. S. Wang, and N. C. Luhmann, Jr., “Stability of a 95-GHz slotted third-harmonic gyro-TWT amplifier,” IEEE Trans. Plasma Sci., vol. 24, pp. 735–743, 1996.

    Article  Google Scholar 

  9. C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., “Slotted Third-harmonic gyro-TWT amplifier experiment,” IEEE Trans. Plasma Sci., vol. 24, pp. 727–734, 1996.

    Article  Google Scholar 

  10. C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., “Large-signal operation of a third-harmonic slotted gyro-TWT amplifer,” IEEE Trans. Plasma Sci., vol. 26, pp. 500–507, 1998.

    Article  Google Scholar 

  11. M. Agrawal, G. Singh, P. K. Jain, and B. N. Basu, “Analysis of a tapered vane loaded broadband gyro-TWT,” IEEE Trans. Plasma Sci., vol. 29, pp. 439–444, 2001.

    Article  Google Scholar 

  12. S. C. Zhang, “Gyrokinetics of transverse-magnetic-mode gyrotron, gyropeniotron, cyclotron autoresonance maser, and nonwiggler free-electron laser amplifiers,” Phys. Fluids B, vol. 1, pp. 2502–2506, 1989.

    Article  ADS  Google Scholar 

  13. A. K. Ganguly, S. Ahn, E. G. Zaidman, and A. S. Gilmour, Jr., “Design parameter of a high-efficiency 1.7-GHz gyropeniotron amplifier,” IEEE Trans. Electron Devices, vol. 38, pp. 2229–2233, 1991.

    Article  ADS  Google Scholar 

  14. A. T. Lin and C. C. Lin, “Gyro peniotron forward wave oscillators,” IEEE Trans. Plasma Sci., vol. 22, pp. 889–894, 1994.

    Article  Google Scholar 

  15. T. Ishihara, K. Sagae, N. Sato, H. Shimawaki, and K. Yokoo, “Highly efficient operation of space harmonic peniotron at cyclotron high harmonics,” IEEE Trans. Plasma Sci., vol. 46, pp. 798–802, 1999.

    Google Scholar 

  16. D. B. McDermott, Y. Hirata, L. J. Dressman, David A Gallapher, and N. C. Luhmann Jr., “Efficient Ka-band second-harmonic slotted peniotron,” IEEE Trans. Plasma Sci., vol. 28, pp. 953–958, 2000.

    Article  Google Scholar 

  17. H. Guo, D. Wu, G. Liu, Y. Miao, S. Qian, and W. Qin, “Special complex open-cavity and low-magnetic-field high-power gyrotron,” IEEE Trans. Plasma Sci., vol. 18, pp. 326–333, 1990.

    Article  ADS  Google Scholar 

  18. M. C. Pate, R. W. Grow, and J. M. Baird, “Comparative TE modal analysis and extended parameter calculations of magnetron-wall waveguide for gyropeniotron ampplications,” IEEE Trans. Electron Device, vol. 36, pp. 1976–1982, 1989.

    Article  ADS  Google Scholar 

  19. R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes (D. Van Nostrand, Princeton, NJ, 1960).

    MATH  Google Scholar 

  20. J. J. Barroso, R. A. Correa, and P. J. Castro, “Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment,” IEEE Trans. Microwave Theory and Techniques, vol. 46, pp. 1221–1230, 1998.

    Article  Google Scholar 

  21. C. R. Qiu, Z. B. Quyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, “Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier,” IEEE Trans. Plasma Sci. vol. 33, pp. 1013–1018, 2005.

    Article  Google Scholar 

  22. P. Vitello and C. Menyuk, “Theory of high-harmonic gyrotron oscillators with cross-section structure,” IEEE Trans. Plasma Science, vol. 16, pp. 105–115, 1988.

    Article  ADS  Google Scholar 

  23. A. K. Ganguly, G. S. Park, and C. M. Armstrong, “Nonlinear theory of harmonic peniotron and gyrotron interactions in a raising-sun slotted waveguide,” IEEE Trans. Plasma Sci. vol. 22, pp. 902–912, 1994.

    Article  Google Scholar 

  24. G. F. Brand, “Resonant frequencies of a rising-sun gyrotron cavity,” Int. J. Infrared Millimeter Waves, vol. 17, no. 2, pp. 269–281, 1996.

    Article  Google Scholar 

  25. W. Namkung, J. Y. Choe, H. S. Uhm, and Virginia Ayres, “Operation of cusptron at fundamental and harmonic cyclotron frequencies,” IEEE Trans. Plasma Sci. vol. 16, pp. 149–154, 1988.

    Article  ADS  Google Scholar 

  26. T. Ishihara, H. Tadano, H. Shimawaki, K. Sagae, N. Sato, and K. Yokoo, “Space harmonic peniotron in a magnetron waveguide resonator,” IEEE Trans. Electron Devices. vol. 43, pp. 827–833, 1996.

    Article  Google Scholar 

  27. For a detailed description of the HFSS code, see the article entitled “Addressing High Performance Design,” which appeared in Microwave Journal (Sept. 15, 2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C.K., Chu, K.R. MODAL ANALYSIS OF A SLOTTED WAVEGUIDE: COMPARISON BETWEEN ANALYTIC SOLUTION AND COMPUTER SIMULATIONS. Int J Infrared Milli Waves 27, 1335–1345 (2006). https://doi.org/10.1007/s10762-006-9144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9144-1

Key Words

Navigation