Camera Path Generation for Triangular Mesh Using Toroidal Patches
<p>Camera path generation examples in 3d modeling software: (<b>a</b>) process for camera path in Blender 3.5, (<b>b</b>) process for camera path in 3ds Max 2024.</p> "> Figure 2
<p><math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>h</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> about various triangular mesh models. In sequence from left to right and then top to bottom: Bear, Rocker, Horse, Kitten, Bunny, Haris, Venus, Popiersie, Armadillo, and Pieta.</p> "> Figure 3
<p>Example of control point selection process: (<b>a</b>) grids with their weights, (<b>b</b>) selected grids with maximum weight, and (<b>c</b>) selected control points for generating periodic B-spline curve.</p> "> Figure 4
<p>Camera path visualization for the Rocker model. The camera gaze path (shown in blue) and the camera position path (shown in green) are generated based on the initial curve (shown in red).</p> "> Figure 5
<p>Camera path generation workflow: (<b>a</b>) smoothing result of the input mesh, (<b>b</b>) colored faces according to included toroidal patch, (<b>c</b>) colored faces according to their weight, (<b>d</b>) colored faces according to corresponding cylinder grid’s weight, and (<b>e</b>) camera gaze path generation result.</p> "> Figure 6
<p>Snapshot of each model that the camera is at the starting point of the generated camera path.</p> "> Figure 7
<p>Ten selected triangular mesh models with bounding cylinder and camera gaze path: (<b>a</b>) Bear, (<b>b</b>) Rocker, (<b>c</b>) Horse, (<b>d</b>) Kitten, (<b>e</b>) Bunny, (<b>f</b>) Haris, (<b>g</b>) Venus, (<b>h</b>) Popiersie, (<b>i</b>) Armadillo, and (<b>j</b>) Pieta.</p> "> Figure 8
<p>Visualization of our camera paths for the models. The camera gaze path (shown in blue) and the camera position path (shown in green) are generated based on the initial third-order periodic B-spline curve (shown in red).</p> ">
Abstract
:1. Introduction
- We introduce a new method to automatically generate camera paths for observing meshes. This is made possible by utilizing a toroidal patch-based spatial data structure [16], which is constructed using the curvature information that is inherent in triangular meshes.
- We enclose the triangular mesh in a cylinder and divide it into uniform grids. Each grid is assigned a weight based on its relation to neighboring triangles and toroidal patches.
- We observe that the mesh areas with considerable curvature variation have more toroidal patches. This enables quick exploration of the mesh’s geometrically distinct areas.
- The camera’s movement is determined by a third-order periodic B-spline curve, which is aligned with the cylindrical structure’s periphery. This technique ensures that the camera’s path is continuous and smooth, and the curve’s control points are selected with a focus on the center of the grid that carries the highest curvature variation. Section 3 provides a detailed explanation of this algorithmic process.
2. Related Work
3. Camera Path Generation
3.1. Preprocessing
Algorithm 1: Preprocessing. |
Input: M—an input triangular mesh; —segment numbers of the M’s bounding cylinder Output: —lateral surface of the cylinder Smoothing(M) GenerateToroidalPatches(M) GenerateCylinder() forall do .ProjectFaceToGrid(f) end forall for to do for to do .SetWeight() end for end for |
3.2. Path Generation with Periodic B-Spline Curve
Algorithm 2: Get Camera Path. |
Input: —lateral surface of the M’s bounding cylinder Output: —camera gaze path, —camera position path CtrlPts ← GetControlPoints() Curve ← MakePeriodicBsplines(CtrlPts) Curve.Stabilization(0.5) Curve.Stabilization(0.25) if 2 then .AdjustRadius() else .AdjustRadius() end if |
4. Experimental Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Sun, G. Planar Delaunay Mesh Smoothing Method Based on Angle and a Deep Q-Network. Appl. Sci. 2023, 13, 9157. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.H.; Park, S.; Yoon, S.H. GeoStamp: Detail Transfer Based on Mean Curvature Field. Mathematics 2022, 10, 500. [Google Scholar] [CrossRef]
- Gao, M.; Ruan, N.; Shi, J.; Zhou, W. Deep Neural Network for 3D Shape Classification Based on Mesh Feature. Sensors 2022, 22, 7040. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Park, J.H.; Yoon, S.H. Geodesic Hermite Spline Curve on Triangular Meshes. Symmetry 2021, 13, 1936. [Google Scholar] [CrossRef]
- Vázquez, P.P.; Feixas, M.; Sbert, M.; Heidrich, W. Viewpoint selection using viewpoint entropy. In Proceedings of the VMV, Citeseer, Stuttgart, Germany, 21–23 November 2001; Volume 1, pp. 273–280. [Google Scholar]
- Habibi, Z.; Caron, G.; Mouaddib, E.M. 3d model automatic exploration: Smooth and intelligent virtual camera control. In Proceedings of the Computer Vision—ACCV 2014 Workshops, Singapore, 1–2 November 2014; Springer: Berlin/Heidelberg, Germany, 2015; pp. 612–626. [Google Scholar]
- Saleem, W.; Song, W.; Belyaev, A.; Seidel, H.P. On computing best fly. In Proceedings of the 23rd Spring Conference on Computer Graphics, Budmerice, Slovakia, 26–28 April 2007; pp. 115–121. [Google Scholar]
- Han, S.R.; Yamasaki, T.; Aizawa, K. Automatic preview video generation for mesh sequences. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 2945–2948. [Google Scholar]
- Li, Y.; Cui, Q.; Dou, F.; Zhang, L.; Zhou, Z. Automatic mesh animation preview. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
- Zhou, Z.; Jiang, N.; Chen, K.; Zhang, J. Automatic Mesh Animation Preview with User Voting-Based Refinement. IEEE Trans. Multimed. 2016, 19, 327–339. [Google Scholar] [CrossRef]
- Zhao, S.; Ooi, W.T.; Carlier, A.; Morin, G.; Charvillat, V. 3D mesh preview streaming. In Proceedings of the 4th ACM Multimedia Systems Conference, Oslo, Norway, 26 February–1 March 2013; pp. 178–189. [Google Scholar]
- Zhao, S.; Ooi, W.T.; Carlier, A.; Morin, G.; Charvillat, V. Bandwidth adaptation for 3D mesh preview streaming. ACM Trans. Multimed. Comput. Commun. Appl. TOMM 2014, 10, 1–20. [Google Scholar] [CrossRef]
- Oskam, T.; Sumner, R.W.; Thuerey, N.; Gross, M. Visibility transition planning for dynamic camera control. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, LA, USA, 1–2 August 2009; pp. 55–65. [Google Scholar]
- Amamra, A.; Amara, Y.; Benaissa, R.; Merabti, B. Optimal camera path planning for 3D visualisation. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 388–393. [Google Scholar]
- Goldfeather, J.; Interrante, V. A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph. TOG 2004, 23, 45–63. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.; Park, Y. A New Spatial Data Structure for Triangular Mesh with Toroidal Patches. J. King Saud Univ. Comput. Inf. Sci. 2024, 36, 101891. [Google Scholar] [CrossRef]
- Park, H.; Kim, C.; Park, Y. The Variables of Surface of Revolution and its effects on Human Visual Preference. J. Korea Comput. Graph. Soc. 2022, 28, 31–40. [Google Scholar] [CrossRef]
- Taubin, G. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 902–907. [Google Scholar]
- Meyer, M.; Desbrun, M.; Schröder, P.; Barr, A.H. Discrete differential-geometry operators for triangulated 2-manifolds. In Proceedings of the Visualization and Mathematics III, Berlin, Germany, 22–25 May 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 35–57. [Google Scholar]
- Kalogerakis, E.; Simari, P.; Nowrouzezahrai, D.; Singh, K. Robust statistical estimation of curvature on discretized surfaces. In Proceedings of the Symposium on Geometry Processing, Barcelona, Spain, 4–6 July 2007; Volume 13, pp. 110–114. [Google Scholar]
- Zhihong, M.; Guo, C.; Yanzhao, M.; Lee, K. Curvature estimation for meshes based on vertex normal triangles. Comput. Aided Des. 2011, 43, 1561–1566. [Google Scholar] [CrossRef]
- Prantl, M.; Váša, L. Estimation of differential quantities using Hermite RBF interpolation. Vis. Comput. 2018, 34, 1645–1659. [Google Scholar] [CrossRef]
- Desbrun, M.; Meyer, M.; Schröder, P.; Barr, A.H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’99, Los Angeles, CA, USA, 8–13 August 1999; pp. 317–324. [Google Scholar]
- Dyn, N.; Hormann, K.; Kim, S.J.; Levin, D. Optimizing 3D triangulations using discrete curvature analysis. Math. Methods Curve Surf. 2001, 1, 135–146. [Google Scholar]
- Kim, S.J.; Kim, S.K.; Kim, C.H. Discrete differential error metric for surface simplification. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, Beijing, China, 9–11 October 2002; pp. 276–283. [Google Scholar]
- Kim, S.J.; Kim, C.H.; Levin, D. Surface simplification using a discrete curvature norm. Comput. Graph. 2002, 26, 657–663. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, G. Triangular surface mesh fairing via Gaussian curvature flow. J. Comput. Appl. Math. 2006, 195, 300–311. [Google Scholar] [CrossRef]
- Park, Y.; Son, S.H.; Kim, M.S.; Elber, G. Surface–surface-intersection computation using a bounding volume hierarchy with osculating toroidal patches in the leaf nodes. Comput. Aided Des. 2020, 127, 102866. [Google Scholar] [CrossRef]
- Park, Y.; Hong, Q.Y.; Kim, M.S.; Elber, G. Self-intersection computation for freeform surfaces based on a regional representation scheme for miter points. Comput. Aided Geom. Des. 2021, 86, 101979. [Google Scholar] [CrossRef]
- Son, S.H.; Kim, M.S.; Elber, G. Precise Hausdorff distance computation for freeform surfaces based on computations with osculating toroidal patches. Comput. Aided Geom. Des. 2021, 86, 101967. [Google Scholar] [CrossRef]
- Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P.; Lévy, B. Polygon Mesh Processing; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
Model | # Face | # Vertex | # | /Face |
---|---|---|---|---|
Bear | 20,188 | 10,096 | 1622 | 8% |
Rocker | 24,364 | 12,182 | 3064 | 13% |
Horse | 39,696 | 19,850 | 4393 | 11% |
Kitten | 55,304 | 27,652 | 2487 | 4% |
Bunny | 69,630 | 34,817 | 7200 | 10% |
Haris | 132,632 | 66,316 | 14,840 | 11% |
Venus | 201,514 | 100,759 | 7423 | 4% |
Popiersie | 300,000 | 150,002 | 24,594 | 8% |
Armadillo | 345,944 | 172,974 | 19,022 | 5% |
Pieta | 509,650 | 255,129 | 37,194 | 7% |
Model | A | # Extreme pts | ||||
---|---|---|---|---|---|---|
Bear | 0.27 | 0.80 | 30% | 8 | 24.71 | 8.08 |
Rocker | 0.45 | 0.44 | 29% | 10 | 24.92 | 11.12 |
Horse | 0.42 | 0.60 | 32% | 8 | 18.15 | 5.76 |
Kitten | 0.27 | 0.75 | 34% | 8 | 12.48 | 5.53 |
Bunny | 0.35 | 0.61 | 44% | 10 | 19.20 | 8.25 |
Haris | 0.36 | 0.73 | 39% | 4 | 30.06 | 9.62 |
Venus | 0.35 | 0.63 | 24% | 6 | 9.56 | 5.26 |
Popiersie | 0.26 | 0.80 | 30% | 6 | 17.41 | 10.22 |
Armadillo | 0.35 | 0.66 | 26% | 10 | 11.13 | 5.52 |
Pieta | 0.29 | 0.78 | 33% | 10 | 23.00 | 7.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kim, K.; Kim, S.; Kim, M.; Nam, T.; Park, Y. Camera Path Generation for Triangular Mesh Using Toroidal Patches. Appl. Sci. 2024, 14, 490. https://doi.org/10.3390/app14020490
Choi J, Kim K, Kim S, Kim M, Nam T, Park Y. Camera Path Generation for Triangular Mesh Using Toroidal Patches. Applied Sciences. 2024; 14(2):490. https://doi.org/10.3390/app14020490
Chicago/Turabian StyleChoi, Jinyoung, Kangmin Kim, Seongil Kim, Minseok Kim, Taekgwan Nam, and Youngjin Park. 2024. "Camera Path Generation for Triangular Mesh Using Toroidal Patches" Applied Sciences 14, no. 2: 490. https://doi.org/10.3390/app14020490
APA StyleChoi, J., Kim, K., Kim, S., Kim, M., Nam, T., & Park, Y. (2024). Camera Path Generation for Triangular Mesh Using Toroidal Patches. Applied Sciences, 14(2), 490. https://doi.org/10.3390/app14020490