Planar Delaunay Mesh Smoothing Method Based on Angle and a Deep Q-Network
<p>Flow chart of the unconstrained DQN smoothing method.</p> "> Figure 2
<p>Impact of the central node moving position on node quality. (<b>a</b>) Case 1, where the central node moves near the polygon boundary; (<b>b</b>) Case 1, where the central node moves near the polygon boundary; (<b>c</b>) Case 2, where the central node moves near the center of the polygon; (<b>d</b>) Case 2, where the central node moves near the center of the polygon.</p> "> Figure 3
<p>The construction process of the inner polygon. (<b>a</b>) The initial state of a polygon; (<b>b</b>) rotation angle and updated central node; (<b>c</b>) updated scatters; (<b>d</b>) convex hull processing for scattered points falling inside the polygon; and (<b>e</b>) the inner polygon constructed.</p> "> Figure 4
<p>Workflow of the proposed angle and a deep Q-network-based mesh smoothing.</p> "> Figure 5
<p>The data structure of mesh data information.</p> "> Figure 6
<p>Changes in the size and position of the inner polygon. (<b>a</b>) The inner polygon when the center node is close to the polygon boundary; (<b>b</b>) The inner polygon when the central node moves towards the central region; (<b>c</b>) The inner polygon when the central node is close to the central region; (<b>d</b>) The inner polygon when the center node is located at the centroid of the polygon.</p> "> Figure 7
<p>Different types of polygons. (<b>a</b>) k = 3; (<b>b</b>) k = 4; (<b>c</b>) k = 5; (<b>d</b>) k = 6; (<b>e</b>) k = 7; (<b>f</b>) k = 8; (<b>g</b>) k = 9.</p> "> Figure 8
<p>Neural network performance analysis chart. (<b>a</b>) The growth curve of average Q-value with training epochs; (<b>b</b>) the growth curve of average reward with training epochs.</p> "> Figure 9
<p>Schematic diagram of neural network structure.</p> "> Figure 10
<p>Example 1 smoothing front-back diagram. (<b>a</b>) Before smoothing; (<b>b</b>) after smoothing.</p> "> Figure 11
<p>Node quality convergence graph.</p> "> Figure 12
<p>Inner polygon convergence graph.</p> "> Figure 13
<p>Effectiveness of Example 2 comparison before and after smoothing. (<b>a</b>) Before smoothing; (<b>b</b>) after smoothing.</p> "> Figure 14
<p>Effectiveness of Example 3 comparison before and after smoothing. (<b>a</b>) Before smoothing; (<b>b</b>) after smoothing.</p> "> Figure 15
<p>Effectiveness of Example 4 comparison before and after smoothing. (<b>a</b>) Before smoothing; (<b>b</b>) after smoothing.</p> "> Figure 16
<p>Generalizability analysis of constrained DQN models. (<b>a</b>) Minimum angle contrast; (<b>b</b>) maximum angle contrast; (<b>c</b>) minimum quality contrast; (<b>d</b>) and average quality contrast.</p> "> Figure 17
<p>Model generalization analysis chart.</p> "> Figure 18
<p>Initial mesh. (<b>a</b>) Example 1; (<b>b</b>) Example 2; (<b>c</b>) Example 3; and (<b>d</b>) Example 4.</p> "> Figure 19
<p>The mesh after smoothing using the method in this paper. (<b>a</b>) Example 1; (<b>b</b>) Example 2; (<b>c</b>) Example 3; (<b>d</b>) and Example 4.</p> "> Figure 20
<p>Example 1—local comparison of each method after smoothing. (<b>a</b>) Laplacian; (<b>b</b>) angle-based; (<b>c</b>) ODT; (<b>d</b>) CVT; (<b>e</b>) unconstrained DQN; and (<b>f</b>) constrained DQN.</p> "> Figure 21
<p>Example 2—local comparison of each method after smoothing. (<b>a</b>) Laplacian; (<b>b</b>) angle-based; (<b>c</b>) ODT; (<b>d</b>) CVT; (<b>e</b>) unconstrained DQN; and (<b>f</b>) constrained DQN.</p> "> Figure 22
<p>Example 3—local comparison of each method after smoothing. (<b>a</b>) Laplacian; (<b>b</b>) angle-based; (<b>c</b>) ODT; (<b>d</b>) CVT; (<b>e</b>) unconstrained DQN; and (<b>f</b>) constrained DQN.</p> "> Figure 23
<p>Example 4—local comparison of each method after smoothing. (<b>a</b>) Laplacian; (<b>b</b>) angle-based; (<b>c</b>) ODT; (<b>d</b>) CVT; (<b>e</b>) unconstrained DQN; and (<b>f</b>) constrained DQN.</p> "> Figure 24
<p>Distribution of quality between 0.5 and 0.8.</p> "> Figure 25
<p>L-shaped flat plate.</p> "> Figure 26
<p>Initial mesh, overall refined mesh, and optimized mesh. (<b>a</b>) Before smoothing; (<b>b</b>) refined mesh; and (<b>c</b>) after smoothing.</p> "> Figure 27
<p>Finite element calculation results of Example 1. (<b>a</b>) Initial mesh; (<b>b</b>) refined mesh.</p> "> Figure 28
<p>Example 1: finite element calculation results after smoothing for each optimization method. (<b>a</b>) Laplacian; (<b>b</b>) angle-based; (<b>c</b>) ODT; (<b>d</b>) CVT; (<b>e</b>) unconstrained DQN; and (<b>f</b>) constrained DQN.</p> "> Figure 29
<p>Gravity dam.</p> "> Figure 30
<p>Example 2—comparison before and after smoothing. (<b>a</b>) Before smoothing; (<b>b</b>) after smoothing.</p> "> Figure 31
<p>Finite element calculation results of the initial mesh. (<b>a</b>) Global; (<b>b</b>) local.</p> "> Figure 32
<p>Example 2: finite element calculation results after smoothing for each optimization method. (<b>a</b>) Laplacian; (<b>b</b>) angle-based; (<b>c</b>) ODT; (<b>d</b>) CVT; (<b>e</b>) unconstrained DQN; and (<b>f</b>) constrained DQN.</p> ">
Abstract
:1. Introduction
2. Smoothing Method Based on Angle and Deep Q-Network
2.1. Unconstrained Deep Q-Network Smoothing Method
2.2. Construction of the Inner Polygon
2.3. Workflow of the Algorithm
2.3.1. Overview
2.3.2. Step 1: Extracting Feature Information from the Dataset
- Read the boundary nodes and all nodes of the continuum from the dataset and make the difference set between them to get the internal points of the continuum;
- Traverse the internal points and calculate the quality of all triangular elements containing the point, taking the lowest quality as the node quality. Store all node qualities in an array and sort them in ascending order;
- Traverse the interior points, bisect the interior angles of the polygon, and calculate. The scatter coordinates are the updated centroids. Convex the scattered points to get the inner polygon;
- Store the index, node coordinates, node quality, neighboring node index, neighboring node coordinates, and inner polygon vertex coordinates of all internal points in memory.
2.3.3. Step 2: Training of DQN Model
- The program reads the information about the dataset stored in memory. Normalize the dataset features by scaling the polygon to be within a square region with a side length of 1;
- Initialize experience playback pool D, randomly initialize the parameters of the real Q-network θ, and initialize the parameters θ′ of the target Q-network equal to θ;
- The program reads the state vector of the dataset and obtains the eigenvector . Using as the input in the Q-network, calculate the Q-values corresponding to all actions. ε—the greedy algorithm selects the corresponding action from the current Q-value. The agent has a probability of 0.9 to randomly select actions to search for other strategies to maximize rewards and benefits. There is a 10% probability of selecting the action corresponding to the maximum Q-value;
- Execute action in the current state , to obtain the feature vector corresponding to the next state , reward , and terminate status conducted;
- 4.1.
- Calculate the node quality and before and after the agent moves and set the reward value to ;
- 4.2.
- Determine whether the current node quality meets the quality threshold. If it does, terminate this round of training and start a new round;
- 4.3.
- Determine whether the intelligent agent has moved out of the inner polygon. If so, give a reward of −10 and continue training;
- 4.4.
- Determine whether the agent has moved out of the polygon. If so, give a reward of −100 and terminate this round of training. Otherwise, continue;
- Store as an array, and store the array in the experience playback pool. Update status to ;
- Randomly sample m samples from the experience playback pool D, where j = 1, 2,…, m. Calculate the current target Q-value using the following Equation;
- Perform a gradient descent on to update the parameters θ of the real Q-network.
- Update the parameters of the target Q-network every C step. The round ends when the number of steps the agent moves reaches the maximum number of steps, T.
- Training is stopped when the maximum number of training rounds, M, is reached and the data features are denormalized. Otherwise, it goes to Step 3;
2.3.4. Step 3: Constrain DQN Model for Mesh Smoothing
3. Parameter Setting and Data Preparation of the Constrained DQN Model
3.1. Quality Metric
3.2. Dataset Preparation
3.3. Neural Network and Network Parameter Setting
4. Results and Discussion
4.1. Effectiveness Analysis
4.2. Generalization Analysis of Constrained DQN Model
4.3. Comparative Analysis of Experiments
4.4. Comparative Analysis of Experiments
4.4.1. Example 1
4.4.2. Example 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Sastry, S.P.; Shontz, S.M. A numerical investigation on the interplay amongst geometry, meshes, and linear algebra in the finite element solution of elliptic PDEs. Eng. Comput. 2012, 28, 431–450. [Google Scholar] [CrossRef]
- Cheng, S.W.; Dey, T.K.; Shewchuk, J. 1.2 Delaunay triangulations and Delaunay refinement. In Delaunay Mesh Generation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 8–10. [Google Scholar] [CrossRef]
- Strang, G.; Fix, G.J.; Griffin, D.S. An Analysis of the Finite-Element Method. ASME J. Appl. Mech. 1974, 41, 62. [Google Scholar] [CrossRef]
- Babuška, I.; Aziz, A.K. On the angle condition in the finite element method. SIAM J. Numer. Anal. 1976, 13, 214–226. [Google Scholar] [CrossRef]
- Shewchuk, J. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). Univ. Calif. Berkeley 2002, 73, 137. [Google Scholar]
- Durand, R.; Pantoja-Rosero, B.G.; Oliveira, V. A general mesh smoothing method for finite elements. Finite Elem. Anal. Des. 2019, 158, 17–30. [Google Scholar] [CrossRef]
- Huang, X.; Xu, D. Aspect-ratio based triangular mesh smoothing. In ACM SIGGRAPH 2017 Posters; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Field, D.A. Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 1988, 4, 709–712. [Google Scholar] [CrossRef]
- Blacker, T.D.; Stephenson, M.B. Paving: A new approach to automated quadrilateral mesh generation. Int. J. Numer. Methods Eng. 1991, 32, 811–847. [Google Scholar] [CrossRef]
- Zhu, J.Z.; Zienkiewicz, O.C.; Hinton, E.; Wu, J. A new approach to the development of automatic quadrilateral mesh generation. Int. J. Numer. Methods Eng. 1991, 32, 849–866. [Google Scholar] [CrossRef]
- Freitag, L.A.; Ollivier-Gooch, C. A Comparison of Tetrahedral Mesh Improvement Techniques; Argonne National Lab. (ANL): Argonne, IL, USA, 1996. [Google Scholar] [CrossRef] [Green Version]
- Canann, S.A.; Tristano, J.R.; Staten, M.L. An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. IMR 1998, 1, 479–494. [Google Scholar]
- Freitag, L.A. On Combining Laplacian and Optimization-Based Mesh Smoothing Techniques; Argonne National Lab. (ANL): Argonne, IL, USA, 1997. [Google Scholar]
- Zhou, T.; Shimada, K. An angle-based approach to two-dimensional mesh smoothing. IMR 2000, 2000, 373–384. [Google Scholar]
- Xu, H.T.; Newman, T.S. An angle-based optimization approach for 2D finite element mesh smoothing. Finite Elem. Anal. Des. 2006, 42, 1150–1164. [Google Scholar] [CrossRef]
- Gong, X.F.; Zhang, S.D. One mesh smoothing algorithm combining Laplacian and local optimization-based mesh smoothing techniques. Trans. Beijing Inst. Technol. 2010, 30, 616–621. (In Chinese) [Google Scholar]
- Lee, E.; Shin, M.; Kim, J. Improved simultaneous mesh untangling and quality improvement methods of 2D triangular meshes. Int. J. Comput. Methods 2019, 16, 1850119. [Google Scholar] [CrossRef]
- Kim, J.; Panitanarak, T.; Shontz, S.M. A multiobjective mesh optimization framework for mesh quality improvement and mesh untangling. Int. J. Numer. Methods Eng. 2013, 94, 20–42. [Google Scholar] [CrossRef]
- Mittal, K.; Fischer, P. Mesh smoothing for the spectral element method. J. Sci. Comput. 2019, 78, 1152–1173. [Google Scholar] [CrossRef]
- Kim, J. An efficient approach for solving mesh optimization problems using newton’s method. Math. Probl. Eng. 2014, 2014, 273732. [Google Scholar] [CrossRef] [Green Version]
- Roda-Casanova, V.; Sanchez-Marin, F. A simple procedure for generating locally refined 2D quadrilateral finite element meshes of gears. Mech. Mach. Theory 2021, 157, 104185. [Google Scholar] [CrossRef]
- Kim, J.; Shin, M.; Kang, W. A derivative-free mesh optimization algorithm for mesh quality improvement and untangling. Math. Probl. Eng. 2015, 2015, 264741. [Google Scholar] [CrossRef] [Green Version]
- Alliez, P.; Cohen-Steiner, D.; Yvinec, M.; Desbrun, M. Variational tetrahedral meshing. In ACM SIGGRAPH 2005 Papers; Association for Computing Machinery: New York, NY, USA, 2005; pp. 617–625. [Google Scholar] [CrossRef]
- Du, Q.; Gunzburger, M. Grid generation and optimization based on centroidal Voronoi tessellations. Appl. Math. Comput. 2002, 133, 591–607. [Google Scholar] [CrossRef]
- Guo, Y.F.; Wang, C.R.; Ma, Z.; Huang, X.H.; Sun, K.W.; Zhao, R.L. A new mesh smoothing method based on a neural network. Comput. Mech. 2022, 69, 425–438. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Kang, W. A data-driven approach for simultaneous mesh untangling and smoothing using Pointer networks. IEEE Access 2020, 8, 70329–70342. [Google Scholar] [CrossRef]
- Zhang, H.J.; Liu, X.; Li, H.J. Deep Q network-based optimization algorithm for planar Delaunay mesh. J. Comput.-Aided Des. Comput. Graph. 2022, 34, 1943–1950. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zienkiewicz, O.C.; Zhu, J.Z.; Gong, N.G. Effective and practical h–p-version adaptive analysis procedures for the finite element method. Int. J. Numer. Methods Eng. 1989, 28, 879–891. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, H.; Zhou, W.Y. Stress evaluation in finite element analysis of dams. Eng. Mech. 2006, 23, 69–73. (In Chinese) [Google Scholar]
State | Reward Function |
---|---|
Normal | |
Node quality exceeds the threshold | 10 |
The agent moves out of the inner polygon | −10 |
The agent moves out of the polygon | −100 |
Parameter | Symbol | Value |
---|---|---|
learning rate | 0.01 | |
decay rate | 0.9 | |
epsilon | 0.9 | |
number of times experience pool D starts to replay | 500 | |
batch size | 32 | |
number of intervals for updating objective function | 300 | |
maximum number of steps in a single round | 200 | |
maximum number of rounds | 1000 | |
optimizer | RMSProp | |
activation function | ReLU |
Mesh | State | Nodes | Min. θ | Max. θ | Min. q | Avg. q |
---|---|---|---|---|---|---|
2 | Before smoothing | 619 | 18.3706 | 129.4545 | 0.4802 | 0.8632 |
After smoothing | 34.1760 | 99.4288 | 0.7810 | 0.9279 | ||
3 | Before smoothing | 426 | 17.8954 | 128.0146 | 0.5009 | 0.7906 |
After smoothing | 34.9065 | 93.8188 | 0.8173 | 0.9361 | ||
4 | Before smoothing | 426 | 33.1073 | 98.6044 | 0.7962 | 0.9677 |
After smoothing | 37.6581 | 91.6064 | 0.8517 | 0.9629 |
Mesh | Method | Time/(s) | Nodes | Min. θ | Max. θ | (a) | (b) | Min. q | Avg. q |
---|---|---|---|---|---|---|---|---|---|
1 | Initial | / | 17.62 | 130.12 | 1434 | 1115 | 0.5001 | 0.7715 | |
Laplacian | 0.2886 | 26.86 | 110.70 | 3 | 14 | 0.6495 | 0.9608 | ||
Angle-based | 0.4520 | 26.29 | 105.47 | 2 | 7 | 0.6840 | 0.9537 | ||
ODT | 0.3890 | 2027 | 19.00 | 126.50 | 42 | 54 | 0.5125 | 0.9109 | |
CVT | 0.3390 | 27.90 | 106.34 | 6 | 12 | 0.7249 | 0.9308 | ||
Unconstrained DQN | 1.5944 | 25.78 | 114.74 | 24 | 37 | 0.6479 | 0.9185 | ||
Constrained DQN | 1.6218 | 32.499 | 96.28 | 0 | 0 | 0.7944 | 0.9426 | ||
2 | Initial | / | 10.49 | 146.45 | 158 | 117 | 0.2902 | 0.8481 | |
Laplacian | 0.1172 | 28.05 | 110.21 | 6 | 7 | 0.6713 | 0.9239 | ||
Angle-based | 0.1461 | 21.67 | 106.68 | 28 | 11 | 0.5972 | 0.9096 | ||
ODT | 0.1367 | 926 | 22.70 | 124.73 | 26 | 30 | 0.5517 | 0.9019 | |
CVT | 0.1211 | 27.14805 | 114.34 | 4 | 12 | 0.6454 | 0.9154 | ||
Unconstrained DQN | 0.3721 | 26.05 | 104.54 | 2 | 6 | 0.6871 | 0.9179 | ||
Constrained DQN | 0.3986 | 29.25 | 100.25 | 1 | 1 | 0.7249 | 0.9208 | ||
3 | Initial | / | 33.31 | 101.55 | 0 | 3 | 0.7713 | 0.9499 | |
Laplacian | 0.3666 | 30.27 | 102.95 | 0 | 8 | 0.7166 | 0.9563 | ||
Angle-based | 0.7174 | 25.05 | 120.23 | 13 | 11 | 0.5888 | 0.9474 | ||
ODT | 0.5078 | 2987 | 33.07 | 101.55 | 0 | 2 | 0.7713 | 0.9481 | |
CVT | 0.4544 | 32.15 | 99.94 | 0 | 0 | 0.7850 | 0.9492 | ||
Unconstrained DQN | 2.2742 | 34.68 | 98.56 | 0 | 0 | 0.7978 | 0.9487 | ||
Constrained DQN | 2.3175 | 36.18 | 94.92 | 0 | 0 | 0.8229 | 0.9496 | ||
4 | Initial | / | 17.67 | 130.17 | 3789 | 2908 | 0.5001 | 0.7686 | |
Laplacian | 1.1419 | 26.00 | 109.88 | 3 | 14 | 0.6560 | 0.9630 | ||
Angle-based | 1.6108 | 23.23 | 103.44 | 16 | 17 | 0.6196 | 0.9560 | ||
ODT | 1.5983 | 5115 | 19.56 | 128.79 | 64 | 69 | 0.5041 | 0.9367 | |
CVT | 1.4202 | 24.03 | 105.90 | 11 | 24 | 0.6490 | 0.9486 | ||
Unconstrained DQN | 3.6788 | 23.97 | 117.88 | 29 | 41 | 0.6365 | 0.9127 | ||
Constrained DQN | 3.7988 | 32.31 | 100.77 | 0 | 2 | 0.7539 | 0.9465 |
Mesh | Method | Time/(s) | Nodes | Min. θ | Max. θ | (a) | (b) | Min. q | Avg. q |
---|---|---|---|---|---|---|---|---|---|
2 | Initial | / | 26.93 | 108.78 | 45 | 86 | 0.7003 | 0.8635 | |
Laplacian | 0.1024 | 28.62 | 102.80 | 3 | 2 | 0.7139 | 0.9417 | ||
Angle-based | 0.2045 | 28.82 | 100.26 | 2 | 1 | 0.7517 | 0.9475 | ||
ODT | 0.1377 | 788 | 28.62 | 104.52 | 3 | 7 | 0.7139 | 0.9401 | |
CVT | 0.1249 | 28.62 | 99.80 | 3 | 0 | 0.7139 | 0.9478 | ||
Unconstrained DQN | 0.3175 | 30.06 | 103.39 | 0 | 3 | 0.7403 | 0.9262 | ||
Constrained DQN | 0.3261 | 33.03 | 98.44 | 0 | 0 | 0.7954 | 0.9357 |
Method | Nodes | Elements | Stress (Mpa) | Error (%) |
---|---|---|---|---|
Initial | 5.1531 | 12.5939 | ||
Laplacian | 5.4915 | 6.8524 | ||
Angle-based | 5.5006 | 6.6984 | ||
ODT | 435 | 788 | 5.5068 | 6.5934 |
CVT | 5.4987 | 6.7310 | ||
Unconstrained DQN | 5.4453 | 7.6354 | ||
Constrained DQN | 5.5564 | 5.7523 | ||
Refinement | 804 | 1496 | 5.8955 | / |
Mesh | Method | Time/(s) | Nodes | Min. θ | Max. θ | (a) | (b) | Min. q | Avg. q |
---|---|---|---|---|---|---|---|---|---|
2 | Initial | / | 8.32 | 153.96 | 1562 | 1095 | 0.2190 | 0.7312 | |
Laplacian | 0.6207 | 26.52 | 111.37 | 12 | 24 | 0.6683 | 0.9507 | ||
Angle-based | 0.6969 | 26.52 | 111.32 | 11 | 21 | 0.6679 | 0.9411 | ||
ODT | 0.7397 | 1665 | 14.30 | 148.60 | 27 | 40 | 0.3159 | 0.9336 | |
CVT | 0.8148 | 16.93 | 135.92 | 25 | 32 | 0.6355 | 0.9437 | ||
Unconstrained DQN | 1.2549 | 27.09 | 127.17 | 33 | 30 | 0.5264 | 0.9188 | ||
Constrained DQN | 1.3166 | 31.01 | 108.64 | 0 | 2 | 0.6814 | 0.9372 |
Method | Nodes | Element | Stress (x) | Error (x) | Stress (x) | Error (y) | Mean Error |
---|---|---|---|---|---|---|---|
Initial | 1665 | 3178 | 9.6259 | 30.25 | 10.2441 | 30.03 | 30.14 |
Laplacian | 9.9706 | 27.75 | 10.9232 | 22.34 | 25.04 | ||
Angle-based | 9.8940 | 28.30 | 10.9515 | 25.19 | 26.75 | ||
ODT | 9.7165 | 29.59 | 10.6509 | 27.25 | 28.42 | ||
CVT | 9.7404 | 29.42 | 10.8809 | 25.68 | 27.55 | ||
Unconstrained DQN | 10.0845 | 26.92 | 11.2019 | 23.48 | 25.20 | ||
Constrained DQN | 10.6940 | 22.51 | 11.8218 | 19.25 | 20.88 | ||
Reference [30] | 8263 | 10,270 | 13.8000 | / | 14.6400 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Sun, G. Planar Delaunay Mesh Smoothing Method Based on Angle and a Deep Q-Network. Appl. Sci. 2023, 13, 9157. https://doi.org/10.3390/app13169157
Zhao F, Sun G. Planar Delaunay Mesh Smoothing Method Based on Angle and a Deep Q-Network. Applied Sciences. 2023; 13(16):9157. https://doi.org/10.3390/app13169157
Chicago/Turabian StyleZhao, Fu, and Guangjun Sun. 2023. "Planar Delaunay Mesh Smoothing Method Based on Angle and a Deep Q-Network" Applied Sciences 13, no. 16: 9157. https://doi.org/10.3390/app13169157
APA StyleZhao, F., & Sun, G. (2023). Planar Delaunay Mesh Smoothing Method Based on Angle and a Deep Q-Network. Applied Sciences, 13(16), 9157. https://doi.org/10.3390/app13169157