Growth and Fabrication of GaAs Thin-Film Solar Cells on a Si Substrate via Hetero Epitaxial Lift-Off
<p>(<b>a</b>) GaAs buffer structure on 4-degree offcut Si using In<sub>0.1</sub>Ga<sub>0.9</sub>As single insertion layer and thermal cycle annealing. (<b>b</b>) An ECCI image of the GaAs buffer surface grown on Si substrate. (<b>c</b>) Threading dislocation density benchmark of GaAs/Si materials reported by other groups.</p> "> Figure 2
<p>(<b>a</b>) Schematic illustration of GaAs one-junction solar cell grown on Si substrate. (<b>b</b>) Differential interference contrast optical microscopy image. (<b>c</b>) Cross-sectional SEM image of the entire solar cell structure. (<b>d</b>) Cross-sectional bright-field TEM image. Inset shows the selected area diffraction pattern.</p> "> Figure 3
<p>(<b>a</b>) Photograph of a 2-inch GaAs one-junction solar cell grown on Si substrate. The red-line square shows the selected area for micro-PL mapping. (<b>b</b>) Micro-PL mapping image on the selected area in (<b>a</b>). (<b>c</b>) Raman spectra of GaAs solar cell grown on GaAs and Si substrate.</p> "> Figure 4
<p>(<b>a</b>) Fabrication procedure for transfer process of GaAs solar cell. (<b>b</b>) Photograph of transferred GaAs solar cell to polyimide. The inset shows the optical microscope image of GaAs solar cell grown on Si substrate.</p> "> Figure 5
<p>(<b>a</b>) Schematic diagrams of the one-junction GaAs solar cells. (<b>b</b>) Dark current density (J) −voltage (V) characteristics of GaAs solar cell. Inset shows the ideality factor as a function of bias voltage. (<b>c</b>) J−V curves for fabricated GaAs solar cells.</p> ">
Abstract
:1. Introduction
2. Material Growth
3. Results and Discussion
3.1. Material Characterizations
3.2. Device Fabrication and Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Connolly, J.P.; Mencaraglia, D.; Renard, C.; Bouchier, D. Designing III-V multijunction solar cells on silicon. Prog. Photovolt. 2014, 22, 810–820. [Google Scholar] [CrossRef]
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Tillmann, P.; Bläsi, B.; Burger, S.; Hammerschmidt, M.; Hoehn, O.; Becker, C.; Jaeger, K. Optimizing metal grating back reflectors for III-V-on-silicon multijunction solar cells. Opt. Express 2021, 29, 22517–22532. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, S.Y.; Huang, Y.M.; et al. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2020, 29, 3–15. [Google Scholar] [CrossRef]
- Cariou, R.; Benick, J.; Feldmann, F.; Höhn, O.; Hauser, H.; Beutel, P.; Razek, N.; Wimplinger, M.; Bläsi, B.; Lackner, D.; et al. III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 2018, 3, 606. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.T.; Law, D.C.; Woo, R.L.; Singer, S.B.; Bhusari, D.; Hong, W.D.; Zakaria, A.; Boisvert, J.; Mesropian, S.; King, R.R.; et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (Pvsc), Denver, CO, USA, 8–13 June 2014; pp. 11–13. [Google Scholar]
- France, R.M.; Geisz, J.F.; Garcia, I.; Steiner, M.A.; McMahon, W.E.; Friedman, D.J.; Moriarty, T.E.; Osterwald, C.; Ward, J.S.; Duda, A.; et al. Design flexibility of ultra-high efficiency 4-junction inverted metamorphic solar cells. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (Pvsc), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- Dimroth, F.; Grave, M.; Beutel, P.; Fiedeler, U.; Karcher, C.; Tibbits, T.N.D.; Oliva, E.; Siefer, G.; Schachtner, M.; Wekkeli, A.; et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 2014, 22, 277–282. [Google Scholar] [CrossRef]
- Hadi, S.A.; Fitzgerald, E.A.; Griffiths, S.; Nayfeh, A. III-V/Si dual junction solar cell at scale: Manufacturing cost estimates for step-cell based technology. J. Renew. Sustain. Energy 2018, 10, 015905. [Google Scholar] [CrossRef]
- Kelsey, A.W.; Horowitz, T.R.; Smith, B.; Ptak, A. A Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells. Natl. Renew. Energy Lab. 2018. [Google Scholar]
- Fan, S.; Jung, D.; Sun, Y.; Li, B.D.; Martın-Martın, D.; Lee, M.L. 16.8%-Efficient n(+)/p GaAs Solar Cells on Si With High Short-Circuit Current Density. IEEE J. Photovolt. 2019, 9, 660–665. [Google Scholar] [CrossRef]
- Hong, N.; Chu, R.J.; Kang, S.S.; Ryu, G.; Han, J.-H.; Yu, K.J.; Jung, D.; Choi, W.J. Flexible GaAs photodetector arrays hetero-epitaxially grown on GaP/Si for a low-cost III-V wearable photonics platform. Opt. Express 2020, 28, 36559–36567. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, M.-S.; Geum, D.-M.; Kim, H.; Ryu, G.; Yang, H.-D.; Song, J.D.; Kim, C.Z.; Choi, W.J. Fabrication and characterization of single junction GaAs solar cell epitaxially grown on Si substrate. Curr. Appl. Phys. 2015, 15, S40–S43. [Google Scholar] [CrossRef]
- Ryu, G.; Kang, S.S.; Han, J.-H.; Chu, R.J.; Jung, D.; Choi, W.J. Comparative study of metamorphic InAs layers grown on GaAs and Si for mid-infrared photodetectors. Solid-State Electron. 2020, 176, 107942. [Google Scholar] [CrossRef]
- Ryu, G.; Woo, S.; Kang, S.S.; Chu, R.J.; Han, J.-H.; Lee, I.-H.; Jung, D.; Choi, W.J. Optimized InAlAs graded buffer and tensile-strained dislocation filter layer for high quality InAs photodetector grown on Si. Appl. Phys. Lett. 2020, 117, 262106. [Google Scholar] [CrossRef]
- Wang, B.; Syaranamual, G.J.; Lee, K.H.; Bao, S.; Wang, Y.; Lee, K.E.K.; A Fitzgerald, E.; Pennycook, S.J.; Gradecak, S.; Michel, J. Effectiveness of InGaAs/GaAs superlattice dislocation filter layers epitaxially grown on 200 mm Si wafers with and without Ge buffers. Semicond. Sci. Technol. 2020, 35, 095036. [Google Scholar] [CrossRef]
- Mbeunmi, A.B.P.; El-Gahouchi, M.; Arvinte, R.; Jaouad, A.; Cheriton, R.; Wilkins, M.; Valdivia, C.; Hinzer, K.; Fafard, S.; Aimez, V.; et al. Direct growth of GaAs solar cells on Si substrate via mesoporous Si buffer. Sol. Energy Mater. Sol. Cells 2020, 217, 110641. [Google Scholar] [CrossRef]
- Lang, J.R.; Faucher, J.; Tomasulo, S.; Yaung, K.N.; Lee, M.L. Comparison of GaAsP solar cells on GaP and GaP/Si. Appl. Phys. Lett. 2013, 103, 092102. [Google Scholar] [CrossRef]
- Boyer, J.; Blumer, A.; Blumer, Z.; Lepkowski, D.L.; Grassman, T.J. Reduced dislocation introduction in III-V/Si heterostructures with glide-enhancing compressively-strained superlattices. Cryst. Growth Des. 2020, 20, 6939–6946. [Google Scholar] [CrossRef]
- Shang, C.; Selvidge, J.; Hughes, E.; Norman, J.C.; Taylor, A.A.; Gossard, A.C.; Mukherjee, K.; Bowers, J.E. A Pathway to Thin GaAs Virtual Substrate on On-Axis Si (001) with Ultralow Threading Dislocation Density. Phys. Status Solidi 2021, 218, 2000402. [Google Scholar] [CrossRef]
- Jung, D.; Callahan, P.G.; Shin, B.; Mukherjee, K.; Gossard, A.C.; Bowers, J.E. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys. 2017, 122, 225703. [Google Scholar] [CrossRef] [Green Version]
- Yang, V.K.; Groenert, M.; Leitz, C.W.; Pitera, A.J.; Currie, M.T.; Fitzgerald, E.A. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J. Appl. Phys. 2003, 93, 3859–3865. [Google Scholar] [CrossRef]
- Andre, C.L.; Carlin, J.A.; Boeckl, J.J.; Wilt, D.M.; Smith, M.A.; Pitera, A.J.; Lee, M.L.; Fitzgerald, E.A.; Ringel, S.A. Investigations of high-performance GaAs solar cells grown on Ge-Si1-xGex-Si substrates. IEEE Trans. Electron Devices 2005, 52, 1055–1060. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.; Thway, M.; Lee, K.; Yoon, S.F.; Peters, I.M.; Buonassisi, T.; Fizgerald, E.A.; Tan, C.S.; Lee, K.H. Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer. Sol. Energy Mater. Sol. Cells 2017, 172, 140–144. [Google Scholar] [CrossRef]
- Wang, G.; Loo, R.; Simoen, E.; Souriau, L.; Caymax, M.; Heyns, M.M.; Blanpain, B. A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100). Appl. Phys. Lett. 2009, 94, 102115. [Google Scholar] [CrossRef]
- Oda, H.; Inoue, K.; Ikeda, N.; Sugimoto, Y.; Asakawa, K. Observation of Raman scattering in GaAs photonic-crystal slab waveguides. Opt. Express 2006, 14, 6659–6667. [Google Scholar] [CrossRef]
- Sugo, M.; Uchida, N.; Yamamoto, A.; Nishioka, T.; Yamaguchi, M. Residual strains in heteroepitaxial III-V semiconductor films on Si(100) substrates. J. Appl. Phys. 1989, 65, 591–595. [Google Scholar] [CrossRef]
- Kim, T.S.; Kim, H.J.; Geum, D.-M.; Han, J.-H.; Kim, I.S.; Hong, N.; Ryu, G.H.; Kang, J.; Choi, W.J.; Yu, K.J. Ultra-Lightweight, Flexible InGaP/GaAs Tandem Solar Cells with a Dual-Function Encapsulation Layer. ACS Appl. Mater. Interfaces 2021, 13, 13248–13253. [Google Scholar] [CrossRef]
- Woo, S.; Ryu, G.; Kang, S.S.; Kim, T.S.; Hong, N.; Han, J.-H.; Chu, R.J.; Lee, I.-H.; Jung, D.; Choi, W.J. High-Performance Flexible InAs Thin-Film Photodetector Arrays with Heteroepitaxial Growth Using an Abruptly Graded InxAl1–xAs Buffer. ACS Appl. Mater. Interfaces 2021, 13, 55648–55655. [Google Scholar] [CrossRef]
- Geum, D.-M.; Park, M.-S.; Lim, J.Y.; Yang, H.-D.; Song, J.D.; Kim, C.Z.; Yoon, E.; Kim, S.; Choi, W.J. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications. Sci. Rep. 2016, 6, 20610. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.; Ryu, G.; Kim, T.; Hong, N.; Han, J.-H.; Chu, R.J.; Bae, J.; Kim, J.; Lee, I.-H.; Jung, D.; et al. Growth and Fabrication of GaAs Thin-Film Solar Cells on a Si Substrate via Hetero Epitaxial Lift-Off. Appl. Sci. 2022, 12, 820. https://doi.org/10.3390/app12020820
Woo S, Ryu G, Kim T, Hong N, Han J-H, Chu RJ, Bae J, Kim J, Lee I-H, Jung D, et al. Growth and Fabrication of GaAs Thin-Film Solar Cells on a Si Substrate via Hetero Epitaxial Lift-Off. Applied Sciences. 2022; 12(2):820. https://doi.org/10.3390/app12020820
Chicago/Turabian StyleWoo, Seungwan, Geunhwan Ryu, Taesoo Kim, Namgi Hong, Jae-Hoon Han, Rafael Jumar Chu, Jinho Bae, Jihyun Kim, In-Hwan Lee, Deahwan Jung, and et al. 2022. "Growth and Fabrication of GaAs Thin-Film Solar Cells on a Si Substrate via Hetero Epitaxial Lift-Off" Applied Sciences 12, no. 2: 820. https://doi.org/10.3390/app12020820
APA StyleWoo, S., Ryu, G., Kim, T., Hong, N., Han, J. -H., Chu, R. J., Bae, J., Kim, J., Lee, I. -H., Jung, D., & Choi, W. J. (2022). Growth and Fabrication of GaAs Thin-Film Solar Cells on a Si Substrate via Hetero Epitaxial Lift-Off. Applied Sciences, 12(2), 820. https://doi.org/10.3390/app12020820