Optimal Control of an Ultraviolet Water Disinfection System
<p>Schematic representation of the UV disinfection system.</p> "> Figure 2
<p>Input and output variables of the UV disinfection system’ model.</p> "> Figure 3
<p>The computation of the bacterial abatement.</p> "> Figure 4
<p>Static gains generation using procedure <span class="html-italic">A</span>(<span class="html-italic">I</span><sub>0</sub>, <span class="html-italic">Q</span><sub>0</sub>, <span class="html-italic">t</span>).</p> "> Figure 5
<p>Typical evolution of variables during the execution of algorithm HTPSO_UV1 for the imposed values of two bacterial abatements: (<b>a</b>) A<sub>0</sub> = 3; (<b>b</b>) A<sub>0</sub> = 3.5.</p> "> Figure 6
<p>Optimal solutions as functions of <span class="html-italic">A</span><sub>0.</sub></p> "> Figure 7
<p>Optimal solutions with an imposed flow rate: (<b>a</b>) Q<sub>0</sub> = 0.2; (<b>b</b>) Q<sub>0</sub> = 0.4.</p> "> Figure 8
<p>Optimal solutions with an imposed UV intensity: (<b>a</b>) I<sub>0</sub> = 5; (<b>b</b>) I<sub>0</sub> = 7.9</p> "> Figure A1
<p>Comparison between characteristic curves: (<b>a</b>) experimental data; (<b>b</b>) parametrized curves</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
- the final value of bacterial abatement should be equal to an imposed value (disinfection criterion);
- the control inputs minimize the energy consumed for irradiation (energy criterion).
2. A Disinfection UV System
2.1. Structure of the UV System
2.2. The Dynamic Model of the UV Disinfection System
2.2.1. Calculation of the UV Dose Delivered by the Discharge Lamp
2.2.2. Bacterial Abatement Calculation
- The value A(t) has two terms, like in Equation (6), corresponding to the two inputs.
- The dynamic behavior of the two terms is retained, i.e., we retain the values of the poles for the two transfer functions from Equation (7).
- We consider different static gains for each pair of values (I0, Q0) as a direct consequence of Remark 3. These static gains are and , which are different from kI and kQ.
- The static gains are determined using experimental measurements. This is based on data extracted from the characteristic curves presented in paper [5] and reproduced in Appendix A.
3. Disinfection System’s Optimal Control
- The freshwater particles are exposed to UV radiation during a period expressed by Equation (2). However, the control inputs, I and Q, have constant values (I = I0 and Q = Q0) for much longer periods.
- The setpoints I0 and Q0 will determine the dynamic evolution of UVDS, which means the outputs D(I0, Q0, t) and A(I0, Q0, t) evolve towards their steady values given by the nonlinear models described in the previous section.
- A performance criterion can be associated with the dynamic evolution of the disinfection system. An optimization algorithm yields the optimal solution: the reference values, I0 and Q0, which minimize or maximize the performance criterion.
3.1. Optimum Criteria
3.2. Statement of Optimal Control Problem
- -
- the final value of bacterial abatement should be A0 (an imposed value);
- -
- the control inputs minimize the energy consumed for irradiation.
- Time horizon:
- Bound constraints:
4. Algorithm Using Hybrid Topology Particle Swarm Optimization
4.1. Hybrid Topology Particle Swarm Optimization
4.1.1. General Description of PSO
4.1.2. Hybrid Topology PSO
4.1.3. Adaptation of Particle Speed
4.2. Implementation of Algorithm HTPSO_UV1
4.2.1. Algorithm’s General Description
4.2.2. Specific Aspects of the Implementation
5. Discussion
5.1. Searching Process and Results’ Analysis
5.2. Study of Optimal Solutions
- Is there an optimal solution for any given A0?
- To what extent is the disinfection criterion met?
- To what extent is the energy criterion met?
- if , then Q0 = 0.8 L/s and 8.5 ≤ I0 ≤ 10 mW/cm2;
- if , then I0 = 10 mW/cm2 and 0.3 ≤ Q0 ≤ 0.8 L/s;
5.3. Different Control Hypothesis
5.3.1. Imposed Lower Bound for the Bacterial Abatement
5.3.2. Flow Rate Imposed Owing to Technical Constraints
5.3.3. UV Intensity Imposed by Technical Constraints
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
- N: number of the swarm’s particles (N = 30, in our implementation)
- n: the solution dimension;
- vmax: the maximum speed of a particle in any direction;
- C1min, C1max, C2min, C2max, C3min, C3max, wmin, wmax: the minimum and respectively maximum values of the coefficients that appear in Equation (21);
- xmin, xmax: vectors, with n elements, having the minimum and respectively maximum values of the particle’s position for each direction;
- T: the estimated or maximum number of steps until convergence;
- NF: vector of N integer numbers, where NF(i) is associated with particle #i and represents the number of steps without improving the best personal experience;
- MINNF: the minimum value of NF elements used to assert the algorithm convergence (see line #35, where found = 1 means convergence).
Appendix D
Appendix D.1. Imposed Lower Bound for the Bacterial Abatement
Appendix D.2. Flow Rate Imposed Due to Technical Constraints
Appendix D.3. UV Intensity Imposed by Technical Constraints
References
- Reckhow, D.; Linden, K.; Junsung, K.; Shemer, H.; Makdissy, G. Effect of UV treatment on DBP formation. J. AWWA 2010, 102, 100–113. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. MDPI Sustain. 2018, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Cristinel, B.; Remus, Z.; Lucian, T.; Eugen, A.; Dumitru, N. Elimination techniques of microbiological agents in water purification processes with UV radiation. J. Appl. Sci. Environ. Sanit. 2011, 6, 51–62. [Google Scholar]
- Ouelhazi, K.; Chaabene, A.B.; Sellami, A.; Hassen, A. Multivariable model of an ultraviolet water disinfection system. Desalin. Water Treat. 2017, 67, 89–96. [Google Scholar] [CrossRef]
- Johnson, K.M.; Kumar, M.R.A.; Ponmurugan, P.; Gananamangai, B.M. Ultraviolet radiation and its germicidal effect in drinking water purification. J. Phytol. 2010, 2, 12–19. [Google Scholar]
- Artichowicz, W.; Luczkiewicz, A.; Sawicki, J.M. Analysis of the Radiation Dose in UV-Disinfection Flow Reactors. Water 2020, 12, 231. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Deng, B.; Kim, C.N. Computational fluid dynamics (CFD) modelling of UV disinfection in a closed-conduit reactor. Chem. Eng. Sci. 2011, 66, 4983–4990. [Google Scholar] [CrossRef]
- Zitouni, N.; Andoulsi, R.; Selami, A.; Mami, A.; Abdennasseur, H. Modelling of nonlinear pilot disinfection water system: A bond graph approach. Leonardo J. Sci. 2012, 20, 15–30. [Google Scholar]
- Li, W.; Li, M.; Bolton, J.R.; Qiang, Z. Configuration optimization of UV reactors for water disinfection with computational fluid dynamics: Feasibility of using particle minimum UV dose as a performance indicator. Chem. Eng. Sci. 2016, 306, 1–8. [Google Scholar] [CrossRef]
- Liu, D.; Wu, C.; Linden, K.; Ducoste, J. Numerical simulation of UV disinfection reactors: Evaluation of alternative turbulence models. Appl. Math. Model. 2007, 31, 1753–1769. [Google Scholar] [CrossRef]
- Valadi, J.; Siarry, P. Applications of Metaheuristics in Process Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 1–39. [Google Scholar] [CrossRef]
- Minzu, V.; Serbencu, A. Systematic Procedure for Optimal Controller Implementation Using Metaheuristic Algorithms. Intell. Autom. Soft Comput. 2020, 26, 663–677. [Google Scholar] [CrossRef]
- Abraham, A.; Jain, L.; Goldberg, R. Evolutionary Multiobjective Optimization—Theoretical Advances and Applications; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 1-85233-787-7. [Google Scholar]
- Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. Computational Intelligence—A Methodological Introduction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Talbi, E.G. Metaheuristics-From Design to Implementation; Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 978-0-470-27858-1. [Google Scholar]
- Siarry, P. Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-45403-0. [Google Scholar]
- Beheshti, Z.; Shamsuddin, S.M.; Hasan, S. Memetic binary particle swarm optimization for discrete optimization problems, ELSEVIER. Inf. Sci. 2015, 299, 58–84. [Google Scholar] [CrossRef]
- Minzu, V.; Barbu, M.; Nichita, C. A Binary Hybrid Topology Particle Swarm Optimization Algorithm for Sewer Network Discharge. In Proceedings of the 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, 14–16 October 2015; pp. 627–634. [Google Scholar]
- Kennedy, J.; Eberhard, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, USA, 27 November–1 December 1995; Volume 4, pp. 942–1948. [Google Scholar]
- Kennedy, J.; Eberhart, R.; Shi, Y. Swarm Intelligence; Morgan Kaufmann Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Hassen, A.; Mahrouk, M.; Ouzari, H.; Cherif, M.; Boudabous, A.; Damelincourt, J.J. UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device. Bioresour. Technol. 2000, 74, 141–150. [Google Scholar] [CrossRef]
- Maurice, C. L’optimisation par Essaims Particulaires-Versions Paramétriques et Adaptatives; Hermes: Lavoisier, Paris, 2005. [Google Scholar]
- Chen, C.H.; Hwang, J.C.; Yeh, S.N. Personal Best Oriented Particle Swarm Optimizer. In Particle Swarm Optimization; Lazinica, A., Ed.; IntechOpen: Rijeka, Croatia, 2009; ISBN 978-953-7619-48-0. [Google Scholar]
startA(I0, Q0, t) | |
/* y1, y2, and y are vectors with real elements */ | |
/* and are real functions */ | |
1. | ; |
2. | ; |
3. | |
4. | returnA(I0, Q0, t) |
1 | start HTPSO_UV1 |
2 | Initialization: N, n,vmax, xmin, xmax, C1min, C1max, C2min, C2max, C3min, C3max, wmin, wmax, T, NF, MINNF |
3 | Generate the initial particles’ velocities as uniformly distributed values in the interval [−vmax, vmax]n. |
4 | Generate the particles’ initial positions; |
5 | for |
6 | |
7 | BEST(i), fitness(i) ← Jfunction(Xi) |
8 | end |
9 | i0←arg max {BEST(i), i = 1,...,N}, |
10 | ; GBEST ← BEST(i0); /*Determine and GBEST */ |
11 | found ← 0 |
12 | t ← 1; |
13 | while (t <= T) & (found = 0) |
14 | Coefficients tuning: w, C1, C2, C3 |
15 | for /* move the particles swarm*/ |
16 | ← Generate_Plbest(i); /* generate “local best”*/ |
17 | for |
18 | Update the particles’ speed using Equation (20) |
19 | Speed_limitation() |
20 | |
21 | Position_ limitation () /*using xmin, xmax */ |
22 | end |
23 | fitness(i) ← Jfunction(Xi) |
24 | if fitness(i) < BEST(i) |
25 | ; BEST(i) fitness(i); NF(i) = 0; |
26 | else NF(i) = NF(i) + 1; |
27 | end |
28 | if fitness(i) < GBEST(i) |
29 | ; GBEST fitness(i) |
30 | end |
31 | if min {NF(i), i = 1,...,N} = MINNF then found ← 1; |
32 | t ← t + 1 |
33 | end /*while */ |
34 | return Pgbest |
1 | startJfunction(Xi) |
2 | /* input argument: the position of a particle */ |
3 | |
4 | |
5 | ; /*V is a global value*/ |
6 | |
7 | |
8 | ; /* are global values*/ |
9 | returnJ |
Mean (tconv) | Mean (Ncalls) | Mean (I0) | Mean (Q0) | Mean (J) | Std (tconv) | Std (Ncalls) |
---|---|---|---|---|---|---|
149.3 | 4480 | 9.92 | 0.8 | 24.803 | 4.3 | 129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MINZU, V.; RIAHI, S.; RUSU, E. Optimal Control of an Ultraviolet Water Disinfection System. Appl. Sci. 2021, 11, 2638. https://doi.org/10.3390/app11062638
MINZU V, RIAHI S, RUSU E. Optimal Control of an Ultraviolet Water Disinfection System. Applied Sciences. 2021; 11(6):2638. https://doi.org/10.3390/app11062638
Chicago/Turabian StyleMINZU, Viorel, Saïd RIAHI, and Eugen RUSU. 2021. "Optimal Control of an Ultraviolet Water Disinfection System" Applied Sciences 11, no. 6: 2638. https://doi.org/10.3390/app11062638
APA StyleMINZU, V., RIAHI, S., & RUSU, E. (2021). Optimal Control of an Ultraviolet Water Disinfection System. Applied Sciences, 11(6), 2638. https://doi.org/10.3390/app11062638