Investigation of 2D-WH/TS OCDMA Code Stability in Systems with SOA-Based Device
<p>Schematic diagram of the experimental setup with illustration of two-dimensional wavelength-hopping time-spreading (2D-WH/TS) code carriers in frequency (FD, top) and time (TD, bottom) domain, respectively. TD—time domain, FD—frequency domain, ps FMLL—picosecond fiber mode locked laser, OS—optical supercontinuum, DMUX—de-multiplexer, MUX—multiplexer, SOA—semiconductor optical amplifier, DCF—chromatic dispersion compensating fiber.</p> "> Figure 2
<p>SOA’s gain recovery time against the bias current.</p> "> Figure 3
<p>(<b>a</b>) Optical spectrum of the 2D-WH/TS OCDMA code based on four λ<sub>1</sub> to λ<sub>4</sub> multi-wavelength picosecond code carries before entering the SOA biased at ~175 mA; (<b>b</b>) after passing the SOA followed by dispersion compensated fiber link (DCF) and λ<sub>1</sub>–λ<sub>4</sub> decoder. VOA—variable optical attenuator, OFL—optical fiber lin.</p> "> Figure 4
<p>Experimental demonstration of code carriers’ wavelength redshift observed on the optical spectrum analyser: (<b>a</b>) code carriers at the input of the SOA; (<b>b</b>) effect of SOA on code carrier <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> at an SOA current of 7 mA/6dB gain, 80 mA/12 dB gain, and 250 mA/24 dB gain, respectively; (<b>c</b>) similarly for <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> </mrow> </semantics> </math>; (<b>d</b>) for <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>3</mn> </msub> </mrow> </semantics> </math>; (<b>e</b>) for <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>4</mn> </msub> </mrow> </semantics> </math>; (<b>f</b>) illustration of redshift on all four wavelength code carriers for an SOA current of 250 mA/24 dB gain.</p> "> Figure 5
<p>The measured amount of code carriers’ wavelength redshift as a function of the SOA bias current.</p> "> Figure 6
<p>Wavelength red shift for the SOA biased at 250 mA. The dashed line is simulations and the dots are measured values for <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1550.12</mn> <mtext> </mtext> <mi>nm</mi> <mo>,</mo> <mtext> </mtext> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1550.92</mn> <mtext> </mtext> <mi>nm</mi> <mo>,</mo> <mtext> </mtext> <msub> <mi>λ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1551.72</mn> <mtext> </mtext> <mi>nm</mi> <mo>,</mo> <mrow> <mtext> </mtext> <mi>and</mi> </mrow> <mtext> </mtext> <msub> <mi>λ</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>1552.52</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Impact of SOA on 2D-WH/TS code based on four-wavelength code carriers as recorded by an optical spectrum analyser: (<b>a</b>) without and (<b>b</b>) with the SOA present in the chromatic-dispersion (CD) compensated transmission link.</p> "> Figure 8
<p>Probability of error as a function of K simultaneous users for a (4, 53)/(3, 53) and (8, 53)/(7, 53) 2D-WH/TS OCDMA system without/with the deployment of an SOA, respectively, the latter causing a one channel code carriers’ redshift.</p> ">
Abstract
:1. Introduction
2. Impact of SOA-Based Devices Deployed in Fiber Link on Multi-Wavelength Picosecond Code Carriers
2.1. Description of Experimental Setup
2.2. Investigation of 2D-WH/TS OCDMA Code Carriers’ Distortion under Different SOA Driving Conditions
3. Impact of SOA High Bias Current/Gain on 2D-WH/TS OCDMA Prime Code Fidelity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, G.-C.; Kwong, W.C. Prime Codes with Applications to CDMA Optical and Wireless Networks; Artech House: Norwood, MA, USA, 2002. [Google Scholar]
- Yadav, R. Design and performance analysis of 1D, 2D and 3D prime sequence code family for optical CDMA network. J. Opt. 2016, 45, 343–356. [Google Scholar] [CrossRef]
- Kwong, W.C.; Yang, G.-C. Optical Coding Theory with Prime; CRC Press: New York, NY, USA, 2013. [Google Scholar]
- Wonfor, A.; Wang, H.; Penty, R.V.; White, I.H. Large port count high-speed optical switch fabric for use within datacentres. J. Opt. Commun. Netw. 2011, 3, A32–A39. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.; Kaler, R.S. Performance evaluation of EDFA, RAMAN and SOA optical amplifier for WDM systems. Opt. ELSEVIER 2013, 124, 95–101. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Glesk, I. Management of OCDMA Auto-Correlation Width by Chirp Manipulation Using SOA. IEEE Photonics Technol. Lett. 2018, 30, 785–788. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.; Wang, F.; Hong, W.; Huang, D. Experimental study of SOA-based NRZ-to-PRZ conversion and distortion elimination of amplified NRZ signal using spectral filtering. Opt. Commun. 2008, 281, 5618–5624. [Google Scholar] [CrossRef]
- Stabile, R.; Albores-Meija, A.; Rohit, A.; Williams, K.A. Integrated optical switch matrices for packet data networks. Microsyst. Nanoeng. 2016, 2, 15042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glesk, I.; Sokoloff, J.P.; Prucnal, P.R. Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s. Electron. Lett. 1994, 30, 339–341. [Google Scholar] [CrossRef]
- Xia, M.; Ghafouri-Shiraz, H.; Hou, L.; Kelly, A.E. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current. Appl. Opt. 2017, 56, 1079–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, G.P. Fiber-Optic Communication Systems, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Baveja, P.P.; Maywar, D.N.; Kaplan, A.M.; Agrawal, G.P. Self- Phase modulation in semiconductor optical amplifiers: Impact of amplified spontaneous emission. IEEE J. Quantum Electron. 2010, 46, 1396–1403. [Google Scholar] [CrossRef]
- McCoy, A.D.; Ibsen, M.; Horak, P.; Thomsen, B.C.; Richardson, D.J. Feasibility study of SOA-base noise suppression for spectral amplitude coded OCDMA. J. Lightwave Technol. 2007, 25, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lee, J.H.; Lee, S.B. Tunable photonic microwave notch filter using SOA-based single-longitudinal mode dual-wavelength laser. Opt. Express 2009, 17, 13216–13221. [Google Scholar] [CrossRef] [PubMed]
- OPA-20-N-C-FA, 1550 nm Nonlinear SOA From Kamelian. Available online: http://www.kamelian.com/data/opa_15_ds.pdf (accessed on 15 April 2009).
- Ummy, M.A.; Bikorimana, S.; Madamopoulos, N.; Dorsinville, R. Beam Combining of SOA-Based Bidirectional Tunable Fiber Nested Ring Lasers With Continuous Tunability Over the C-band at Room Temperature. J. Lightwave Technol. 2016, 34, 3703–3710. [Google Scholar] [CrossRef]
- Thorlabs. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3901 (accessed on 1 May 2020).
- Liu, Y.; Tangdiongga, E.; Li, Z.; Zhang, S.; de Waardt, H.; Khoe, G.D.; Dorren, H.J. Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter. J. Lightwave Technol. 2006, 24, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Zoiros, K.E.; O’Riordan, C.; Connelly, M.J. Semiconductor optical amplifier pattern effect suppression using Lyot filter. Electron. Lett. 2009, 45, 1187–1189. [Google Scholar] [CrossRef] [Green Version]
- Olsson, N.A.; Agrawal, G.P. Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5 pm optical amplifiers. Appl. Phys. Lett. 1989, 55, 13–15. [Google Scholar] [CrossRef]
- Agrawal, G.P.; Olsson, N.A. Self-phase modulation and spectral broadening of optical pulses I semiconductor laser amplifiers. IEEE J. Quantum Electron. 1989, QE-25, 2297–2306. [Google Scholar] [CrossRef]
- Connelly, M.J. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum Electron. 2001, 37, 439–447. [Google Scholar] [CrossRef]
- De Melo, A.M.; Petermann, K. On the amplified emission noise modelling of semiconductor optical amplifiers. Opt. Commun. 2008, 281, 4598–4605. [Google Scholar] [CrossRef]
- Deguet, C. Homogeneous buried ridge stripe semiconductor optical amplifier with near polarization independence. In Proceedings of the 25th European Conference on Optical Communication, Nice, France, 26–30 September 1999; pp. 46–47. [Google Scholar]
Parameter | Description 2 | Value |
---|---|---|
Bias current (mA) | 250 | |
Length (mm) | 1 [14] | |
Width (µm) | 0.4 [22] | |
Height (µm) | 0.4 [22] | |
Loss (m−1) | 3000 [23] | |
Differential gain (m2) | 3 × 10−20 [24] | |
i | Initial carrier density (m−3) | 3.65 × 1024 [23] |
Γ | Optical confinement factor | 0.4 [24] |
Carrier density at transparency (m3) | 1024 [24] | |
Linewidth enhancement factor | 4 [24] | |
Recombination coefficient (s−1) | 108 [23] | |
Recombination coefficient (m3 s−1) | 1.5 × 10−16 [23] | |
Recombination coefficient (m6 s−1) | 10−40 [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuhelala, M.; Korai, U.A.; Sanches, A.L.; Kwong, W.C.; Glesk, I. Investigation of 2D-WH/TS OCDMA Code Stability in Systems with SOA-Based Device. Appl. Sci. 2020, 10, 7943. https://doi.org/10.3390/app10217943
Abuhelala M, Korai UA, Sanches AL, Kwong WC, Glesk I. Investigation of 2D-WH/TS OCDMA Code Stability in Systems with SOA-Based Device. Applied Sciences. 2020; 10(21):7943. https://doi.org/10.3390/app10217943
Chicago/Turabian StyleAbuhelala, Mohamed, Umair A. Korai, Anderson L. Sanches, Wing C. Kwong, and Ivan Glesk. 2020. "Investigation of 2D-WH/TS OCDMA Code Stability in Systems with SOA-Based Device" Applied Sciences 10, no. 21: 7943. https://doi.org/10.3390/app10217943
APA StyleAbuhelala, M., Korai, U. A., Sanches, A. L., Kwong, W. C., & Glesk, I. (2020). Investigation of 2D-WH/TS OCDMA Code Stability in Systems with SOA-Based Device. Applied Sciences, 10(21), 7943. https://doi.org/10.3390/app10217943