A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI
<p>Example MR images from Patient <math display="inline"><semantics> <mrow> <mo>#</mo> <mn>005</mn> </mrow> </semantics></math>: (<b>a</b>) T2w, (<b>b</b>) PDw, and (<b>c</b>) ADC sequences. The PCa lesions are highlighted (with red crosses) in the coordinates <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>95</mn> <mo>,</mo> <mn>92</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>103</mn> <mo>,</mo> <mn>113</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>78</mn> <mo>,</mo> <mn>109</mn> <mo>)</mo> </mrow> </semantics></math>, with slice index <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>, after the registration against the T2w MRI sequence. The three lesions are separately displayed on the T2w slice in (<b>d</b>–<b>f</b>). In particular, these RoIs are centered and cropped on each lesion.</p> "> Figure 2
<p>The proposed CRF-XmasNet architecture integrating CRFs [<a href="#B31-applsci-10-00338" class="html-bibr">31</a>] into the baseline XmasNet [<a href="#B33-applsci-10-00338" class="html-bibr">33</a>] as an end-to-end approach. This hybrid network, allowing for joint training via backpropagation, analyzes three non-contrast-enhanced mpMRI sequences (namely, T2w, T1w and ADC) and yields a prediction probability for each CS PCa case.More specifically, the whole architecture can be divided into three components: (<span class="html-italic">i</span>) downsampling, (<span class="html-italic">ii</span>) upsampling, and (<span class="html-italic">iii</span>) classification. In order to effectively merge the information from multiple layers into the CRF, three skip connections were added. The legend box shows the symbol notation and color semantics. The digits above the layers outputs represent the depth.</p> "> Figure 3
<p>Boxplots of the AUROC obtained on the test set by the different architectures over 30 independent runs. Each boxplot shows a solid black line and a red triangle marker that denote the median and mean values, respectively.</p> "> Figure 4
<p>Bar graph with 10 groups that represent the occurrences of the test AUROC regarding XmasNet, CRF-XmasNet, and VGG16 architectures observed over 30 runs. The blue, light gray, and dark gray bars refer to the CRF-XmasNet, XmasNet and VGG16 architectures, respectively. The star markers of the same color lie on the average ROC values for the three architectures.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
Research Questions.
- Can the CRF-CNN be integrated into a state-of-the-art CNN as an end-to-end approach?
- Can the smoothing effect of CRFs increase the classification performance of CNNs in PCa detection?
Contributions.
- The proposed CRF-XmasNet architecture generally outperforms the baseline architecture XmasNet [33] in terms of PCa classification on mpMRI.
- The proposed end-to-end integration of CRF-RNN provides better generalization ability when compared to a two-phase implementation, using a CRF as a postprocessing step.
2. Theoretical Background
2.1. Convolutional Neural Networks
2.2. Conditional Random Fields as Recurrent Neural Networks
3. Materials and Methods
3.1. Experimental Dataset: The PROSTATEx17 Dataset
3.2. The Proposed End-to-End Solution Integrating CRF-RNN with CNNs for PCa Detection
3.2.1. Data Preprocessing
3.2.2. The CRF-XmasNet Architecture
- three skip connections and two convolutional layers were added, as shown in Figure 2;
- dropout [64] was introduced between the FC layers and the sigmoid (with a dropout rate of );
- the number of parameters in the first and second FC layers was changed, from 1024 to 128 and 1024 to 256, respectively, because of performance constraints of the available computing power.
3.2.3. Experimental Setup and Implementation Details
4. Results
- in 8 out of 30 runs, the test AUROC of the CRF-XmasNet was higher than the best obtained with XmasNet;
- the top 6 best performing runs, considering CRF-XmasNet and XmasNet, were achieved by CRF- XmasNet;
- 19 of the 30 CRF-XmasNet runs obtained a performance higher than their average value;
- 22 of the CRF-XmasNet runs outperformed the XmasNet average value.
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, H.; Mao, S.; Khushi, M. Predicting high-risk prostate cancer using machine learning methods. Data 2019, 4, 129. [Google Scholar] [CrossRef] [Green Version]
- Turkbey, B.; Brown, A.M.; Sankineni, S.; Wood, B.J.; Pinto, P.A.; Choyke, P.L. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J. Clin. 2016, 66, 326–336. [Google Scholar] [CrossRef]
- Yadav, S.S.; Stockert, J.A.; Hackert, V.; Yadav, K.K.; Tewari, A.K. Intratumor heterogeneity in prostate cancer. Urol. Oncol. 2018, 36, 349–360. [Google Scholar] [CrossRef]
- Greer, M.D.; Lay, N.; Shih, J.H.; Barrett, T.; Bittencourt, L.K.; Borofsky, S.; Kabakus, I.; Law, Y.M.; Marko, J.; Shebel, H.; et al. Computer-aided diagnosis prior to conventional interpretation of prostate mpMRI: An international multi-reader study. Eur. Radiol. 2018, 28, 4407–4417. [Google Scholar] [CrossRef]
- Stoyanova, R.; Takhar, M.; Tschudi, Y.; Ford, J.C.; Solórzano, G.; Erho, N.; Balagurunathan, Y.; Punnen, S.; Davicioni, E.; Gillies, R.J.; et al. Prostate Cancer Radiomics Promise Radiogenomics. Transl. Cancer Res. 2016, 5, 432. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Kim, J.K.; Kim, N.; Kim, K.W.; Choi, E.K.; Cho, K.S. Functional MR imaging of prostate cancer. Radiographics 2007, 27, 63–75. [Google Scholar] [CrossRef]
- Hegde, J.V.; Mulkern, R.V.; Panych, L.P.; Fennessy, F.M.; Fedorov, A.; Maier, S.E.; Tempany, C.M. Multiparametric MRI of prostate cancer: An update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J. Magn. Reson. Imaging 2013, 37, 1035–1054. [Google Scholar] [CrossRef] [Green Version]
- Lemaître, G.; Martí, R.; Freixenet, J.; Vilanova, J.C.; Walker, P.M.; Meriaudeau, F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput. Biol. Med. 2015, 60, 8–31. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.A.; Van Der Kwast, T.H.; Tanguay, J.; Evans, A.J.; Hashmi, A.T.; Lockwood, G.; Trachtenberg, J. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. Am. J. Roentgenol. 2007, 189, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Fabijańska, A. A novel approach for quantification of time–intensity curves in a DCE-MRI image series with an application to prostate cancer. Comput. Biol. Med. 2016, 73, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Orczyk, C.; Villers, A.; Rusinek, H.; Lepennec, V.; Bazille, C.; Giganti, F.; Mikheev, A.; Bernaudin, M.; Emberton, M.; Fohlen, A.; et al. Prostate cancer heterogeneity: Texture analysis score based on multiple magnetic resonance imaging sequences for detection, stratification and selection of lesions at time of biopsy. BJU Int. 2019, 124, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Rundo, L.; Militello, C.; Russo, G.; Garufi, A.; Vitabile, S.; Gilardi, M.C.; Mauri, G. Automated prostate gland segmentation based on an unsupervised fuzzy c-means clustering technique using multispectral T1w and T2w MR imaging. Information 2017, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Rundo, L.; Han, C.; Nagano, Y.; Zhang, J.; Hataya, R.; Militello, C.; Tangherloni, A.; Nobile, M.S.; Ferretti, C.; Besozzi, D.; et al. USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 2019, 365, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Wibmer, A.; Hricak, H.; Gondo, T.; Matsumoto, K.; Veeraraghavan, H.; Fehr, D.; Zheng, J.; Goldman, D.; Moskowitz, C.; Fine, S.W.; et al. Haralick Texture Analysis of prostate MRI: Utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason Scores. Eur. Radiol. 2015, 25, 2840–2850. [Google Scholar] [CrossRef]
- Park, J.; Rho, M.J.; Park, Y.H.; Jung, C.K.; Chong, Y.; Kim, C.S.; Go, H.; Jeon, S.S.; Kang, M.; Lee, H.J.; et al. PROMISE CLIP Project: A Retrospective, Multicenter Study for Prostate Cancer that Integrates Clinical, Imaging and Pathology Data. Appl. Sci. 2019, 9, 2982. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Debats, O.; Barentsz, J.; Karssemeijer, N.; Huisman, H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 2014, 33, 1083–1092. [Google Scholar] [CrossRef]
- Villeirs, G.M.; De Meerleer, G.O. Magnetic resonance imaging (MRI) anatomy of the prostate and application of MRI in radiotherapy planning. Eur. J. Radiol. 2007, 63, 361–368. [Google Scholar] [CrossRef]
- Quon, J.S.; Moosavi, B.; Khanna, M.; Flood, T.A.; Lim, C.S.; Schieda, N. False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance. Insights Imaging 2015, 6, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Mangrum, W.; Christianson, K.; Duncan, S.; Hoang, P.; Song, A.; Merkle, E. Duke Review of MRI Principles, 1st ed.; Case Review Series; Elsevier: Maryland Heights, MI, USA, 2012. [Google Scholar]
- Tofts, P.S. T1-weighted DCE imaging concepts: Modelling, acquisition and analysis. Signal 2010, 500, 400. [Google Scholar]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Engin. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep Learn. Health Informatics. IEEE J. Biomed. Health Inform. 2017, 21, 4–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, I.; Silva, S.; Fonseca, C.M. Semantic Learning Machine: A Feedforward Neural Network Construction Algorithm Inspired by Geometric Semantic Genetic Programming. In Progress in Artificial Intelligence; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9273, pp. 280–285. [Google Scholar] [CrossRef]
- Gonçalves, I. An Exploration of Generalization and Overfitting in Genetic Programming: Standard and Geometric Semantic Approaches. Ph.D. Thesis, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal, 2017. [Google Scholar]
- Jagusch, J.B.; Gonçalves, I.; Castelli, M. Neuroevolution under Unimodal Error Landscapes: An Exploration of the Semantic Learning Machine Algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO ’18), Kyoto, Japan, 15–19 July 2018; ACM: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Lapa, P.; Gonçalves, I.; Rundo, L.; Castelli, M. Semantic learning machine improves the CNN-based detection of prostate cancer in non-contrast-enhanced MRI. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion, Prague, Czech Republic, 13–17 July 2019; ACM: Hoboken, NJ, USA, 2019; pp. 1837–1845. [Google Scholar] [CrossRef]
- Lapa, P.; Gonçalves, I.; Rundo, L.; Castelli, M. Enhancing classification performance of convolutional neural networks for prostate cancer detection on magnetic resonance images: A study with the semantic learning machine. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO ’19), Prague, Czech Republic, 13–17 July 2019; ACM: New York, NY, USA, 2019; pp. 381–382. [Google Scholar] [CrossRef]
- Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Huang, C.; Torr, P.H.S. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015; pp. 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Junker, D.; Steinkohl, F.; Fritz, V.; Bektic, J.; Tokas, T.; Aigner, F.; Herrmann, T.R.; Rieger, M.; Nagele, U. Comparison of multiparametric and biparametric MRI of the prostate: Are gadolinium-based contrast agents needed for routine examinations? World J. Urol. 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zheng, H.; Feng, Y.; Li, W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. Proc. SPIE 2017, 10134, 1013428. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 16 December 2019).
- Wang, X.; Yang, W.; Weinreb, J.; Han, J.; Li, Q.; Kong, X.; Yan, Y.; Ke, Z.; Luo, B.; Liu, T.; et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning. Sci. Rep. 2017, 7, 15415. [Google Scholar] [CrossRef] [Green Version]
- Ampeliotis, D.; Antonakoudi, A.; Berberidis, K.; Psarakis, E.; Kounoudes, A. A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis. In Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP), St Julians, Malta, 12–14 March 2008; pp. 1372–1377. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Gao, Y.; Shen, D. Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 2016, 35, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Fehr, D.; Veeraraghavan, H.; Wibmer, A.; Gondo, T.; Matsumoto, K.; Vargas, H.A.; Sala, E.; Hricak, H.; Deasy, J.O. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA 2015, 112, E6265–E6273. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S.; Park, H.G.; Kim, C.H.; Prakash, D.; Madusanka, N.; So, J.H.; Cho, N.H.; Choi, H.K. Quantitative analysis of benign and malignant tumors in histopathology: Predicting prostate cancer grading using SVM. Appl. Sci. 2019, 9, 2969. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.; Park, S.; Jung, K.H.; Hwang, S. Prostate cancer segmentation using manifold mixup U-Net. In Proceedings of the Medical Imaging with Deep Learning (MIDL), London, UK, 8–10 July 2019. [Google Scholar]
- Ing, N.; Ma, Z.; Li, J.; Salemi, H.; Arnold, C.; Knudsen, B.; Gertych, A. Semantic segmentation for prostate cancer grading by convolutional neural networks. Medical Imaging 2018: Digital Pathology. Proc. SPIE 2018, 10581, 105811B. [Google Scholar] [CrossRef]
- Armato, S.G.; Huisman, H.; Druk, K.; Hadjiiski, L.; Kirby, J.S.; Petrick, N.; Redmond, G.; Giger, M.L.; Cha, K.; Mamonov, A.; et al. PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. J. Med. Imaging 2018, 5, 044501. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Arnab, A.; Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Larsson, M.; Kirillov, A.; Savchynskyy, B.; Rother, C.; Kahl, F.; Torr, P.H. Conditional random fields meet deep neural networks for semantic segmentation: Combining probabilistic graphical models with deep learning for structured prediction. IEEE Signal Process. Mag. 2018, 35, 37–52. [Google Scholar] [CrossRef]
- Artan, Y.; Langer, D.L.; Haider, M.A.; Van der Kwast, T.H.; Evans, A.J.; Wernick, M.N.; Yetik, I.S. Prostate cancer segmentation with multispectral MRI using cost-sensitive conditional random fields. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI): From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; pp. 278–281. [Google Scholar] [CrossRef]
- Kervadec, H.; Dolz, J.; Tang, M.; Granger, E.; Boykov, Y.; Ayed, I.B. Constrained-CNN losses for weakly supervised segmentation. Med. Image Anal. 2019, 54, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.G.; Panagiotaki, E.; Alexander, D.C. Gleason Grading of Prostate Tumours with Max-Margin Conditional Random Fields. In Machine Learning in Medical Imaging (MLMI), Proceedings of the 5th International Workshop, MLMI 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, 14 September 2014; Wu, G., Zhang, D., Zhou, L., Eds.; LNCS; Springer International Publishing: Cham, Switzerland, 2014; Volume 8679, pp. 85–92. [Google Scholar] [CrossRef] [Green Version]
- Monaco, J.P.; Tomaszewski, J.E.; Feldman, M.D.; Hagemann, I.; Moradi, M.; Mousavi, P.; Boag, A.; Davidson, C.; Abolmaesumi, P.; Madabhushi, A. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med. Image Anal. 2010, 14, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with Gaussian edge potentials. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Granada, Spain, 12–14 December 2011; pp. 109–117. [Google Scholar]
- Sutton, C.; McCallum, A. An Introduction to Conditional Random Fields. Found. Trends® Mach. Learn. 2012, 4, 267–373. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Shrestha, S.; Vanneschi, L. Improved fully convolutional network with conditional random fields for building extraction. Remote Sens. 2018, 10, 1135. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Arch. (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundo, L.; Militello, C.; Vitabile, S.; Casarino, C.; Russo, G.; Midiri, M.; Gilardi, M.C. Combining split-and-merge and multi-seed region growing algorithms for uterine fibroid segmentation in MRgFUS treatments. Med. Biol. Eng. Comput. 2016, 54, 1071–1084. [Google Scholar] [CrossRef] [PubMed]
- Gulani, V.; Calamante, F.; Shellock, F.G.; Kanal, E.; Reeder, S.B.; International Society for Magnetic Resonance in Medicine. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570. [Google Scholar] [CrossRef]
- Barrett, T.; Lawrence, E.M.; Priest, A.N.; Warren, A.Y.; Gnanapragasam, V.J.; Gallagher, F.A.; Sala, E. Repeatability of diffusion-weighted MRI of the prostate using whole lesion ADC values, skew and histogram analysis. Eur. J. Radiol. 2019, 110, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Sherrer, R.L.; Glaser, Z.A.; Gordetsky, J.B.; Nix, J.W.; Porter, K.K.; Rais-Bahrami, S. Comparison of biparametric MRI to full multiparametric MRI for detection of clinically significant prostate cancer. Prostate Cancer Prostatic Dis. 2019, 22, 331. [Google Scholar] [CrossRef]
- Rundo, L.; Tangherloni, A.; Militello, C.; Gilardi, M.C.; Mauri, G. Multimodal medical image registration using particle swarm optimization: A review. In Proceedings of the Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 1997, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Garyfallidis, E.; Brett, M.; Amirbekian, B.; Rokem, A.; Van Der Walt, S.; Descoteaux, M.; Nimmo-Smith, I. DIPy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Chollet, F. Keras. Available online: https://keras.io (accessed on 16 December 2019).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 16 December 2019).
- Smith, S.L.; Kindermans, P.J.; Ying, C.; Le, Q.V. Don’t decay the learning rate, increase the batch size. arXiv 2018, arXiv:1711.00489. [Google Scholar]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv 2017, arXiv:1611.03530. [Google Scholar]
- Monteiro, M.; Figueiredo, M.A.T.; Oliveira, A.L. Conditional random fields as recurrent neural networks for 3D medical imaging segmentation. arXiv 2018, arXiv:1807.07464. [Google Scholar]
- Cheplygina, V.; de Bruijne, M.; Pluim, J.P. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 2019, 54, 280–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.; Rundo, L.; Araki, R.; Nagano, Y.; Furukawa, Y.; Mauri, G.; Nakayama, H.; Hayashi, H. Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection. IEEE Access 2019, 7, 156966–156977. [Google Scholar] [CrossRef]
- Han, C.; Kitamura, Y.; Kudo, A.; Ichinose, A.; Rundo, L.; Furukawa, Y.; Umemoto, K.; Li, Y.; Nakayama, H. Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. In Proceedings of the International Conference on 3D Vision (3DV), Québec City, QC, Canada, 16–19 September 2019; pp. 729–737. [Google Scholar] [CrossRef] [Green Version]
- Janke, J.; Castelli, M.; Popovič, A. Analysis of the proficiency of fully connected neural networks in the process of classifying digital images benchmark of different classification algorithms on high-level image features from convolutional layers. Expert Syst. Appl. 2019. [Google Scholar] [CrossRef] [Green Version]
- Brindle, K. New approaches for imaging tumour responses to treatment. Nat. Rev. Cancer 2008, 8, 94. [Google Scholar] [CrossRef]
- Lindenberg, L.; Choyke, P.; Dahut, W. Prostate cancer imaging with novel PET tracers. Curr. Urol. Rep. 2016, 17, 18. [Google Scholar] [CrossRef]
- Barrett, T.; Riemer, F.; McLean, M.A.; Kaggie, J.D.; Robb, F.; Warren, A.Y.; Graves, M.J.; Gallagher, F.A. Molecular imaging of the prostate: Comparing total sodium concentration quantification in prostate cancer and normal tissue using dedicated 13C and 23Na endorectal coils. J. Magn. Reson. Imaging 2019. [Google Scholar] [CrossRef]
- Granlund, K.L.; Tee, S.S.; Vargas, H.A.; Lyashchenko, S.K.; Reznik, E.; Fine, S.; Laudone, V.; Eastham, J.A.; Touijer, K.A.; Reuter, V.E.; et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by Monocarboxylate Transporter 1. Cell Metab. 2019. [Google Scholar] [CrossRef]
- Rundo, L.; Stefano, A.; Militello, C.; Russo, G.; Sabini, M.G.; D’Arrigo, C.; Marletta, F.; Ippolito, M.; Mauri, G.; Vitabile, S.; et al. A fully automatic approach for multimodal PET and MR image segmentation in Gamma Knife treatment planning. Comput. Methods Programs Biomed. 2017, 144, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Veličković, P.; Wang, D.; Lane, N.D.; Liò, P. X-CNN: Cross-modal convolutional neural networks for sparse datasets. In Proceedings of the Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
Layer | Conv1 | Conv2 | MaxPool1 | Conv3 | Conv4 | MaxPool2 |
---|---|---|---|---|---|---|
Patch size/stride | /1 | /1 | /2 | /1 | /1 | /2 |
Output size |
Layer | 1d_Conv1 | 1d_Conv2 | 1d_Conv3 | Deconv1 | Deconv2 |
---|---|---|---|---|---|
Input Layer | Conv2 | Conv4 | MaxPool2 | Out_1d_Conv2 | Out_1d_Conv3 |
Patch size/stride | /1 | /1 | /1 | /4 | |
Output size |
Layer | FC1 | FC2 | FC3 |
---|---|---|---|
Output size |
Parameter | Values |
---|---|
Optimizer | {SGD, Adam, RMSPROP} |
Learning rate () | |
Momentum (m) | |
Decay (d) | |
Nesterov (n) | |
Amsgrad (a) | |
CRF | |
CRF | |
CRF |
Architecture | Optimizer | m | d | n | a | ||||
---|---|---|---|---|---|---|---|---|---|
XmasNet | RMSPROP | NA | 0 | NA | NA | NA | NA | NA | |
AlexNet | RMSPROP | NA | 0 | NA | NA | NA | NA | NA | |
VGG16 | Adam | 0.999 | 0 | 0 | 0 | NA | NA | NA | |
ResNet | Adam | 0.99 | 0 | 0 | 0 | NA | NA | NA | |
XmasNet-CRFpp | RMSPROP | NA | 0 | NA | NA | 1 | 1 | 0.5 | |
CRF-XmasNet | RMSPROP | 0.99 | 0.1 | NA | NA | 1 | 1 | 0.5 | |
CRF-AlexNet | RMSPROP | 0.99 | 0.01 | NA | NA | 2 | 3 | 2 | |
CRF-VGG16 | RMSPROP | 0 | 0 | NA | NA | 2 | 2 | 3 |
Architecture | Loss Train | Loss Test | AUROC Train | AUROC Test |
---|---|---|---|---|
XmasNet | 0.500 ± (0.023) | 0.540 ± (0.043) | 0.622 ± (0.054) | 0.517 ± (0.101) |
AlexNet | 0.096 ± (0.032) | 0.537 ± (0.023) | 1.000 ± (0.000) | 0.588 ± (0.051) |
VGG16 | 0.474 ± (0.021) | 0.481 ± (0.018) | 0.729 ± (0.047) | 0.707 ± (0.050) |
ResNet | 0.496 ± (0.020) | 0.528 ± (0.023) | 0.658 ± (0.065) | 0.520 ± (0.100) |
XmasNet-CRFpp | 0.433 ± (0.082) | 0.730 ± (0.242) | 0.796 ± (0.069) | 0.388 ± (0.303) |
CRF-XmasNet | 0.507 ± (0.077) | 0.566 ± (0.097) | 0.695 ± (0.126) | 0.573 ± (0.191) |
CRF-AlexNet | 1.150 ± (0.366) | 1.260 ± (0.392) | 0.536 ± (0.191) | 0.598 ± (0.169) |
CRF-VGG16 | 0.644 ± (0.267) | 0.732 ± (0.206) | 0.796 ± (0.209) | 0.615 ± (0.147) |
ResNet | CRF-XmasNet | CRF-AlexNet | CRF-VGG16 | XmasNet-CRFpp | XmasNet | AlexNet | |
---|---|---|---|---|---|---|---|
CRF-XmasNet | |||||||
CRF-AlexNet | |||||||
CRF-VGG16 | |||||||
XmasNet-CRFpp | |||||||
XmasNet | |||||||
AlexNet | |||||||
VGG16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapa, P.; Castelli, M.; Gonçalves, I.; Sala, E.; Rundo, L. A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI. Appl. Sci. 2020, 10, 338. https://doi.org/10.3390/app10010338
Lapa P, Castelli M, Gonçalves I, Sala E, Rundo L. A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI. Applied Sciences. 2020; 10(1):338. https://doi.org/10.3390/app10010338
Chicago/Turabian StyleLapa, Paulo, Mauro Castelli, Ivo Gonçalves, Evis Sala, and Leonardo Rundo. 2020. "A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI" Applied Sciences 10, no. 1: 338. https://doi.org/10.3390/app10010338
APA StyleLapa, P., Castelli, M., Gonçalves, I., Sala, E., & Rundo, L. (2020). A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI. Applied Sciences, 10(1), 338. https://doi.org/10.3390/app10010338