Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM
"> Figure 1
<p>Microscopic biopsy images stained with Hematoxylin and Eosin (H&E) compound; (<b>a</b>–<b>d</b>) whole slide tissue images of Grade 3, Grade 4, Grade 5, and Benign; and (<b>e</b>–<b>h</b>) the regions of interest (ROIs) taken from whole-slide images (<b>a</b>), (<b>b</b>), (<b>c</b>), (<b>d</b>) respectively. The dark blue is the cell nucleus, pink is the stroma, and white is the lumen.</p> "> Figure 2
<p>Proposed pipeline model for predicting cancer grading from microscopic biopsy images.</p> "> Figure 3
<p>Image segmentation using K-means algorithm: (<b>a</b>) original tissue image; (<b>b</b>) lumen segmentation; and (<b>c</b>) nucleus segmentation.</p> "> Figure 4
<p>Overview of watershed segmentation: (<b>a</b>) original segmented image of nucleus tissue components; (<b>b</b>) noise-removed binary image; (<b>c</b>) Euclidean distance transform on binary image; and (<b>d</b>) result of the watershed algorithm and labelled nuclei using color mapping.</p> "> Figure 5
<p>Improvement of over-segmentation: (<b>a</b>) over-segmented objects; (<b>b</b>) markers applied to the inverse results of the distance transform; (<b>c</b>) applied watershed algorithm on images (b); and (<b>d</b>) the resulting image after removing the noise and watershed line, and the centroid of the nucleus has been labelled.</p> "> Figure 6
<p>Proposed binary method for support vector machine (SVM) classification. Three different classifiers have been used here for binary classification and each group is classified independently and separately.</p> "> Figure 7
<p>Comparison graph of support vector machine (SVM) classification accuracy among three binary divisions. The classification accuracies of the three groups are very close to each other, and the highest accuracy obtained was 92.50%, for grade 4 vs. grade 5. Matthew’s correlation coefficient (MCC) indicates the quality of binary classification among the three classification groups.</p> "> Figure 8
<p>Comparison between support vector machine (SVM) classifiers among the four Gleason grade groups. In the case of one-shot classification, the classifier could not accurately distinguish among the four groups. In the case of binary classification, the classifier was almost always accurate, with little variation.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Tissue Image Dataset
3.2. ROI Segmentation
- Data assignment step:
- Centroid update step:
- Specify , number of cluster to be generated.
- Select random points as cluster centers.
- Assign each instance to its closest cluster center using the Euclidean distance.
- Calculate the centroid mean for each cluster and use it as a new cluster center.
- Reassign all the instances to the closest cluster center.
- Iterate until there is no change in the cluster center.
3.3. Watershed Segmentation
Algorithm for Watershed Segmentation
- Converted 24-bit/pixel RGB color image to binary using adaptive thresholding method.
- Removed the noise from the binary image.
- Applied the Euclidean distance transform to a binary image to generate a distance map.
- Used a Gaussian filter to smooth the distance map.
- Applied inverse distance transform after smoothing the distance map.
- Identified local minima using markers on the inverse distance transform image.
- Finally, applied watershed segmentation based on local minima points, iterating until all overlapping objects were segmented.
3.4. Feature Extraction
3.5. Support Vector Machine (SVM) Classification
4. Results and Discussion
- Accuracy is measure of the proportion of correctly classified samples.
- Sensitivity is a measure of the proportion of positive correctly classified samples.
- Specificity is a measure of the proportion of negative correctly classified samples.
- Matthew’s correlation coefficient (MCC) is the eminence of binary class classification. It is a correlation coefficient between target and predictions.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Ethical Approval
Conflicts of Interest
References
- Braunhut, B.L.; Punnen, S.; Kryvenko, O.N. Updates on Grading and Staging of Prostate Cancer. Surg. Pathol. Clin. 2018, 11, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.S.; Shim, M.; Cho, J.S.; Bang, W.; Kim, S.I.; Cho, S.Y.; Rha, K.H.; Hong, S.J.; Koo, K.C.; Lee, K.S.; et al. Pathological Characteristics of Prostate Cancer in Men Aged < 50 Years Treated with Radical Prostatectomy: A Multi-Centre Study in Korea. J. Korean Med. Sci. 2019, 34, 1–10. [Google Scholar]
- Gleason, D.F. Histologic grading of prostate cancer: A perspective. Hum. Pathol. 1992, 23, 273–279. [Google Scholar] [CrossRef]
- Tabesh, A.; Teverovskiy, M.; Pang, H.Y.; Kumar, V.P.; Verbel, D.; Kotsianti, A.; Saidi, O. Multifeature Prostate Cancer Diagnosis and Gleason Grading of Histological Images. IEEE Trans. Med. Imaging 2007, 26, 1366–1378. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.; Feldman, M.D.; Shih, N.; Tomaszewski, J.; Madabhushi, A. Cascaded Discrimination of Normal, Abnormal, and Confounder Classes in Histopathology: Gleason Grading of Prostate Cancer. BMC Bioinform. 2012, 13, 282. [Google Scholar] [CrossRef] [PubMed]
- Nir, G.; Hor, S.; Karimi, D.; Fazli, L.; Skinnider, B.F.; Tavassoli, P.; Turbin, D.; Villamil, C.F.; Wang, G.; Wilson, R.S.; et al. Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts. Med. Image Anal. 2018, 50, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.; Madabhushi, A.; Feldman, M.; Tomaszeweski, J. A Boosting Cascade for Automated Detection of Prostate Cancer from Digitized Histology. Comput. Vis.–ECCV 2012 2006, 4191, 504–511. [Google Scholar]
- Rundo, L.; Militello, C.; Russo, G.; Garufi, A.; Vitabile, S.; Gilardi, M.C.; Mauri, G. Automated Prostate Gland Segmentation Based on an Unsupervised Fuzzy C-Means Clustering Technique Using Multispectral T1w and T2w MR Imaging. Information 2017, 8, 49. [Google Scholar] [CrossRef]
- Jiao, Z.; Gao, X.; Wang, Y.; Li, J. A deep feature based framework for breast masses classification. Neurocomputing 2016, 197, 221–231. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Jiao, Z. Mammographic Mass Detection Based on Saliency with Deep Features. Int. Conf. 2016, 292–297. [Google Scholar]
- Naik, S.; Doyle, S.; Agner, S.; Madabhushi, A.; Feldman, M.; Tomaszewski, J. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 284–287. [Google Scholar]
- Albashish, D.; Sahran, S.; Abdullah, A.; Abd Shukor, N.; Md Pauzi, H.S. Lumen-Nuclei Ensemble Machine Learning System for Diagnosing Prostate Cancer in Histopathology Images. Pertanika. J. Sci. Technol. 2017, 25, 39–48. [Google Scholar]
- Nguyen, K.; Sabata, B.; Jain, A.K. Prostate cancer grading: Gland segmentation and structural features. Pattern Recognit. Lett. 2012, 33, 951–961. [Google Scholar] [CrossRef]
- Diamond, J.; Anderson, N.H.; Bartels, P.H.; Montironi, R.; Hamilton, P.W. The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 2004, 35, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Pardon, M.C.; Agostini, A.; Faas, H.; Duan, J.; Ward, W.O.C.; Easton, F.; Auer, D.; Bai, L. Novel Methods for Microglia Segmentation, Feature Extraction, and Classification. IEEE/ACM Trans. Comput. Boil. Bioinform. 2017, 14, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Subramanian, G.; Duan, J.; Gao, S.; Bai, L.; Chandramohanadas, R.; Ai, Y. A Portable Image-Based Cytometer for Rapid Malaria Detection and Quantification. PLoS ONE 2017, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Irshad, H.; Veillard, A.; Roux, L.; Racoceanu, D. Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential. IEEE Rev. Biomed. Eng. 2014, 7, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Majid, M.A.; Huneiti, Z.A.; Balachandran, W.; Balarabe, Y. Matlab as a Teaching and Learning Tool for Mathematics: A Literature Review. Int. J. Arts Sci. 2013, 6, 23–44. [Google Scholar]
- Wählby, C.; Lindblad, J.; Vondrus, M.; Bengtsson, E.; Björkesten, L.; Wä Hlby, C.; Bjö Rkesten, L. Algorithms for Cytoplasm Segmentation of Fluorescence Labelled Cells. Anal. Cell. Pathol. 2002, 24, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Choi, H.K. Grading of renal cell carcinoma by 3D morphological analysis of cell nuclei. Comput. Boil. Med. 2007, 37, 1334–1341. [Google Scholar] [CrossRef]
- Mouelhi, A.; Sayadi, M.; Fnaiech, F.; Mrad, K.; Ben Romdhane, K. Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method. Biomed. Signal. Process. Control 2013, 8, 421–436. [Google Scholar] [CrossRef]
- Shiels, C.; Adams, N.M.; Islam, S.A.; Stephens, D.A.; Freemont, P.S. Quantitative Analysis of Cell Nucleus Organisation. PLoS Comput. Boil. 2007, 3, e138. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Srivastava, R.; Srivastava, S. Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features. J. Med. Eng. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Jarkrans, T.; Bengtsson, E.; Vasko, J.; Wester, K.; Malmström, P.U.; Busch, C. Image Analysis Based Grading of Bladder Carcinoma. Comparison of Object, Texture and Graph Based Methods and Their Reproducibility. Anal. Cell. Pathol. 1997, 15, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Jiang, Y.; Yang, C.; Brown, J.B.; Antic, T.; Sethi, I.; Schmid-Tannwald, C.; Giger, M.L.; Eggener, S.E.; Oto, A. Quantitative Analysis of Multiparametric Prostate MR Images: Differentiation between Prostate Cancer and Normal Tissue and Correlation with Gleason Score—A Computer-aided Diagnosis Development Study. Radiology 2013, 267, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.; Hwang, M.; Shah, K.; Madabhushi, A.; Feldman, M.; Tomaszeweski, J. Automated Grading Of Prostate Cancer Using Architectural And Textural Image Features. In Proceedings of the 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; pp. 1284–1287. [Google Scholar]
- Loukas, C.; Kostopoulos, S.; Tanoglidi, A.; Glotsos, D.; Sfikas, C.; Cavouras, D. Breast Cancer Characterization Based on Image Classification of Tissue Sections Visualized under Low Magnification. Comput. Math. Methods Med. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Emiliozzi, P.; Maymone, S.; Paterno, A.; Scarpone, P.; Amini, M.; Proietti, G.; Cordahi, M.; Pansadoro, V. Increased Accuracy of Biopsy Gleason Score Obtained By Extended Needle Biopsy. J. Urol. 2004, 172, 2224–2226. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yang, Y.; Nishikawa, R.M. Microcalcification classification assisted by content-based image retrieval for breast cancer diagnosis. Pattern Recognit. 2009, 42, 1126–1132. [Google Scholar] [CrossRef]
- Mazo, C.; Alegre, E.; Trujillo, M. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM. Comput. Methods Programs Biomed. 2017, 147, 1–10. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; Neves, L.A.; Nascimento, M.Z.D.; Roberto, G.F.; Martins, A.S.; Tosta, T.A.A. Classification of colorectal cancer based on the association of multidimensional and multiresolution features. Expert Syst. Appl. 2019, 120, 262–278. [Google Scholar] [CrossRef]
- Huang, P.W.; Lee, C.H. Automatic Classification for Pathological Prostate Images Based on Fractal Analysis. IEEE Trans. Med. Imaging 2009, 28, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Sahran, S.; Albashish, D.; Abdullah, A.; Shukor, N.A.; Pauzi, S.H.M. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. Artif. Intell. Med. 2018, 87, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.F.G.; Zheng, L.; Sertdemir, M.; Dinter, D.J.; Schönberg, S.; Rädle, M. Incremental Learning with SVM for Multimodal Classification of Prostatic Adenocarcinoma. PLoS ONE 2014, 9, e93600. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Fondon, I.; Sarmiento, A.; García, A.I.; Silvestre, M.; Eloy, C.; Polónia, A.; Aguiar, P. Automatic classification of tissue malignancy for breast carcinoma diagnosis. Comput. Boil. Med. 2018, 96, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Bian, Z.; Lv, W.; Chen, S.; Zeng, D.; Ma, J. A computer-aided diagnosis scheme of breast lesion classification using GLGLM and shape features: Combined-view and multi-classifiers. Phys. Medica. 2018, 55, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Weng, Z.; Xu, H.; Zhang, Z.; Miao, H.; Chen, W.; Liu, Z.; Zhang, X.; Wang, M.; Xu, X.; et al. Support Vector Machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: A cross-validated study. Eur. J. Radiol. 2018, 98, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Hai, J.; Tan, H.; Chen, J.; Wu, M.; Qiao, K.; Xu, J.; Zeng, L.; Gao, F.; Shi, D.; Yan, B. Multi-level features combined end-to-end learning for automated pathological grading of breast cancer on digital mammograms. Comput. Med. Imaging Graph. 2019, 71, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.; Feldman, M.; Tomaszewski, J.; Madabhushi, A. A Boosted Bayesian Multiresolution Classifier for Prostate Cancer Detection from Digitized Needle Biopsies. IEEE Trans. Biomed. Eng. 2012, 59, 1205–1218. [Google Scholar] [CrossRef]
Feature Type | Feature Description |
---|---|
Nucleus features | Area, perimeter, major axis length, minor axis length, circularity, diameter, compactness, nucleus to nucleus average distance, nucleus to nucleus minimum distance |
Lumen features | Area, perimeter, major axis length, minor axis length, eccentricity |
Training: 99.2% | Testing: 88.7% | ||||||
---|---|---|---|---|---|---|---|
Train | Malignant | Benign | Data | Test | Malignant | Benign | Data |
Malignant | 60 | 0 | 60 | Malignant | 34 | 6 | 40 |
Benign | 1 | 59 | 60 | Benign | 3 | 37 | 40 |
Training: 91.7% | Testing: 85.0% | ||||||
---|---|---|---|---|---|---|---|
Train | Grade 3 | Grade 4+5 | Data | Test | Grade 3 | Grade 4+5 | Data |
Grade 3 | 55 | 5 | 60 | Grade 3 | 36 | 4 | 40 |
Grade 4+5 | 5 | 55 | 60 | Grade 4+5 | 8 | 32 | 40 |
Training: 95.0% | Testing: 92.5% | ||||||
---|---|---|---|---|---|---|---|
Train | Grade 4 | Grade 5 | Data | Test | Grade 4 | Grade 5 | Data |
Grade 4 | 54 | 6 | 60 | Grade 4 | 36 | 4 | 40 |
Grade 5 | 0 | 60 | 60 | Grade 5 | 2 | 38 | 40 |
Groups | Accuracy (%) | Sensitivity (%) | Specificity (%) | MCC (%) |
---|---|---|---|---|
Malignant vs. Benign | 88.7 | 91.8 | 86.0 | 70.2 |
Grade 3 vs. Grade 4, 5 | 85.0 | 81.8 | 88.8 | 70.3 |
Grade 4 vs. Grade 5 | 92.5 | 94.7 | 95.0 | 85.1 |
Groups | Training Accuracy (%) | Testing Accuracy (%) |
---|---|---|
Malignant vs. Benign | 99.0 | 81.0 |
Grade 3 vs. Grade 4, 5 | 98.0 | 75% |
Grade 4 vs. Grade 5 | 97.5 | 76.25 |
One-Shot Classification | Binary Classification | ||
---|---|---|---|
Groups | Accuracy (%) | Groups | Accuracy (%) |
Benign | 60.0 | Benign | 92.5 |
Grade 3 | 55.0 | Grade 3 | 90.0 |
Grade 4 | 85.0 | Grade 4 | 90.0 |
Grade 5 | 50.0 | Grade 5 | 95.0 |
Total | 65.5 | Total | 92.0 |
One-Shot Classification | Binary Classification | ||
---|---|---|---|
Groups | Accuracy (%) | Groups | Accuracy (%) |
Benign | 37.5 | Benign | 87.5 |
Grade 3 | 67.5 | Grade 3 | 90.0 |
Grade 4 | 45.0 | Grade 4 | 75.0 |
Grade 5 | 70.0 | Grade 5 | 77.5 |
Total | 55.5 | Total | 82.5 |
Authors | Classification Methods | Classes | Accuracy |
---|---|---|---|
Tabesh et al. (2007) [4] | kNN | Malignant vs. Benign | 96.7% |
Low vs. High Grade | 81.0% | ||
Doyle et al. (2012) [5] | Decision Tree (DT) | Grade 3 | 77.0% |
Grade 4 | 76.0% | ||
Grade 5 | 95.0% | ||
Nir et al. (2018) [6] | SVM | Malignant vs. Benign | 88.5% |
Low vs. High Grade | 73.8% | ||
Doyle et al. (2006) [7] | Bayesian | Malignant vs. Benign | 88.0% |
Rundo et al. [8] | Fuzzy C-Means | Multispectral (Tw1 & Tw2) | 90.77% |
Naik et al. [11] | SVM | Grade 3 vs. Grade 4 | 95.19% |
Benign vs. Grade 3 | 86.35% | ||
Benign vs. Grade 4 | 92.90% | ||
Albashish et al. (2017) [12] | SVM | Grade 3 vs. Grade 4 | 88.9% |
Benign vs. Grade 3 | 97.9% | ||
Benign vs. Grade 4 | 92.4% | ||
Nguyen et al. (2012) [13] | SVM | Benign, Grade 3, and Grade 4 carcinoma | 85.6% |
Proposed | SVM | Malignant vs. Benign | 88.7% |
Low vs. High Grade | 85.0% | ||
Grade 4 vs. Grade 5 | 92.5% | ||
Grade 3 | 90.0% | ||
Grade 4 | 90.0% | ||
Grade 5 | 95.0% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharjee, S.; Park, H.-G.; Kim, C.-H.; Prakash, D.; Madusanka, N.; So, J.-H.; Cho, N.-H.; Choi, H.-K. Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM. Appl. Sci. 2019, 9, 2969. https://doi.org/10.3390/app9152969
Bhattacharjee S, Park H-G, Kim C-H, Prakash D, Madusanka N, So J-H, Cho N-H, Choi H-K. Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM. Applied Sciences. 2019; 9(15):2969. https://doi.org/10.3390/app9152969
Chicago/Turabian StyleBhattacharjee, Subrata, Hyeon-Gyun Park, Cho-Hee Kim, Deekshitha Prakash, Nuwan Madusanka, Jae-Hong So, Nam-Hoon Cho, and Heung-Kook Choi. 2019. "Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM" Applied Sciences 9, no. 15: 2969. https://doi.org/10.3390/app9152969
APA StyleBhattacharjee, S., Park, H.-G., Kim, C.-H., Prakash, D., Madusanka, N., So, J.-H., Cho, N.-H., & Choi, H.-K. (2019). Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM. Applied Sciences, 9(15), 2969. https://doi.org/10.3390/app9152969