Alleviating Continuous Cropping Obstacles in Celery Using Engineered Biochar: Insights into Chemical and Microbiological Aspects
<p>Changes in soil phenolic acid concentrations following the addition of 0% (N), 0.2% (BS2), 0.4% (BS4), or 0.8% (BS8) (<span class="html-italic">w</span>/<span class="html-italic">w</span>) WP400 biochar. * Indicates significant differences in the LSD test (<span class="html-italic">p</span> < 0.05) between treatments of the first crop. ☆: <limit of quantification. HYD: 4-hydroxybenzoic acid; VAN: vanillic acid; COU: p-coumaric acid; FER: ferulic acid.</p> "> Figure 2
<p>Changes in average well color development (AWCD) for the (<b>a</b>) first crop and (<b>b</b>) second crop over a 24 to 120 h period following the addition of 0% (N), 0.2% (BS2), 0.4% (BS4), or 0.8% (BS8) (<span class="html-italic">w</span>/<span class="html-italic">w</span>) WP400 biochar. Means with the same letter for a given factor do not significantly differ at <span class="html-italic">p</span> < 0.05 (LSD test). The inserted figures represent the AWCD at 120 h reaction times.</p> "> Figure 3
<p>Utilization of different carbon source categories (C: carbohydrates; C&K: carboxylic and ketonic acids; P: polymers; A: amino acids; AA: amines/amides) by soil bacteria during the (<b>a</b>) first crop and (<b>b</b>) second crop following the addition of 0% (N), 0.2% (BS2), 0.4% (BS4), or 0.8% (BS8) (<span class="html-italic">w</span>/<span class="html-italic">w</span>) WP400 biochar. * Indicates a significant difference in the LSD test (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Pot Experiment
2.3. Celery Pathogen Identification and Disease Severity
2.4. Analysis of Adsorbed Phenolic Acids in Soil
2.5. Suspected Allelochemicals Exploration
2.6. Community-Level Physiological Profiles (CLPP) Analysis
2.7. Statistical Analysis
3. Results
3.1. The Impact of Different Biochar Application Rates on Celery Growth
3.2. Changes in Phenolic Acids in Soil Grown with Celery
3.3. Suspected Allelochemicals Exploration
3.4. CLPP Analysis
4. Discussion
4.1. The Impact of Different Biochar Application Rates on Celery Growth
4.2. Phenolic Acids Accumulation in Celery-Planted Soil
4.3. Phenolic Acids in the Soil Solution and Nontargeted Allelochemicals Exploration
4.4. CLPP Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cesarano, G.; Zotti, M.; Antignani, V.; Marra, R.; Scala, F.; Bonanomi, G. Soil Sickness and Negative Plant-Soil Feedback: A Reappraisal of Hypotheses. J. Plant Pathol. 2017, 99, 545–570. [Google Scholar]
- Chou, C.-H. Roles of Allelopathy in Plant Biodiversity and Sustainable Agriculture. CRC. Crit. Rev. Plant Sci. 1999, 18, 609–636. [Google Scholar] [CrossRef]
- Hu, J.; Xue, D.; Wang, S. Obstacles of Soybean Continuous Cropping II Mechanism of Soybean Yield Decline and Control Strategies for Toxin of Penicillium Purpurogenum in Soils. Chin. J. Ecol. 1998, 9, 429–434. [Google Scholar]
- John, J.; Shirmila, J.; Sarada, S.; Anu, S. Role of Allelopathy in Vegetables Crops Production. Allelopath. J. 2010, 25, 275–311. [Google Scholar]
- Li, H.Q.; Zhang, L.L.; Jiang, X.W.; Liu, Q.Z. Allelopathic Effects of Phenolic Acids on the Growth and Physiological Characteristics of Strawberry Plants. Allelopath. J. 2015, 35, 61–76. [Google Scholar]
- Atucha, A.; Litus, G. Effect of Biochar Amendments on Peach Replant Disease. HortScience 2015, 50, 863–868. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Young, C.C. Autointoxication in Root Exudates of Asparagus officinalis L. Plant Soil 1984, 82, 247–253. [Google Scholar] [CrossRef]
- Blum, U. Allelopathic Interactions Involving Phenolic Acids. J. Nematol. 1996, 28, 259–267. [Google Scholar]
- Chen, Y.; Yang, L.; Zhang, L.; Li, J.; Zheng, Y.; Yang, W.; Deng, L.; Gao, Q.; Mi, Q.; Li, X.; et al. Autotoxins in Continuous Tobacco Cropping Soils and Their Management. Front. Plant Sci. 2023, 14, 1106033. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Burow, G.; Zobeck, T.M.; Allen, V.G. Soil Microbial Communities and Function in Alternative Systems to Continuous Cotton. Soil Sci. Soc. Am. J. 2010, 74, 1181–1192. [Google Scholar] [CrossRef]
- Ma, Z.; Li, P.; Yang, C.; Feng, Z.; Feng, H.; Zhang, Y.; Zhao, L.; Zhou, J.; Zhu, H.; Wei, F. Soil Bacterial Community Response to Continuous Cropping of Cotton. Front. Microbiol. 2023, 14, 1125564. [Google Scholar] [CrossRef]
- Nayyar, A.; Hamel, C.; Lafond, G.; Gossen, B.D.; Hanson, K.; Germida, J. Soil Microbial Quality Associated with Yield Reduction in Continuous-Pea. Appl. Soil Ecol. 2009, 43, 115–121. [Google Scholar] [CrossRef]
- Zhang, M.; Riaz, M.; Zhang, L.; El-desouki, Z.; Jiang, C. Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 Mm Rainfall: More Effective on Acidic Soils. Front. Microbiol. 2019, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, M. Transformation of Soil Microbial Community Structure and Rhizoctonia-Suppressive Potential in Response to Apple Roots. Phytopathology 1999, 89, 920–927. [Google Scholar] [CrossRef]
- Mazzola, M.; Manici, L. Apple Replant Disease: Role of Microbial Ecology in Cause and Control. Annu. Rev. Phytopathol. 2012, 50, 45–65. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, F. Dynamics of the Diversity of Fungal and Fusarium Communities during Continuous Cropping of Cucumber in the Greenhouse. FEMS Microbiol. Ecol. 2012, 80, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, X.; Yang, Q.; Chi, X.; Pan, L.; Chen, N.; Yang, Z.; Wang, T.; Wang, M.; Yu, S. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut--Pathogenic and Beneficial Fungi Were Selected. PLoS ONE 2012, 7, e40659. [Google Scholar] [CrossRef]
- Wehner, J.; Antunes, P.M.; Powell, J.R.; Mazukatow, J.; Rillig, M.C. Plant Pathogen Protection by Arbuscular Mycorrhizas: A Role for Fungal Diversity? Pedobiologia 2010, 53, 197–201. [Google Scholar] [CrossRef]
- Bao, L.; Liu, Y.; Ding, Y.; Shang, J.; Wei, Y.; Tan, Y.; Zi, F. Interactions between Phenolic Acids and Microorganisms in Rhizospheric Soil from Continuous Cropping of Panax Notoginseng. Front. Microbiol. 2022, 13, 791603. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Feng, G.; Li, X.; Chen, S. Soil Bacterial and Fungal Community Dynamics in Relation to Panax Notoginseng Death Rate in a Continuous Cropping System. Sci. Rep. 2016, 6, 31802. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, G.; Cheng, Y.; Shi, P.; Yang, C.; Yang, H.; Xu, Z. Soil Acidification in Continuously Cropped Tobacco Alters Bacterial Community Structure and Diversity via the Accumulation of Phenolic Acids. Sci. Rep. 2019, 9, 12499. [Google Scholar] [CrossRef]
- Chen, S.; Yu, H.; Zhou, X.; Wu, F. Cucumber (Cucumis sativus L.) Seedling Rhizosphere Trichoderma and Fusarium Spp. Communities Altered by Vanillic Acid. Front. Microbiol. 2018, 9, 2195. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Yang, I.-C.; Lin, N.-C. Evaluation of Biocontrol Potential for Fusarium Yellows of Celery by Antagonistic and Gallic Acid-Degrading Bacteria. Biol. Control 2020, 146, 104268. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, N. Allelopathic Effects of Celery on Fusarium oxysporum f. Sp., Apii. Taiwan. J. Agric. Chem. Food Sci. 2017, 55, 146–152. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liu, Y.-T.; Chang, P.-H.; Hsieh, Y.-C.; Tzou, Y.-M. Inhibition of Continuous Cropping Obstacle of Celery by Chemically Modified Biochar: An Efficient Approach to Decrease Bioavailability of Phenolic Allelochemicals. J. Environ. Manag. 2023, 348, 119316. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, H.; Kudsk, P.; Ding, L.; Uthe, H.; Fomsgaard, I.S. Integrated LC–MS and GC–MS-Based Metabolomics Reveal the Effects of Plant Competition on the Rye Metabolome. J. Agric. Food Chem. 2022, 70, 3056–3066. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Ahmad-Hamdani, M.S.; Hasan, M. Phytochemical Constituents and Allelopathic Potential of Parthenium hysterophorus L. in Comparison to Commercial Herbicides to Control Weeds. Plants 2021, 10, 1445. [Google Scholar] [CrossRef]
- Otify, A.M.; Mohamed, O.G.; El-Amier, Y.A.; Saber, F.R.; Tripathi, A.; Younis, I.Y. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia Species Using UPLC-QTOF-MS/MS and Molecular Networking. Metabolomics 2023, 19, 16. [Google Scholar] [CrossRef]
- Liu, J.; Chang, Y.; Sun, L.; Du, F.; Cui, J.; Liu, X.; Li, N.; Wang, W.; Li, J.; Yao, D. Abundant Allelochemicals and the Inhibitory Mechanism of the Phenolic Acids in Water Dropwort for the Control of Microcystis Aeruginosa Blooms. Plants 2021, 10, 2653. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. J. Food Sci. 2010, 75, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Sorour, M.A.; Hassanen, N.H.M.; Ahmed, M.H.M. Natural Antioxidant Changes in Fresh and Dried Celery (Apium graveolens). Am. J. Energy Eng. 2015, 3, 12–16. [Google Scholar] [CrossRef]
- Priecina, L.; Karklina, D.; Kince, T. The Impact of Steam-Blanching and Dehydration on Phenolic, Organic Acid Composition, and Total Carotenoids in Celery Roots. Innov. Food Sci. Emerg. Technol. 2018, 49, 192–201. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 0080473784. [Google Scholar]
- Nutter Forrest, J.; Teng, P.; Shokes, F.M. Disease Assessment Terms and Concepts. Plant Dis. 1991, 75, 1187–1188. [Google Scholar]
- Chuang, Y.-H.; Liu, C.-H.; Sallach, J.B.; Hammerschmidt, R.; Zhang, W.; Boyd, S.A.; Li, H. Mechanistic Study on Uptake and Transport of Pharmaceuticals in Lettuce from Water. Environ. Int. 2019, 131, 104976. [Google Scholar] [CrossRef]
- Pihlström, T.; Fernández-Alba, A.R.; Gamón, M.; Amate, C.F.; Poulsen, M.E.; Lippold, R.; Anastassiades, M. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Sante 2017, 11813, 21–22. [Google Scholar]
- Zheng, K.-X.; Liu, C.-H.; Wang, S.; Tzou, Y.-M.; Chiang, C.-M.; Lin, S.-R.; Yang, H.-Y.; Wu, J.J.; Chuang, Y.-H. Evaluating the Release and Metabolism of Ricinine from Castor Cake Fertilizer in Soils Using a LC-QTOF/MS Coupled with SIRIUS Workflow. Chemosphere 2023, 310, 136865. [Google Scholar] [CrossRef]
- Carter, L.J.; Harris, E.; Williams, M.; Ryan, J.J.; Kookana, R.S.; Boxall, A.B.A. Fate and Uptake of Pharmaceuticals in Soil–Plant Systems. J. Agric. Food Chem. 2014, 62, 816–825. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Garland, J.L.; Mills, A.L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar] [CrossRef]
- Gryta, A.; Frąc, M.; Oszust, K. The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge. Appl. Biochem. Biotechnol. 2014, 174, 1434–1443. [Google Scholar] [CrossRef]
- Michel, M.; Buszewski, B. Isolation, Determination and Sorption Modelling of Xenobiotics in Plant Materials. Polish J. Environ. Study 2008, 17, 305–319. [Google Scholar]
- Trapp, S.; Matthies, M.; McFarlane, C. Model for Uptake of Xenobiotics into Plants: Validation with Bromacil Experiments. Environ. Toxicol. Chem. Int. J. 1994, 13, 413–422. [Google Scholar] [CrossRef]
- Blum, U. Plant-Plant Allelopathic Interactions III; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lyu, S.-W.; Blum, U.; Gerig, T.M.; O’Brien, T.E. Effects of Mixtures of Phenolic Acids on Phosphorus Uptake by Cucumber Seedlings. J. Chem. Ecol. 1990, 16, 2559–2567. [Google Scholar] [CrossRef]
- Bergmark, C.L.; Jackson, W.A.; Volk, R.J.; Blum, U. Differential Inhibition by Ferulic Acid of Nitrate and Ammonium Uptake in Zea mays L. Plant Physiol. 1992, 98, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Booker, F.L.; Blum, U.; Fiscus, E.L. Short-Term Effects of Ferulic Acid on Ion Uptake and Water Relations in Cucumber Seedlings. J. Exp. Bot. 1992, 43, 649–655. [Google Scholar] [CrossRef]
- Lyu, S.-W.; Blum, U. Effects of Ferulic Acid, an Allelopathic Compound, on Net P, K, and Water Uptake by Cucumber Seedlings in a Split-Root System. J. Chem. Ecol. 1990, 16, 2429–2439. [Google Scholar] [CrossRef]
- Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J. Evid.-Based Complement. Altern. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef]
- Stankevičius, M.; Akuņeca, I.; Jãkobsone, I.; Maruška, A. Analysis of Phenolic Compounds and Radical Scavenging Activities of Spice Plants Extracts. Maisto Chem. Ir Technol. 2010, 44, 85–91. [Google Scholar]
- Yao, Y.; Ren, G. Effect of Thermal Treatment on Phenolic Composition and Antioxidant Activities of Two Celery Cultivars. LWT-Food Sci. Technol. 2011, 44, 181–185. [Google Scholar] [CrossRef]
- Dalton, B.R. Physicochemical and Biological Processes Affecting the Recovery of Exogenously Applied Ferulic Acid from Tropical Forest Soils. Plant Soil 1989, 115, 13–22. [Google Scholar] [CrossRef]
- Blum, U. Effects of Microbial Utilization of Phenolic Acids and Their Phenolic Acid Breakdown Products on Allelopathic Interactions. J. Chem. Ecol. 1998, 24, 685–708. [Google Scholar] [CrossRef]
- Macías, F.A.; Galindo, J.C.G.; Molinillo, J.M.G. Allelopathy: Chemistry and Mode of Action of Allelochemicals; CRC Press: Boca Raton, FL, USA, 2003; ISBN 0203492781. [Google Scholar]
- Whitehead, D.C.; Dibb, H.; Hartley, R.D. Phenolic Compounds in Soil as Influenced by the Growth of Different Plant Species. J. Appl. Ecol. 1982, 19, 579–588. [Google Scholar] [CrossRef]
- Blum, U.; Dalton, B.R.; Shann, J.R. Effects of Various Mixtures of Ferulic Acid and Some of Its Microbial Metabolic Products on Cucumber Leaf Expansion and Dry Matter in Nutrient Culture. J. Chem. Ecol. 1985, 11, 619–641. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Rice, E.L.; Karns, T.K.B. Allelopathic Effects of Polygonum aviculare L. III. Isolation, Characterization, and Biological Activities of Phytotoxins Other than Phenols. J. Chem. Ecol. 1983, 9, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Haig, T. Application of Hyphenated Chromatography–Mass Spectrometry Techniques to Plant Allelopathy Research. J. Chem. Ecol. 2001, 27, 2363–2396. [Google Scholar] [CrossRef]
- Erida, G.; Saidi, N.; Hasanuddin, H.; Syafruddin, S. Herbicidal Effects of Ethyl Acetate Extracts of Billygoat Weed (Ageratum conyzoides L.) on Spiny Amaranth (Amaranthus spinosus L.) Growth. Agronomy 2021, 11, 1991. [Google Scholar] [CrossRef]
- Lombardi, N.; Vitale, S.; Turrà, D.; Reverberi, M.; Fanelli, C.; Vinale, F.; Marra, R.; Ruocco, M.; Pascale, A.; d’Errico, G. Root Exudates of Stressed Plants Stimulate and Attract Trichoderma Soil Fungi. Mol. Plant-Microbe Interact. 2018, 31, 982–994. [Google Scholar] [CrossRef]
- Lee, S.-M.; Radhakrishnan, R.; Kang, S.-M.; Kim, J.-H.; Lee, I.-Y.; Moon, B.-K.; Yoon, B.-W.; Lee, I.-J. Phytotoxic Mechanisms of Bur Cucumber Seed Extracts on Lettuce with Special Reference to Analysis of Chloroplast Proteins, Phytohormones, and Nutritional Elements. Ecotoxicol. Environ. Saf. 2015, 122, 230–237. [Google Scholar] [CrossRef]
- Zhang, B.-H.; Hong, J.-P.; Zhang, Q.; Jin, D.-S.; Gao, C.-H. Contrast in Soil Microbial Metabolic Functional Diversity to Fertilization and Crop Rotation under Rhizosphere and Non-Rhizosphere in the Coal Gangue Landfill Reclamation Area of Loess Hills. PLoS ONE 2020, 15, e0229341. [Google Scholar] [CrossRef]
- Cai, Y.F.; Barber, P.; Dell, B.; O’brien, P.; Williams, N.; Bowen, B.; Hardy, G. Soil Bacterial Functional Diversity Is Associated with the Decline of Eucalyptus Gomphocephala. For. Ecol. Manag. 2010, 260, 1047–1057. [Google Scholar] [CrossRef]
- Grayston, S.J.; Wang, S.; Campbell, C.D.; Edwards, A.C. Selective Influence of Plant Species on Microbial Diversity in the Rhizosphere. Soil Biol. Biochem. 1998, 30, 369–378. [Google Scholar] [CrossRef]
- Gomez, E.; Ferreras, L.; Toresani, S. Soil Bacterial Functional Diversity as Influenced by Organic Amendment Application. Bioresour. Technol. 2006, 97, 1484–1489. [Google Scholar] [CrossRef]
- Mendes, R.; Kruijt, M.; deBruijn, I.; Dekkers, E.; van derVoort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Santhanam, R.; Luu, V.T.; Weinhold, A.; Goldberg, J.; Oh, Y.; Baldwin, I.T. Native Root-Associated Bacteria Rescue a Plant from a Sudden-Wilt Disease That Emerged during Continuous Cropping. Proc. Natl. Acad. Sci. USA 2015, 112, E5013–E5020. [Google Scholar] [CrossRef] [PubMed]
- Chapelle, E.; Mendes, R.; Bakker, P.A.H.M.; Raaijmakers, J.M. Fungal Invasion of the Rhizosphere Microbiome. ISME J. 2016, 10, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yang, T.; Friman, V.-P.; Xu, Y.; Shen, Q.; Jousset, A. Trophic Network Architecture of Root-Associated Bacterial Communities Determines Pathogen Invasion and Plant Health. Nat. Commun. 2015, 6, 8413. [Google Scholar] [CrossRef]
- vanElsas, J.D.; Chiurazzi, M.; Mallon, C.A.; Elhottova, D.; Kristufek, V.; Salles, J.F. Microbial Diversity Determines the Invasion of Soil by a Bacterial Pathogen. Proc. Natl. Acad. Sci. USA 2012, 109, 1159–1164. [Google Scholar] [CrossRef]
- Mallon, C.A.; van Elsas, J.D.; Salles, J.F. Microbial Invasions: The Process, Patterns, and Mechanisms. Trends Microbiol. 2015, 23, 719–729. [Google Scholar] [CrossRef]
- Li, X.; Ding, C.; Hua, K.; Zhang, T.; Zhang, Y.; Zhao, L.; Yang, Y.; Liu, J.; Wang, X. Soil Sickness of Peanuts Is Attributable to Modifications in Soil Microbes Induced by Peanut Root Exudates Rather than to Direct Allelopathy. Soil Biol. Biochem. 2014, 78, 149–159. [Google Scholar] [CrossRef]
- An, S.; Wei, Y.; Li, H.; Zhao, Z.; Hu, J.; Philp, J.; Ryder, M.; Toh, R.; Li, J.; Zhou, Y. Long-Term Monocultures of American Ginseng Change the Rhizosphere Microbiome by Reducing Phenolic Acids in Soil. Agriculture 2022, 12, 640. [Google Scholar] [CrossRef]
- Li, Z.; Fu, J.; Zhou, R.; Wang, D. Effects of Phenolic Acids from Ginseng Rhizosphere on Soil Fungi Structure, Richness and Diversity in Consecutive Monoculturing of Ginseng. Saudi J. Biol. Sci. 2018, 25, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
Phenolic Acids | Recovery (%) 1 | RSDs (%) 2 |
---|---|---|
4-hydroxybenzoic acid | 90 | 19 |
Vanillic acid | 76 | 11 |
p-coumaric acid | 103 | 20 |
Ferulic acid | 85 | 5 |
Treatments 1 | ||||
---|---|---|---|---|
N | BS2 | BS4 | BS8 | |
Shoot height (cm) | 13.0 ± 0.9 a2 | 14.1 ± 1.1 a | 13.8 ± 1.4 a | 13.9 ± 0.9 a |
Shoot dry weight (g) | 0.97 ± 0.20 c | 1.32 ± 0.10 b | 1.58 ± 0.18 a | 1.28 ± 0.12 b |
Root dry weight (g) | 0.40 ± 0.15 b | 0.42 ± 0.13 ab | 0.58 ± 0.20 a | 0.27 ± 0.14 b |
Treatments 1 | ||||
---|---|---|---|---|
N | BS2 | BS4 | BS8 | |
Disease incidence (%) | 50 | 13 | 25 | 63 |
Mortality (%) | 25 | 0 | 13 | 25 |
Disease severity (%) | 33 ± 44 | 1 ± 3 | 21 ± 40 | 37 ± 46 |
Compounds (Molecular Formula) | Monoisotopic Mass | [M-H] 1 | MS/MS Fragments 2 | RT 3 (min) |
---|---|---|---|---|
4-Hydroxybenzoic acid (C7H6O3) | 138.0317 | 137.0244 | 93.0346, 65.0397, 75.0240, 41.0033, 39.0240 | 3.43 |
Vanillic acid (C8H8O4) | 168.0423 | 167.0350 | 108.0217, 152.0115, 123.0452, 91.0189, 80.0268 | 3.53 |
Cinnamic acid (C9H8O2) | 148.0524 | 147.0452 | 103.0553, 77.0397 | 6.07 |
p-Coumaric acid (C9H8O3) | 164.0473 | 163.0401 | 119.0502, 93.0346, 117.0346, 91.0553, 65.0397 | 3.88 |
Ferulic acid (C10H10O4) | 194.0579 | 193.0506 | 134.0373, 133.0295, 178.0272, 149.0608, 132.0217 | 4.07 |
Tentatively Identified Allelochemicals | m/z | MS/MS Fragments 1 |
---|---|---|
Ethyl 3-hydroxybutyrate | 133.0862 | 41.0386, 43.0178, 45.0335, 69.0335, 73.0648 |
2-Octenoic acid | 143.1065 | 45.0335, 53.0386, 55.0178, 55.0542, 67.0542 |
Myristic Acid ethyl ester | 255.233 | 83.0502, 44.9982, 115.0765, 207.1754, 209.1911 |
9-HODE | 297.2419 | 59.0139, 277.2173, 295.2279, 123.1179, 171.1027 |
5-Oxo-ETE | 319.2259 | 95.0855, 109.1012, 113. 0597, 115.0390, 301.2162 |
Phytosphingosine | 318.3014 | 109.1012, 270.2791, 60.0444, 282.2791, 300.2897 |
2-Linoleoyl Glycerol | 355.2857 | 57.0699, 71.0855, 97.1012, 265.2526, 281.2475 |
5′-Deoxyadenosine | 395.2796 | 136.0618, 45.0335, 92.0243, 94.0400, 119.0352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-C.; Chuang, Y.-H.; Shen, F.-T.; Chung, W.-H.; Chen, C.-Y.; Liu, Y.-T.; Hsieh, Y.-C.; Tzou, Y.-M.; Jien, S.-H. Alleviating Continuous Cropping Obstacles in Celery Using Engineered Biochar: Insights into Chemical and Microbiological Aspects. Agronomy 2024, 14, 2685. https://doi.org/10.3390/agronomy14112685
Lin C-C, Chuang Y-H, Shen F-T, Chung W-H, Chen C-Y, Liu Y-T, Hsieh Y-C, Tzou Y-M, Jien S-H. Alleviating Continuous Cropping Obstacles in Celery Using Engineered Biochar: Insights into Chemical and Microbiological Aspects. Agronomy. 2024; 14(11):2685. https://doi.org/10.3390/agronomy14112685
Chicago/Turabian StyleLin, Chia-Chia, Ya-Hui Chuang, Fo-Ting Shen, Wen-Hsin Chung, Chi-Yu Chen, Yu-Ting Liu, Yi-Cheng Hsieh, Yu-Min Tzou, and Shih-Hao Jien. 2024. "Alleviating Continuous Cropping Obstacles in Celery Using Engineered Biochar: Insights into Chemical and Microbiological Aspects" Agronomy 14, no. 11: 2685. https://doi.org/10.3390/agronomy14112685
APA StyleLin, C. -C., Chuang, Y. -H., Shen, F. -T., Chung, W. -H., Chen, C. -Y., Liu, Y. -T., Hsieh, Y. -C., Tzou, Y. -M., & Jien, S. -H. (2024). Alleviating Continuous Cropping Obstacles in Celery Using Engineered Biochar: Insights into Chemical and Microbiological Aspects. Agronomy, 14(11), 2685. https://doi.org/10.3390/agronomy14112685