[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Application of Hyphenated Chromatography–Mass Spectrometry Techniques to Plant Allelopathy Research

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Plant allelopathy offers hope as an additional means of weed control in modern agriculture. Its mechanisms and molecular basis are not yet well understood. Research on the chemical basis for allelopathy has often been hindered by the complexity of plant and soil matrices, making it difficult to track active compounds. Recent improvements in the cost and capabilities of bench-top chromatography–mass spectrometry instruments make these tools more powerful and more widely available to assist with molecular studies conducted in today's expanding field. Such instrumental techniques are herein recommended as economically efficient means of advancing the rigor of allelopathy research and assisting the development of a better understanding of the chemical basis for the allelopathy phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ALBORN, H. and STENHAGEN, G. 1987. Micro liquid chromatography-mass spectrometry combination: Application to allelochemical compounds, chapter 29, in G. R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330, ACS, Washington, D.C.

    Google Scholar 

  • ALSAADAWI, I. S., RICE, E. L., and KARNS, T. K. B. 1983. Allelopathic effects of Polygonum aviculare L. III. Isolation, characterization, and biological activities of phytotoxins other than phenols. J. Chem. Ecol. 9:761–774.

    Google Scholar 

  • AN, M., PRATLEY, J. and HAIG, T. 1996. Applications of GC/MS in allelopathy research: A case study. Rapid Commun. Mass Spectrum 10:104–105.

    Google Scholar 

  • ANAYA, A. L., HERNANDEZ-BAUTISTA, B. E., JIMENEZ-ESTRADA, M., and VELASCO-IBARRA, L. 1992. Phenylacetic acid as a phytotoxic compound of corn pollen. J. Chem. Ecol. 18:897–905.

    Google Scholar 

  • ANGUS, J. F., GARDNER, P. A., KIRKEGAARD, J. A., and DESMARCHELIER, J. M. 1994. Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162:107–112.

    Google Scholar 

  • AUGER, J. and FERARY, S. 1994. First results in trace identification of allelochemicals and pheromones by combining gas chromatography-mass spectrometry and direct deposition gaschromatography-Fourier transform infrared spectrometry. J. Chromatogr. A 683:87–94.

    Google Scholar 

  • BAH, M. and PEREDA-MIRANDA, R. 1996. Bioactive natural products from traditionally used Mexican plants. Part IV. Detailed FAB-mass spectrometry and high resolution NMR investigations of tricolorins A-E, individual oligosaccharides from the resins of Ipomoea tricolor (Convolvulaceae). Tetrahedron 52:13063–13080.

    Google Scholar 

  • BLUM, U., SHAFER, S. R., and LEHMAN, M. E. 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit. Rev. Plant Sci. 18:673–679.

    Google Scholar 

  • BRADOW, J. M. and CONNICK W. J., JR., 1990. Volatile seed germination inhibitors from plant residues. J. Chem. Ecol. 16:645–666.

    Google Scholar 

  • BROWN, M. A. (ed.). 1990. Liquid Chromatography-Mass Spectrometry: Applications in Agricultural, Pharmaceutical, and Environmental Chemistry. American Chemical Society Symposium Series 420, ACS, Washington, D.C.

    Google Scholar 

  • BROWN, P. D. and MORRA, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43:3070–3074.

    Google Scholar 

  • CAMBIER, V., HANCE, T., and DE HOFFMANN, E. 1999. Non-injured Maize contains several 1,4-benzoxazin-3-one related compounds but only as glucoconjugates. Phytochem. Anal. 10:119–126.

    Google Scholar 

  • CAST, K. G., MCPHERSON, J. K., POLLARD, A. J., KRENZER JR., E. G., and WALLER, G. R. 1990. Allelochemicals in soil from no-tillage versus conventional-tillage wheat (Triticum aestivum) fields. J. Chem. Ecol. 16:2277–2289.

    Google Scholar 

  • CHAVES das NEVES, H. J. and GASPAR, E. M. M. S. 1995. HRGC-MS and HPLC-MS identification of new ketosterols in an extract of wheat straw. J. High Resolut. Chromatogr. 18:299–303.

    Google Scholar 

  • CHOU, C.-H., and WALLER, G. R. 1980. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6:643–654.

    Google Scholar 

  • CONNICK, W. J., JR., BRADOW, J. M., LEGENDRE, M. G., VAIL, S. L., and MENGES, R. M. 1987. Identification of volatile allelochemicals from Amaranthus palmeri S. WATS. J. Chem. Ecol. 13:463–472.

    Google Scholar 

  • CONNICK W. J., JR., BRADOW, J. M., and LEGENDRE, M. E. 1989. Identification and bioactivity of volatile allelochemicals from Amaranth residues. J. Agric. Food Chem. 37:792–796.

    Google Scholar 

  • CUTLER, H. G. and CUTLER, S. J. (eds.). 1999. Biologically Active Natural Products: Agrochemicals. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • DORNBOS, D. L., JR., SPENCER, G. F., and MILLER, R. W. 1990. Medicarpin delays alfalfa seed germination and seedling growth. Crop Sci. 30:162–166.

    Google Scholar 

  • DUDAI, N., POLJAKOFF-MAYBER, A., MAYER, A. M., PUTIEVSKY, E., and LERNER, H. R. 1999. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 25:1079–1089.

    Google Scholar 

  • FERARY, S., AUGER, J., and TOUCHE, A. 1996. Trace identification of plant substances by combining gas chromatography-mass spectrometry and direct deposition gas chromatography-Fourier transform infrared spectrometry. Talanta 43:349–357.

    Google Scholar 

  • FRIEBE, A., SCHULZ, M., KUCK, P., and SCHNABL, H. 1995. Phytotoxins from shoot extracts and root exudates of Agropyron repens seedlings. Phytochemistry 38:1157–1159.

    Google Scholar 

  • GARDINER, J. B., MORRA, M. J., EBERLEIN, C. V., BROWN, P. D., and BOREK, V. 1999. Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J. Agric. Food Chem. 47:3837–3842.

    PubMed  Google Scholar 

  • GOODING, K. M. and REGNIER, F. E. (eds.). 1990. High-Performance Liquid Chromatography of Biological Macromolecules, Methods and Applications, Marcel Dekker, New York.

    Google Scholar 

  • GRECA, M. D., FIORENTINO, A., MONACO, P., PREVITERA, L., PINTO, G., and POLLIO, A. 1999. Release of potential allelochemical from aquatic plants, chapter 24, in Recent Advances in Allelopathy, Vol. 1. A Science for the Future, International Allelopathy Society, University of Cadiz, Cadiz, Spain.

    Google Scholar 

  • GROB, R. L. 1998. Modern Practice of Gas Chromatography, 3rd ed. Wiley-Interscience, New York.

    Google Scholar 

  • GUMNICKA, O. and OLESZEK, W. 1998. Triterpene saponins from the aerial parts of Dianthus caryophyllus var. remontant Hort. Acta Soc. Bot. Pol. 67:65–68.

    Google Scholar 

  • HALKET, J. M. 1993. Derivatives for gas chromatography-mass spectrometry, Chapter 14, in K. Blau and J. Halket (eds.). Handbook of Derivatives for Chromatography, 2nd ed. Wiley and Sons, New York.

    Google Scholar 

  • HEATH, R. R. and DUEBEN, B. D. 1998. Analytical and preparative gas chromatography, chapter 3, in J. G. Millar and K. F. Haynes (eds.). Methods of Chemical Ecology, Vol. 1, Chapman and Hall, London.

    Google Scholar 

  • HUANG, S., WANG, W., MA, K., ZHOU, H., XU, Y.-Z., WU, H., SUN, W.-H., YANG, S.-Y., HUANG, H., HUANG, Z.-A., WU, H., and YU, S.-W. 1999. Allelochemicals from root exudates and extracts of water hyacinth Eichhornia crassipes, chapter 18, in F. A. Macias, J. C. G. Galindo, J. M. G. Molinillo, and H. G. Cutler. Recent Advances in Allelopathy, Vol. 1: A Science for the Future (eds.). International Allelopathy Society. University of Cadiz, Cadiz, Spain.

    Google Scholar 

  • INDERJIT, S., DAKSHINI, K. M. M., and EINHELLIG, F. A. (eds.). 1995. Allelopathy: Organisms, Processes, and Applications. American Chemical Society Symposium Series 582, ACS, Washington, D.C.

    Google Scholar 

  • INDERJIT, S., DAKSHINI, K. M. M., and FOY, C. L. (eds.). 1999. Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • INOUE, M., NISHIMURA, H., LI, H.-H., and MIZUTANI, J. 1992. Allelochemicals from Polygonum sachalinense FR. SCHM. (Polygonaceae). J. Chem. Ecol. 18:1833–1840.

    Google Scholar 

  • JENNINGS, W., MITTLEFEHLDT, E., and STREMPLE, P. 1997. Analytical Gas Chromatography, 2nd ed. Academic Press, New York.

    Google Scholar 

  • JORDAN, E., HSIEH, T., and FISCHER, N.H. 1992.Volatile compounds from leaves of Ceratiola ericoides by dynamic headspace sampling. Phytochemistry 31:1203–1208.

    Google Scholar 

  • JORDAN, E., HSIEH, T., and FISCHER, N. H. 1993. Volatiles from litter and soil associated with Ceratiola ericoides. Phytochemistry 33:299–302.

    Google Scholar 

  • KARASEK, F. W. and CLEMENT, R. E. 1988. Basic Gas Chromatography-Mass Spectrometry: Principles and Techniques. Elsevier, New York.

    Google Scholar 

  • KLEINTOP, B. L., EADES, D. M., JONES, J. A., and YOST, R. A. 1995. Liquid chromatography-mass spectrometry, chapter 5, in R. E. March and J. F. J. Todd (eds.). Practical Aspects of Ion Trap Mass Spectrometry, Vol. 3, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • KOMAI, K., SUGIWAKA, Y., and SATO, S. 1981. Plant-growth retardant of extracts obtained from water nutgrass (Cyperus serotinus Rottb.). Mem. Fac. Agric. Kinki Univ. 14:57–65.

    Google Scholar 

  • KONG, C., HU, F., XU, T., and LU, Y. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. J. Chem. Ecol. 25:2347–2356.

    Google Scholar 

  • KORHAMMER, S. and HASLINGER, E. 1994. Isolation of a biologically active substance from rhizomes of quackgrass [Elymus repens (L.) Gould]. J. Agric. Food Chem. 42:2048–2050.

    Google Scholar 

  • LAOSINWATTANA, C., YONEYAMA, K., TAKEUCHI, Y., OGASAWARA, M., and KONNAI, M. 1999. Purification of allelopathic compounds from manilagrass [Zoysia matrella (L.) Merr.] plants. J. Jpn. Soc. Turfgrass Sci. 28:27–36.

    Google Scholar 

  • LEE, C. W., YONEYAMA, K., TAKEUCHI, Y., KONNAI, M., TAMOGAMI, S., and KODAMA, O. 1999. Momilactones A and B in rice straw harvested at different growth stages. Biosci. Biotechnol. Biochem. 63:1318–1320.

    Google Scholar 

  • LI, H. H., LAJIDE, L., NISHIMURA, H., HASEGAWA, K., and MIZUTANI, J. 1993. Allelochemicals in the soil beneath Quercus mongolica Fisch var. grosseserrata Rehd. Wils. Zasso Kenkyu 38:282–293.

    Google Scholar 

  • LIEBL, R. A. and WORSHAM, D. 1983. Inhibition of pitted Morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol. 9:1027–1043.

    Google Scholar 

  • LIN, H.-Y. and VOYKSNER, R. D. 1995. Electrospray-ion trap mass spectrometry: Applications to trace analysis, chapter 14, in R. E. March and J. F. J. Todd (eds.). Practical Aspects of Ion Trap Mass Spectrometry, Vol. 3, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • LINSKENS, H. F. and JACKSON, J. F. (eds.). 1986. Modern Methods of Plant Analysis: GC-MS. Vol. 3. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • LOVETT, J. V. and POTTS, W. C. 1987. Primary effects of allelochemicals of Datura stramonium L. Plant Soil 98:137–144.

    Google Scholar 

  • LOVETT, J. V., LEVITT, J., DUFFIELD, A. M., and SMITH, N. G. 1981. Allelopathic potential of Datura stramonium L. (thorn-apple). Weed Res. 21:165–170.

    Google Scholar 

  • MA, R., LIU, X., YUAN, G., and SUN, S. 1997. Allelochemicals and allelopathy from microorganisms in wheat rhizosphere. J. Environ. Sci. (China) 9:108–112.

    Google Scholar 

  • MACIAS, F. A., SIMONET, A. M., ESTEBAN, M. D., and GALINDO, J. C. G. 1996. Triterpenoids from Melilotus messanensis; soyasapogenol G, the first natural carbonate derivative. Phytochemistry 41:1573–1577.

    Google Scholar 

  • MACIAS, F. A., SIMONET, A. M., and GALINDO, J. C. G. 1997. Natural products as allelochemicals 5. Bioactive steroids and triterpenes from Melilotus messanensis and their allelopathic potential. J. Chem. Ecol. 23:1781–1803.

    Google Scholar 

  • MACIAS, F. A., GALINDO, J. C. G., MOLINILLO, J. M. G., and CUTLER, H. G. (eds.). 1999. Recent Advances in Allelopathy, Vol. 1: A Science for the Future. International Allelopathy Society. University of Cadiz, Cadiz, Spain.

    Google Scholar 

  • MATTICE, R., LAVY, T., SKULMAN, B., and DILDAY, R. 1998. Searching for allelochemicals in rice that control ducksalad, chapter 8, in M. Olofsdotter (ed.). Allelopathy in Rice. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • McMASTER, M. and McMASTER, C. 1998. GC-MS: A Practical Users Guide.Wiley-Interscience, New York.

    Google Scholar 

  • MEYER, V. R. 1988. Practical High-Performance Liquid Chromatography. Wiley Sons, New York.

    Google Scholar 

  • MILLAR, J. G. and HAYNES, K. F. (eds.). 1998. Methods in Chemical Ecology, Vol. 1, Chemical Methods. Chapman and Hall, London, England.

    Google Scholar 

  • NAKAHISA, K., TSUZUKI, E., TERAO, H., and KOSEMURA, S. 1994. Study on the allelopathy of alfalfa (Medicago sativa L.). II. Isolation and identification of allelopathic substances in alfalfa. Nippon Sakumotsu Gakkai Kiji 63:278–284.

    Google Scholar 

  • NARWAL, S. S. (ed.). 1999a. Allelopathy Update, Vol. 1: International Status. Science Publishers, Enfield, New Hampshire.

    Google Scholar 

  • NARWAL, S. S. (ed.). 1999b. Allelopathy Update,Vol. 2: Basic and Applied Aspects. Science Publishers, Enfield, New Hampshire.

    Google Scholar 

  • NARWAL, S. S. and TAURO, P. (eds.). 1994. Abstracts of the International Symposium: Allelopathy in sustainable agriculture, forestry & environment. India Agricultural Research Institute, New Delhi, India.

    Google Scholar 

  • NEWTON, R. P. and WALTON, T. J. 1996. Applications of Modern Mass Spectrometry in Plant Science Research. Clarendon Press, Oxford, United Kingdom.

    Google Scholar 

  • NIESSEN, W. M. A. 1999. Liquid Chromatography-Mass Spectrometry, 2nd ed. Marcel Dekker, New York.

    Google Scholar 

  • OHWAKI, Y., OGINO, J., and SHIBANO, K. 1993. 3-Hydroxy-5-methoxystilbene-2-carboxylic acid, a phytotoxic compound isolated from methanolic extracts of pigeonpea (Cajanus cajan Millsp.) Soil Sci. Plant Nutr. 39:55–61.

    Google Scholar 

  • OLOFSDOTTER, M. (ed.). 1998. Allelopathy in Rice. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • PEREDA-MIRANDA, R. 1997. Biodynamic oligosaccharides from Convolvulaceae: Isolation, structural elucidation and biological activities. Rev. Latinoam. Quim. 25:97–102.

    Google Scholar 

  • PEREZ, E., SAWYERS, W. G., and MARTIN, D. F. 1997. Identification of allelopathic substances produced by Nannochloris oculata that affect a red-tide organism, Gymnodinium breve. Biomed. Lett. 56:7–14.

    Google Scholar 

  • PHILLIPS, V. A. and HEDIN, P. A. 1990. Spectral techniques for structural analysis of the cotton terpenoid aldehydes gossypol and gossypolone. J. Agric. Food Chem. 38:525–528.

    Google Scholar 

  • PUTNAM, A. R. 1985. Weed allelopathy, chapter 5, in S. O. Duke (ed.). Weed Physiology, Vol. 1, Reproduction and Ecophysiology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • PUTNAM, A. R. and TANG, C.-S. (eds.). 1986. The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • QUAYYUM, H. A., MALLIK, A. U., ORR, D. E., and LEE, P. F. 1999. Allelopathic potential of aquatic plants associated with wild rice: II. Isolation and identification of allelochemicals. J. Chem. Ecol. 25:221–228.

    Google Scholar 

  • RICE, E. 1984. Allelopathy, 2nd ed. Academic Press, London, England.

    Google Scholar 

  • RICE, E. L. 1995. Biological Control of Weeds and Plant Diseases: Advances in Applied Allelopathy. University of Oklahoma Press, Norman, Oklahoma.

    Google Scholar 

  • RIFFLE, M. S., WALLER, G. R., MURRAY, D. S., and SGARAMELLO, R. P. 1990. Devil's claw (Proboscidea louisianica), essential oil and its components. J. Chem. Ecol. 16:1927–1940.

    Google Scholar 

  • RIMANDO, A. M., OLOFSDOTTER, M. O., DAYAN, F. E., and DUKE, S. O. 2001. Searching for rice allelochemicals: An example of bioassay-guided isolation. Agron. J. 93:16–20.

    Google Scholar 

  • RIZVI, S. J. H. and RIZVI, V. (eds.). 1992. Allelopathy: Basic and Applied Aspects. Chapman & Hall, London, England.

    Google Scholar 

  • ROMEO, J. T. 2000. Raising the beam: Going beyond phytotoxicity. J. Chem. Ecol. 26:2011–2014.

    Google Scholar 

  • SCHULZ, M., FRIEBE, A., KUCK, P., SEIPEL, M., and SCHNABL, H. 1994. Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded from rhizome borne roots. Angew. Bot. 68:195–200.

    Google Scholar 

  • SHILLING, D. G., JONES, L. A., WORSHAM, A. D., PARKER, C. E., and WILSON, R. F. 1986. Isolation and identification of some phytotoxic compounds from aqueous extracts of rye (Secale cereale L.). J. Agric. Food Chem. 34:633–638.

    Google Scholar 

  • STENHAGEN, G. and ALBORN, H. 1989. Developments of micro liquid chromatography-mass spectrometry with gradient elution. Improvements to obtain less thermal decomposition of labile compounds. J. Chromatogr. 474:285–300.

    Google Scholar 

  • TANG, C.-H. and YOUNG, C.-C. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima). Plant Physiol. 69:155–160.

    Google Scholar 

  • TANG, C. S., WAT, C. K., and TOWERS, G. H. N. 1987. Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L. Plant Soil 98:93–97.

    Google Scholar 

  • TANRISEVER, N., FISCHER, N. H., and WILLIAMSON, G. B. 1988. Menthofurans from Calamintha ashei: Effects on Schizachyrium scoparium and Lactuca sativa. Phytochemistry 27:2523–2526.

    Google Scholar 

  • THOMPSON, A. C. (ed.). 1985. The Chemistry of Allelopathy: Biochemical Interactions among Plants. American Chemical Society Symposium Series 268, ACS, Washington, D.C.

    Google Scholar 

  • VAUGHN, S. and BOYDSTON, R. A. 1997. Volatile allelochemicals released by crucifer green manures. J. Chem. Ecol. 23:2107–2116.

    Google Scholar 

  • von POSER, G. L., MENUT, C., TOFFOLI, M. E., VERIN, P., SOBRAL, M., BESSIERE, J.-M., LAMATY, G., and HENRIQUES, A. T. 1996. Essential oil composition and allelopathic effect of the Brazilian Lamiaceae Hesperozygis ringens (Benth.) Epling and Hesperozygis rhododon Epling. J. Agric. Food Chem. 44:1829–1832.

    Google Scholar 

  • WALLER, G. R. (ed.). 1987. Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330, ACS, Washington, D.C.

    Google Scholar 

  • WALLER, G. R., JURZYSTA, M., and THORNE, R. L. Z. 1993a. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull. Acad. Sin. 34:1–11.

    Google Scholar 

  • WALLER, G. R., WEST, P. R., CHENG, C. S., LING, Y. C., and CHOU, C. H. 1993b. The occurrence of soyasaponin I in Vigna radiata L. (mungbean) sprouts as determined by fast atom bombardment, liquid secondary ion mass spectrometry, and linked scanning at constant B/E MS/MS. Bot. Bull. Acad. Sin. 34:323–334.

    Google Scholar 

  • WALLER, G. R., FENG, M.-C., and FUJI, Y. 1999. Biochemical analysis of allelopathic compounds: Plants, micro-organisms, and soil secondary metabolites, in S. Inderjit, K. M. M. Dakshini, and C. L. Foy (eds.). Principles and Practices of Plant Ecology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • WALLSTEDT, A., NILSSON, M.-C., ODHAM, G., and ZACKRISSON, O. 1997. A method to quantify the allelopathic compound batatasin-III in extracts from Empetrum hermaphroditum using gas chromatography: Applied on extracts from leaves of different ages. J. Chem. Ecol. 23:2345–2355.

    Google Scholar 

  • WEIDENHAMER, J. D. 1996. Distinguishing resource competition and chemical interference: Overcoming the methodological impasse. Agron. J. 88:866–875.

    Google Scholar 

  • WILLIAMSON, G. B., FISCHER, N. H., RICHARDSON, D. R., and DE LA PENA, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub, Conradina canescens. J. Chem. Ecol. 15:1567–1577.

    Google Scholar 

  • WOODWARD, M. D., CORCUERA, L. J., SCHNOES, H. K., HELGESON, J. P., and UPPER, C. D. 1979. Identification of 1,4-benzoxazin-3-ones in maize extracts by gas-liquid chromatography and mass spectrometry. Plant Physiol. 63:9–13.

    Google Scholar 

  • WU, H., HAIG, T., PRATLEY, J., LEMERLE, D., and AN, M. 1999. Simultaneous determination of phenolic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 864:315–321.

    PubMed  Google Scholar 

  • YAMAMOTO, Y. 1995. Allelopathic potential of Anthoxanthum odoratum for invading Zoysia grassland in Japan. J. Chem. Ecol. 21:1365–1373.

    Google Scholar 

  • YAMANE, A., FUJIKURA, J., OGAWA, H., and MIZUTANI, J. 1992a. Isothiocyanates as allelopathic compounds from Rorippa indica Hiern. (Cruciferae) roots. J. Chem. Ecol. 18:1941–1954.

    Google Scholar 

  • YAMANE, A., NISHIMURA, H., and MIZUTANI, J. 1992b. Allelopathy of yellow fieldcress (Rorippa sylvestris): Identification and characterization of phytotoxic constituents. J. Chem. Ecol. 18:683–691.

    Google Scholar 

  • YU, J. Q., and MATSUI, Y. 1993. p-Thiocyanatophenol as a novel allelochemical in exudates from the root of cucumber. Chem. Expr. 8:577–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haig, T. Application of Hyphenated Chromatography–Mass Spectrometry Techniques to Plant Allelopathy Research. J Chem Ecol 27, 2363–2396 (2001). https://doi.org/10.1023/A:1013662412506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013662412506

Navigation