Pasture Quality Monitoring Based on Proximal and Remote Optical Sensors: A Case Study in the Montado Mediterranean Ecosystem
<p>Experimental fields (A and B) and respective sampling locations.</p> "> Figure 2
<p>Cumulative daily rainfall between September 2021 and June 2022.</p> "> Figure 3
<p>Monthly rainfall and monthly mean temperature between July 2015 and June 2022.</p> "> Figure 4
<p>Chronological diagram of data collection carried out during the vegetative cycle of 2021/2022.</p> "> Figure 5
<p>Sampling areas (e.g., A9 Pixel): (i) Sentinel-2 pixel; (ii) proximal sensing (PS); and (iii) field pasture collection.</p> "> Figure 6
<p>Pasture quality parameters: patterns of the vegetative cycle of 2021/2022. PMC—Pasture moisture content; CP—Crude protein; NDF—Neutral detergent fibre; NDVI<sub>PS</sub>—Normalized difference vegetation index measured by proximal sensing.</p> "> Figure 7
<p>Normalized difference vegetation index (NDVI) time-series: mean of the records obtained by remote sensing (RS) between 21 September 2021 and 8 June 2022. The arrow indicated the four dates of pasture sampling (from PS1 to PS4). (a) NDVI stable period; (b) NDVI recovery.</p> "> Figure 8
<p>Normalized difference vegetation index (NDVI): correlation between proximal sensing (NDVI<sub>PS</sub>) and remote sensing (NDVI<sub>RS</sub>).</p> "> Figure 9
<p>Correlation between vegetation index values (obtained by proximal sensors, NDVI<sub>PS</sub>, and by remote sensing, NDVI<sub>RS</sub>) and pasture moisture content (PMC).</p> "> Figure 10
<p>Correlation between vegetation index values (obtained by proximal sensors, NDVI<sub>PS</sub>, and by remote sensing, NDVI<sub>RS</sub>) and pasture crude protein (CP).</p> "> Figure 11
<p>Correlation between vegetation index values (obtained by proximal sensors, NDVI<sub>PS</sub>, and by remote sensing, NDVI<sub>RS</sub>) and pasture neutral detergent fibre (NDF).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate
2.3. Pasture Parameters
2.3.1. Satellite Remote Sensing Data
2.3.2. Proximal Sensing Data
2.3.3. Pasture Sampling and Analysis
2.4. Statistical Analysis of the Data
3. Results
3.1. Evolution of Pasture Parameters
3.2. NDVI Time Series
3.3. Correlation between Pasture Parameters and NDVI
4. Discussion
4.1. Changes in Pasture Parameters—Impact on the NDVI
4.2. Correlation between Pasture Parameters and NDVI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jaurena, M.; Durante, M.; Devincenzi, T.; Savian, J.V.; Bendersky, D.; Moojen, F.G.; Pereira, M.; Soca, P.; Quadros, F.L.F.; Pizzio, R.; et al. Native grasslands at the core: A new paradigm of intensification for the campos of Southern South America to increase economic and environmental sustainability. Front. Sustain. Food Syst. 2021, 5, 547834. [Google Scholar] [CrossRef]
- Plieninger, T.; Flinzberger, M.L.; Hetman, I.; Horstmannshoff, M.; Reinhard-Kolempas, E.; Topp, G.; Moreno, L.; Huntsinger, L. Dehesas as high nature value farming systems: A social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecol. Soc. 2021, 26, 23. [Google Scholar] [CrossRef]
- Pinto-Correia, T.; Ferraz-de-Oliveira, I.; Guimarães, M.; Sales-Baptista, E.; Pinto-Cruz, C.; Godinho, C.; Vieira Santos, R. Result-based payments as a tool to preserve the High Nature Value of complex silvo-pastoral systems: Progress toward farm-based indicators. Ecol. Soc. 2022, 27, 39. [Google Scholar] [CrossRef]
- Raab, C.; Riesch, F.; Tonn, B.; Barrett, B.; Meißner, M.; Balkenhol, N.; Isselstein, J. Target-oriented habitat and wildlife management: Estimating forage quantity and quality of semi-natural grasslands with Sentinel-1 and Sentinel-2 data. Remote Sens. Ecol. Con. 2020, 6, 381–398. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Moreno, A.M.G.; Hidalgo-Fernández, M.A.T.; Leal-Murillo, J.R.; Oar, B.A.; Gámez-Giráldez, P.J.; GonzálezDugo, M.P.; Fernández-Rebollo, P. Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands. Sci. Total Environ. 2021, 791, 148101. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barret, B.; Green, S. Satellite remote sensing of grasslands: From observation to management—A review. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Lugassi, R.; Zaady, E.; Goldshleger, N.; Shoshany, M.; Chudnovsky, A. Spatial and temporal monitoring of pasture ecological quality: Sentinel-2-based estimation of crude protein and neutral detergent fiber contents. Remote Sens. 2019, 11, 799. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Roma, L.; Shahidian, S.; Belo, A.; Carreira, E.; Paniagua, L.L.; Moral, F.; Paixão, L.; Marques da Silva, J. A technological approach to support extensive livestock management in the portuguese Montado ecosystem. Agronomy 2022, 12, 1212. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Morais, T.; Teixeira, R.; Domingos, T. Spatiotemporal patterns of pasture quality based on NDVI time-series in Mediterranean Montado ecosystem. Remote Sens. 2021, 13, 3820. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M.; Paixão, L.; Carreira, E.; Pereira, A.; Carvalho, M. Climate changes challenges to the management of Mediterranean Montado ecosystem: Perspectives for use of precision agriculture technologies. Agronomy 2020, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Pullanagari, R.; Yule, I.; Tuohy, M.; Hedley, M.; Dynes, R.; King, W. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2013, 68, 110–119. [Google Scholar] [CrossRef]
- Duranovich, F.N.; Yule, I.J.; Lopez-Villalobos, N.; Shadbolt, N.M.; Draganova, I.; Morris, S.T. Using proximal hyperspectral sensing to predict herbage nutritive value for dairy farming. Agronomy 2020, 10, 1826. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Bernardi, A.C.C.; Bosi, C.; Crippa, P.H.; Santos, P.M.; Nardachione, E.C. Assessment of Piatã palisadegrass forage mass in integrated livestock production systems using a proximal canopy reflectance sensor. Eur. J. Agron. 2019, 103, 1301–1339. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M. Monitoring seasonal pasture quality degradation in the Mediterranean montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef] [Green Version]
- Gozdowski, D.; Stępień, M.; Panek, E.; Varghese, J.; Bodecka, E.; Rozbicki, J.; Samborski, S. Comparison of winter wheat NDVI data derived from Landsat 8 and active optical sensor at field scale. Remote Sens. Appl. Soc. Environ. 2020, 20, 100409. [Google Scholar] [CrossRef]
- Mezera, J.; Lukas, V.; Horniaček, I.; Smutný, V.; Elbl, J. Comparison of proximal and remote sensing for the diagnosis of crop status in site-specific crop management. Sensors 2022, 22, 19. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Costa, F.; Carreira, E.; Pereira, A.; Carvalho, M. Can soil pH correction reduce the animal supplementation needs in the critical autumn period in Mediterranean Montado ecosystem? Agronomy 2021, 11, 514. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources. Food and Agriculture Organization of the United Nations, World Soil Resources Reports N 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- ESA (European Space Agency). S2 MPC: Sen2Cor Configuration and User Manual; Ref. S2-PDGS-MPC-L2ASUM-V2.5.5; ESA (European Space Agency): Paris, France, 2018. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2005. [Google Scholar]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting forage quality of grasslands using UAV-borne imaging spectroscopy. Remote Sens. 2020, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Efe Serrano, J. Pastures in Alentejo: Technical Basis for Characterization, Grazing and Improvement; (In Portuguese). Universidade de Évora—ICAM: Évora, Portugal, 2006; pp. 165–178. [Google Scholar]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean agro-silvo-pastoral system. Water 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Donkor, N.T.; Gedir, J.V.; Hudson, R.J.; Bork, E.W.; Chanasyk, D.S.; Naeth, M.A. Impacts of grazing systems on soil compaction and pasture production in Alberta. Can. J. Soil Sci. 2002, 82, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Chen, H.; Wu, B.; Nasanbat, E.; Yan, N.; Davdai, B. A practical satellite-derived vegetation drought index for arid and semi-arid grassland drought monitoring. Remote Sens. 2021, 13, 414. [Google Scholar] [CrossRef]
- Zhao, D.; Starks, P.; Brown, M.; Phillips, W.; Coleman, S. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance. Grassl. Sci. 2007, 53, 39–49. [Google Scholar] [CrossRef]
- Albayrak, S. Use of reflectance measurements for the detection of N, P, K, ADF and NDF contents in Sainfoin pasture. Sensors 2008, 8, 7275–7286. [Google Scholar] [CrossRef] [Green Version]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2017, 73, 1–14. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Machado, E.; Paniagua, L.L.; Carreira, E.; Moral, F.; Pereira, A.; de Carvalho, M. Floristic composition: Dynamic biodiversity indicator of tree canopy effect on dryland and improved Mediterranean pastures. Agriculture 2021, 11, 1128. [Google Scholar] [CrossRef]
Parameter (Date) | Mean ± SD | Range |
---|---|---|
Date 1 (21 December 2021) | ||
PMC, % | 83.9 ± 5.7 | 69.2–89.7 |
CP, % | 19.3 ± 6.1 | 7.5–28.3 |
NDF, % | 44.0 ± 12.2 | 29.5–68.1 |
NDVI PS | 0.709 ± 0.082 | 0.500–0.833 |
NDVI RS (15 December 2021) * | 0.591 ± 0.077 | 0.400–0.710 |
Date 2 (09 March 2022) | ||
PMC, % | 80.1 ± 3.9 | 74.3–85.5 |
CP, % | 13.8 ± 2.4 | 11.0–18.1 |
NDF, % | 46.9 ± 7.0 | 32.7–56.2 |
NDVI PS | 0.663 ± 0.060 | 0.538–0.754 |
NDVI RS (10 March 2022) * | 0.580 ± 0.051 | 0.513–0.659 |
Date 3 (29 April 2022) | ||
PMC, % | 82.6 ± 3.2 | 75.5–86.2 |
CP, % | 14.1 ± 2.7 | 9.5–17.4 |
NDF, % | 49.6 ± 4.6 | 43.6–58.5 |
NDVI PS | 0.727 ± 0.063 | 0.600–0.799 |
NDVI RS (29 April 2022) * | 0.597 ± 0.042 | 0.525–0.643 |
Date 4 (02 June 2022) | ||
PMC, % | 33.0 ± 7.1 | 28.0–38.0 |
CP, % | 7.9 ± 2.1 | 6.5–9.4 |
NDF, % | 62.0 ± 1.3 | 61.0–62.9 |
NDVI PS | 0.282 ± 0.026 | 0.263–0.300 |
NDVI RS (24 May 2022) * | 0.257 ± 0.032 | 0.211–0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Mendes, S.; Shahidian, S.; Marques da Silva, J. Pasture Quality Monitoring Based on Proximal and Remote Optical Sensors: A Case Study in the Montado Mediterranean Ecosystem. AgriEngineering 2023, 5, 380-394. https://doi.org/10.3390/agriengineering5010025
Serrano J, Mendes S, Shahidian S, Marques da Silva J. Pasture Quality Monitoring Based on Proximal and Remote Optical Sensors: A Case Study in the Montado Mediterranean Ecosystem. AgriEngineering. 2023; 5(1):380-394. https://doi.org/10.3390/agriengineering5010025
Chicago/Turabian StyleSerrano, João, Sara Mendes, Shakib Shahidian, and José Marques da Silva. 2023. "Pasture Quality Monitoring Based on Proximal and Remote Optical Sensors: A Case Study in the Montado Mediterranean Ecosystem" AgriEngineering 5, no. 1: 380-394. https://doi.org/10.3390/agriengineering5010025
APA StyleSerrano, J., Mendes, S., Shahidian, S., & Marques da Silva, J. (2023). Pasture Quality Monitoring Based on Proximal and Remote Optical Sensors: A Case Study in the Montado Mediterranean Ecosystem. AgriEngineering, 5(1), 380-394. https://doi.org/10.3390/agriengineering5010025