Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy
"> Figure 1
<p>Map of Germany (<b>a</b>) and the areas with the location of grasslands investigated in the study (<b>b</b>,<b>c</b>). MHM, mountain hay meadow; NSG, <span class="html-italic">Nardus stricta</span> grassland. MHML, MHM invaded by <span class="html-italic">Lupinus polyphyllus</span>; NSGL, NSG invaded by <span class="html-italic">Lupinus polyphyllus</span>; LHM, lowland hay meadow; IMG, intensively managed grassland.</p> "> Figure 2
<p>The unmanned aerial vehicle (UAV) and the Cubert camera used in the study.</p> "> Figure 3
<p>The workflow for processing the UAV-borne spectral images to obtain a single geo-referenced ortho-mosaic.</p> "> Figure 4
<p>The model building workflow. (PLSR: partial least squares regression, RFR: random forest regression, GPR: Gaussian processes regression, SVR: support vector regression, CBR: cubist regression, nRMSE: normalised RMSE).</p> "> Figure 5
<p>Distribution of crude protein (CP) (<b>a</b>) and acid detergent fibre (ADF) (<b>b</b>) concentrations in the harvested biomass of different grasslands.</p> "> Figure 6
<p>Normalised mean spectral reflectance for CP (<b>a</b>) and ADF (<b>b</b>) concentration data for all 1 m<sup>2</sup> sampling plots.</p> "> Figure 7
<p>Correlogram for CP (<b>a</b>) and ADF (<b>b</b>) between original, normalised, derivative reflectance, and continuum removal band depth data.</p> "> Figure 8
<p>Normalised RMSE<sub>p</sub> distribution for CP (<b>a</b>) and ADF (<b>b</b>) concentrations in different grasslands for each predictive algorithm model (CBR: cubist regression, GPR: Gaussian processing regression, PLSR: partial least squares regression, RFR: random forest regression).</p> "> Figure 9
<p>Observation versus prediction scatter plots from the SVR model for CP (<b>a</b>) and the CBR model for ADF (<b>b</b>) concentrations in different grasslands. Colours represent different grasslands. The black line is the 1:1 line, and the blue line represents the linear regression line between observed and predicted values.</p> "> Figure 10
<p>Forage quality prediction maps for the intensively managed grassland (IMG). The first row is the hyperspectral mosaic in the true colour composite (R: 606 nm, G: 546 nm, B: 482 nm) for different sampling dates (<b>a</b>–<b>c</b>). Predicted CP and ADF maps are shown in the second (<b>d</b>–<b>f</b>) and third rows (<b>g</b>–<b>i</b>), respectively. Columns represent different cutting dates. The value range in the colour scale is different for each quality parameter. White spots in the map represent no data pixels.</p> "> Figure 11
<p>Forage quality prediction maps for the mountain hay meadow invaded by <span class="html-italic">Lupinus polyphyllus</span> (MHML). The first row is the hyperspectral mosaic in the true colour composite (R: 606 nm, G: 546 nm, B: 482 nm) for different sampling dates (<b>a</b>–<b>c</b>). Predicted CP and ADF maps are shown in the second (<b>d</b>–<b>f</b>) and third rows (<b>g</b>–<b>i</b>), respectively. Columns represent different cutting dates. The value range in the colour scale is different for each quality parameter. White spots in the map represent no data pixels. The 64 m<sup>2</sup> small plot boundaries are in green colour.</p> "> Figure 12
<p>Scatter plots between predicted CP and ADF from MHML’s small plots harvested on 13 June (<b>a</b>), 27 June (<b>b</b>), and 11 July (<b>c</b>). The marginal histogram shows the distribution of each axis value.</p> "> Figure A1
<p>Wavelength importance for two models. The higher the important variable score, the higher the importance of the wavelength.</p> ">
Abstract
:1. Introduction
- To understand the relationship between forage quality parameters (CP and ADF) and spectral reflectance;
- To develop models for CP and ADF estimation from imaging spectroscopy data and to evaluate models;
- To create field-level CP and ADF maps for grasslands and describe the spatial and temporal variation of forage quality.
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. The UAV-Borne Imaging Spectroscopy System
2.2.2. Spectral Images and Forage Quality Data
2.2.3. From Image Cubes to Digital Ortho-Mosaic
2.3. Data Analysis
2.3.1. The Relationship between Reflectance Data and Forage Quality
2.3.2. Forage Quality Modelling with Full Spectral Data
2.3.3. Forage Quality Prediction Maps
3. Results
3.1. Forage Quality Data
3.2. Imaging Spectroscopy Data
3.3. Linear Modelling with Individual Bands and Spectral Indices (Spectral Features)
3.4. Predictive Modelling with Full Spectral Data
3.4.1. The Best Predictive Modelling Algorithm
3.4.2. Final Models
3.5. Forage Quality Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Appendix A
References
- Huyghe, C.; De Vliegher, A.; van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Huyghe, C., De Vliegher, A., van Gils, B., Peeters, A., Eds.; Quae Editor: Versailles, France, 2014; ISBN 9782759221578. [Google Scholar]
- Lesschen, J.P.; Elbersen, B.S.; Hazeu, G.W.; van Doorn, A.; Mucher, C.A.; Velthof, G.L. Defining and Classifying Grasslands in Europe—Task 1; Wageningen Environmental Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- t’Mannetje, L.; Jones, R. Field and Laboratory Methods for Grassland and Animal Production Research; t’Mannetje, L., Jones, R., Eds.; CABI Publishing: Oxon, UK, 2000; ISBN 0-85199-351-6. [Google Scholar]
- Heather, R.; Nature, E. Grassland Monitoring. In Lowland Grassland Management Handbook; Crofts, A., Jefferson, R.G., Eds.; English Nature: Peterborough, UK, 1999; Volume 2, pp. 15:1–15:21. ISBN 1857164431. [Google Scholar]
- Wachendorf, M. Advances in remote sensing for monitoring grassland and forage production. In Improving Grassland and Pasture Management in Temperate Agriculture; Marshal, A., Collins, R., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018. [Google Scholar]
- Horrocks, R.D.; Vallentine, J.F. Forage quality—the basics. In Harvested Forage; Horrocks, R.D., Vallentine, J.F., Eds.; Acdemic Press: San Diego, CA, USA, 1999; pp. 17–47. ISBN 9780977304561. [Google Scholar]
- Gibson, D.J. Grasses and Grassland Ecology, 1st ed.; Oxford University Press: Oxford, UK, 2009; ISBN 9780198529187. [Google Scholar]
- Frame, J.; Laidlaw, A.S. Feeding value of grass. In Improved Grassland Management; Frame, J., Laidlaw, A.S., Eds.; Corwood Press: Wiltshire, UK, 2011; pp. 167–180. ISBN 9781847972613. [Google Scholar]
- Numata, I. Characterization on pastures using field and imaging spectrometers. In Hyperspectral Remote Sensing of Vegetation; Prasad, S.T., John, G.L., Alfredo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 207–225. [Google Scholar]
- Möckel, T. Hyperspectral and Multispectral Remote Sensing for Mapping Grassland Vegetation; Department of Physical Geography and Ecosystem Science, Lund University: Lund, Skåne, 2015; ISBN 978-91-85793-46-4. [Google Scholar]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2017, 73, 1–14. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management–A review. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Milton, E.J. Principles of field spectroscopy. Int. J. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Biewer, S.; Fricke, T.; Wachendorf, M. Development of canopy reflectance models to predict forage quality of legume-grass mixtures. Crop Sci. 2009, 49, 1917–1926. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture. Precis. Agric. 2012, 13, 351–369. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Schlerf, M.; Heitkönig, I.M.A.; Mathieu, R.; Cho, M.A. Savanna grass nitrogen to phosphorous ratio estimation using field spectroscopy and the potential for estimation with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 334–343. [Google Scholar] [CrossRef]
- Safari, H.; Fricke, T.; Wachendorf, M. Determination of fibre and protein content in heterogeneous pastures using field spectroscopy and ultrasonic sward height measurements. Comput. Electron. Agric. 2016, 123, 256–263. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Ferwerda, J.G.; Mutanga, O.; Van Wieren, S.E.; Peel, M.; Grant, R.C.; Prins, H.H.T.; Balcik, F.B.; Venus, V. Forage quality of savannas—Simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sens. Environ. 2010, 114, 64–72. [Google Scholar] [CrossRef]
- Knox, N.M.; Skidmore, A.K.; Prins, H.H.T.; Asner, G.P.; van der Werff, H.M.; de Boer, W.F.; van der Waal, C.; de Knegt, H.J.; Kohi, E.M.; Slotow, R.; et al. Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sens. Environ. 2011, 115, 1478–1488. [Google Scholar] [CrossRef]
- Hakala, T.; Viljanen, N.; Honkavaara, E.; Näsi, R.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70. [Google Scholar]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating plant traits of grasslands from UAV-acquired hyperspectral images: A comparison of statistical approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Näsi, R.; Viljanen, N.; Kaivosoja, J.; Alhonoja, K.; Hakala, T.; Markelin, L.; Honkavaara, E. Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features. Remote Sens. 2018, 10, 1082. [Google Scholar] [CrossRef] [Green Version]
- Wijesingha, J.; Moeckel, T.; Hensgen, F.; Wachendorf, M. Evaluation of 3D point cloud-based models for the prediction of grassland biomass. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 352–359. [Google Scholar] [CrossRef]
- Grüner, E.; Astor, T.; Wachendorf, M. Biomass prediction of heterogeneous temperate grasslands using an SfM approach based on UAV imaging. Agronomy 2019, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Durante, M.; Oesterheld, M.; Piñeiro, G.; Vassallo, M.M. Estimating forage quantity and quality under different stress and senescent biomass conditions via spectral reflectance. Int. J. Remote Sens. 2014, 35, 2963–2981. [Google Scholar] [CrossRef]
- Castro, P.A.; Garbulsky, M.F. Spectral normalized indices related with forage quality in temperate grasses: Scaling up from leaves to canopies. Int. J. Remote Sens. 2018, 39, 3138–3163. [Google Scholar] [CrossRef]
- Zengeya, F.M.; Mutanga, O.; Murwira, A. Linking remotely sensed forage quality estimates from worldview-2 multispectral data with cattle distribution in a savanna landscape. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 513–524. [Google Scholar] [CrossRef]
- Starks, P.J.; Coleman, S.W.; Phillips, W.A. Determination of forage chemical composition using remote sensing. J. Range Manag. 2004, 57, 635–640. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitkönig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 27–40. [Google Scholar] [CrossRef]
- Safari, H.; Fricke, T.; Reddersen, B.; Möckel, T.; Wachendorf, M. Comparing mobile and static assessment of biomass in heterogeneous grassland with a multi-sensor system. J. Sens. Sens. Syst. 2016, 5, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Mutanga, O.; Mafongoya, P.; Peerbhay, K. Remote sensing of key grassland nutrients using hyperspectral techniques in KwaZulu-Natal, South Africa. J. Appl. Remote Sens. 2017, 11, 036005. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Skidmore, A.K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sens. Environ. 2004, 90, 104–115. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Cubert S185; Cubert GmbH: Ulm, Germany, 2016.
- Copter Squad. RTK-X8 Hyperspectral Mapping; Cubert GmbH: Ulm, Germany, 2018. [Google Scholar]
- Yang, G.; Li, C.; Wang, Y.; Yuan, H.; Feng, H.; Xu, B.; Yang, X. The DOM generation and precise radiometric calibration of a UAV-mounted miniature snapshot hyperspectral imager. Remote Sens. 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modelling; Tokyo, Japan, 2019. Available online: https://rdrr.io/cran/raster/ (accessed on 27 December 2019).
- AgiSoft LLC. AgiSoft PhotoScan Professional 2018. Available online: https://www.agisoft.com/ (accessed on 27 December 2019).
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral-spatial hyperspectral image classification with weighted markov random fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J. Technical note A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006; ISBN 026218253X. [Google Scholar]
- Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Regression; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Smola, A. Regression Estimation with Support Vector Learning Machines; Technische Universität München: Munich, Germany, 1996. [Google Scholar]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Fuzzy Sets Syst. 2003, 138, 271–281. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Simplifying decision trees. Int. J. Hum. Comput. Stud. 1999, 51, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Learning with Continuous Classes, Proceedings of the AI’92, Hobart, Tasmania, 16–18 November 1992; Adams, A., Sterling, L., Eds.; World Scientific: Singapore, 1992. [Google Scholar]
- Quinlan, J.R. Combining instance-based and model-based learning. In Proceedings of the Tenth International Conference on International Conference on Machine Learning, aAmherst, MA, USA, 27–29 June 1993; Kaufmann, M., Ed.; Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA, 2006; Volume 93, pp. 236–243. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modelling; Springer: New York, NY, USA, 2013; ISBN 1461468485. [Google Scholar]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. Comput. Res. Repos. 2018, 1811, 12808. [Google Scholar]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; The R Core Team; et al. Caret: Classification and Regression Training 2018; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Kvalseth, T.O. Cautionary note about R2. Am. Stat. 1985, 39, 279–285. [Google Scholar]
- Otto, S.A. How to normalize the RMSE. Available online: https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/ (accessed on 30 May 2019).
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, S.; Wong, M.; Ho, H.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.; Pun, L. Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Keller, S.; Maier, P.M.; Riese, F.M.; Norra, S.; Holbach, A.; Börsig, N.; Wilhelms, A.; Moldaenke, C.; Zaake, A.; Hinz, S. Hyperspectral data and machine learning for estimating CDOM, chlorophyll a, diatoms, green algae and turbidity. Int. J. Environ. Res. Public Health 2018, 15, 1881. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Watanabe, N.; Sakanoue, S.; Inoue, Y. Estimating forage biomass and quality in a mixed sown pasture based on partial least squares regression with waveband selection. Grassl. Sci. 2008, 54, 131–145. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
Field ID | Vegetation Type | Location (m.a.s.l.) | Short Description |
---|---|---|---|
MHM1 | Mountain hay meadow | Werra-Meißner district (684) | Nature conservation grassland late harvest, no fertilisation |
MHM2 | Mountain hay meadow | Biosphere Reserve “Rhön” (739) | Nature conservation grassland late harvest, no fertilisation |
NSG1 | Nardus stricta grassland | Werra-Meißner district (718) | Nature conservation grassland late harvest, no fertilisation |
NSG2 | Nardus stricta grassland | Biosphere Reserve “Rhön” (822) | Nature conservation grassland late harvest, no fertilisation |
MHML | Former Mountain hay meadow invaded by Lupinus polyphyllus | Biosphere Reserve “Rhön” (839) | Nature conservation grassland late harvest, no fertilisation |
NSGL | Former Nardus stricta grassland invaded by Lupinus polyphyllus | Biosphere Reserve “Rhön” (846) | Nature conservation grassland late harvest, no fertilisation |
LHM | Lowland hay meadow | Werra-Meißner district (135) | Extensive alluvial grassland, no fertilisation |
IMG | Seeded grassland | Werra-Meißner district (199) | Intensive grassland, fertilised |
Field ID | Harvest | Sampling Date | No. of Quality Samples |
---|---|---|---|
MHM1 | First cut | 13 July | 20 † |
NSG1 | First cut | 14 July | 19 † |
MHM2, NSG2, MHML, NSGL | First cut | 13 June | 20 ‡ (5, 5, 5, 5) |
MHM2, NSG2, MHML, NSGL | First cut | 27 June | 20 ‡ (5, 5, 5, 5) |
MHM2, NSG2, MHML, NSGL | First cut | 11 July | 20 ‡ (5, 5, 5, 5) |
LHM | First cut | 28 May | 20 † |
Second cut | 24 September | 15 † | |
IHM | First cut | 10 May | 20 † |
Second cut | 6 June | 20 † | |
Third cut | 1 August | 20 † |
Algorithm | Description | Reference |
---|---|---|
PLSR | Partial least squares regression builds a linear regression model on the data projected in a space, based on nonlinear iterative partial least squares | [46] |
GPR | Gaussian processes regression finds a regression solution based on a probabilistic approach | [47,48] |
RFR | Random forest is an ensemble method consisting of decision trees and bagging | [49] |
SVR | Support vector regression builds linear regression models in a high-dimensional feature space | [50,51,52] |
CBR | Cubist is a rule-based regression technique with boosting functionality | [53,54,55] |
Descriptive Statistic Value | CP (%DM) | ADF (%DM) |
---|---|---|
n | 194 | 194 |
Min | 5.14 | 22.50 |
Max | 23.35 | 38.54 |
Range | 18.21 | 16.04 |
Median | 9.84 | 30.84 |
Mean | 11.20 | 30.77 |
Variance | 16.29 | 10.57 |
Standard deviation | 4.04 | 3.25 |
Coefficient of variation | 36% | 11% |
Forage Quality Parameter | Spectral Feature | λ1 | λ2 | adj.R2 |
---|---|---|---|---|
CP | Single band | 718 nm | - | 0.33 *** |
NDSI | 626 nm | 486 nm | 0.42 *** | |
SR | 626 nm | 490 nm | 0.40 *** | |
ADF | Single band | 794 nm | - | 0.23 *** |
NDSI | 630 nm | 486 nm | 0.34 *** | |
SR | 630 nm | 490 nm | 0.33 *** |
Forage Quality Parameter | Algorithm | Median R2p | Median RMSEp (%DM) | SD RMSEp (%DM) | Median nRMSEp |
---|---|---|---|---|---|
CP | PLSR | 0.48 | 3.0 | 0.36 | 16.5% |
GPR | 0.73 | 2.3 | 0.33 | 12.4% | |
RFR | 0.74 | 2.1 | 0.38 | 11.5% | |
SVR | 0.79 | 1.9 | 0.29 | 10.6% | |
CBR | 0.77 | 1.9 | 0.45 | 10.4% | |
ADF | PLSR | 0.39 | 2.6 | 0.31 | 16.4% |
GPR | 0.51 | 2.3 | 0.25 | 14.5 % | |
RFR | 0.52 | 2.3 | 0.24 | 14.5% | |
SVR | 0.50 | 2.3 | 0.26 | 14.5% | |
CBR | 0.56 | 2.2 | 0.23 | 13.4% |
Algorithm | Hyper-Parameter | Best for CP | Best for ADF |
---|---|---|---|
PLSR | ncomp | 6 | 7 |
GPR | sigma | 0.045 | 0.040 |
RFR | mtry | 20 | 20 |
SVR | sigma | 0.035 | 0.025 |
cost | 20 | 4 | |
CBR | committees | 91 | 91 |
neighbours | 5 | 9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 2020, 12, 126. https://doi.org/10.3390/rs12010126
Wijesingha J, Astor T, Schulze-Brüninghoff D, Wengert M, Wachendorf M. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sensing. 2020; 12(1):126. https://doi.org/10.3390/rs12010126
Chicago/Turabian StyleWijesingha, Jayan, Thomas Astor, Damian Schulze-Brüninghoff, Matthias Wengert, and Michael Wachendorf. 2020. "Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy" Remote Sensing 12, no. 1: 126. https://doi.org/10.3390/rs12010126
APA StyleWijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., & Wachendorf, M. (2020). Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sensing, 12(1), 126. https://doi.org/10.3390/rs12010126