Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review
<p>Flowchart illustrating the process of article selection: (<b>A</b>) the PICO (population, intervention, comparison, and outcome) principle and (<b>B</b>) Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. N indicates the number of articles. * Some of the excluded papers met both exclusion criteria, i.e., they were not written in English and did not present experimental studies.</p> "> Figure 2
<p>Research on extracellular vesicles in the male reproductive tracts of livestock species: (<b>A</b>) number of articles published per decade and trend, (<b>B</b>) articles published per country, and (<b>C</b>) articles published per species. * Number of articles that would be published by the end of the current decade.</p> "> Figure 3
<p>(<b>A</b>) Pie charts showing the proportion of research articles that characterized extracellular vesicles in the male reproductive tracts of livestock species according to the Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines, which recommend characterization of three attributes in EV samples: particle abundance, EV markers, and presence of non-EV particles. (<b>B</b>) Histograms showing which of the sEV attributes were characterized. Results are shown for three different time periods (1998–2014; 2015–2018; 2019–2024). These time periods were defined according to the publication of the MISEV guidelines (2014, 2018).</p> "> Figure 4
<p>(<b>A</b>) Distribution of research articles among three categories according to whether they addressed research related to characterization, functionality, or other topics relating to extracellular vesicles in the male reproductive tracts of livestock species. (<b>B</b>) shows the specific research topic of the articles included in each of the three categories above. IVM: in vitro oocyte maturation; IVF: in vitro fertilization.</p> ">
1. Introduction
2. Methods
2.1. Selection of Published Studies
2.2. Screening and Eligibility
2.3. Data Extraction
3. Results
3.1. Search Report
3.2. The Evolution of Publications over Time
3.3. Research Institutions and Publishing Journals
3.4. Livestock Species, Male Reproductive EV Origin, and Subset Differentiation
3.5. Isolation Procedures
3.6. Characterization of Male Reproductive EVs
3.7. Research Topics
3.8. Main Results
3.8.1. Results of the Characterization Studies Relating to sEVs
3.8.2. Results of the Functional Studies on sEVs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto, T.; Kosaka, N.; Ochiya, T. Latest Advances in Extracellular Vesicles: From Bench to Bedside. Sci. Technol. Adv. Mater. 2019, 20, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Stanger, S.J.; Anderson, A.L.; Bernstein, I.R.; De Iuliis, G.N.; McCluskey, A.; McLaughlin, E.A.; Dun, M.D.; Nixon, B. Mechanisms of Tethering and Cargo Transfer during Epididymosome-Sperm Interactions. BMC Biol. 2019, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Rodriguez-Martinez, H.; Padilla, L.; Lucas, X.; Barranco, I. Extracellular Vesicles in Seminal Fluid and Effects on Male Reproduction. An Overview in Farm Animals and Pets. Anim. Reprod. Sci. 2022, 246, 106853. [Google Scholar] [CrossRef] [PubMed]
- Fereshteh, Z.; Bathala, P.; Galileo, D.S.; Martin-DeLeon, P.A. Detection of Extracellular Vesicles in the Mouse Vaginal Fluid: Their Delivery of Sperm Proteins That Stimulate Capacitation and Modulate Fertility. J. Cell. Physiol. 2019, 234, 12745–12756. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiong, Y.; Jiang, H.; Wang, Q.; Hu, X.; Wei, X.; Chen, Q.; Chen, T. Vaginal Extracellular Vesicles Impair Fertility in Endometriosis by Favoring Th17/Treg Imbalance and Inhibiting Sperm Activity. J. Cell. Physiol. 2024, 239, e31188. [Google Scholar] [CrossRef]
- Ibañez-Perez, J.; Díaz-Nuñez, M.; Clos-García, M.; Lainz, L.; Iglesias, M.; Díez-Zapirain, M.; Rabanal, A.; Bárcena, L.; González, M.; Lozano, J.J.; et al. MicroRNA-Based Signatures Obtained from Endometrial Fluid Identify Implantative Endometrium. Hum. Reprod. 2022, 37, 2375–2391. [Google Scholar] [CrossRef]
- Ma, Q.; Beal, J.R.; Bhurke, A.; Kannan, A.; Yu, J.; Taylor, R.N.; Bagchi, I.C.; Bagchi, M.K. Extracellular Vesicles Secreted by Human Uterine Stromal Cells Regulate Decidualization, Angiogenesis, and Trophoblast Differentiation. Proc. Natl. Acad. Sci. USA 2022, 119, e2200252119. [Google Scholar] [CrossRef]
- Harris, E.A.; Stephens, K.K.; Winuthayanon, W. Extracellular Vesicles and the Oviduct Function. Int. J. Mol. Sci. 2020, 21, 8280. [Google Scholar] [CrossRef]
- Alcântara-Neto, A.S.; Schmaltz, L.; Caldas, E.; Blache, M.C.; Mermillod, P.; Almiñana, C. Porcine Oviductal Extracellular Vesicles Interact with Gametes and Regulate Sperm Motility and Survival. Theriogenology 2020, 155, 240–255. [Google Scholar] [CrossRef]
- Nejabati, H.R.; Roshangar, L.; Nouri, M. Follicular Fluid Extracellular Vesicle MiRNAs and Ovarian Aging. Clin. Chim. Acta 2023, 538, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhn, S.; Gad, A.; Ishak, G.M.; Menjivar, N.G.; Gastal, M.O.; Feugang, J.M.; Prochazka, R.; Tesfaye, D.; Gastal, E.L. Dynamics of Extracellular Vesicle-Coupled MicroRNAs in Equine Follicular Fluid Associated with Follicle Selection and Ovulation. Mol. Hum. Reprod. 2023, 29, gaad009. [Google Scholar] [CrossRef]
- Machtinger, R.; Laurent, L.C.; Baccarelli, A.A. Extracellular Vesicles: Roles in Gamete Maturation, Fertilization and Embryo Implantation. Hum. Reprod. Update 2016, 22, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Breton, S.; Nair, A.V.; Battistone, M.A. Epithelial Dynamics in the Epididymis: Role in the Maturation, Protection, and Storage of Spermatozoa. Andrology 2019, 7, 631–643. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Roca, J.; Alvarez-Rodriguez, M.; Martinez-Serrano, C.A. How Does the Boar Epididymis Regulate the Emission of Fertile Spermatozoa? Anim. Reprod. Sci. 2022, 246, 106829. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, H.; Martinez, E.A.; Calvete, J.J.; Peña Vega, F.J.; Roca, J. Seminal Plasma: Relevant for Fertility? Int. J. Mol. Sci. 2021, 22, 4368. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Martinez-Serrano, C.A.; Alvarez-Rodriguez, M.; Martinez, E.A.; Roca, J. Reproductive Physiology of the Boar: What Defines the Potential Fertility of an Ejaculate? Anim. Reprod. Sci. 2024, 269, 107476. [Google Scholar] [CrossRef]
- Barrachina, F.; Battistone, M.A.; Castillo, J.; Mallofré, C.; Jodar, M.; Breton, S.; Oliva, R. Sperm Acquire Epididymis-Derived Proteins through Epididymosomes. Hum. Reprod. 2022, 37, 651–668. [Google Scholar] [CrossRef]
- Skalnikova, H.K.; Bohuslavova, B.; Turnovcova, K.; Juhasova, J.; Juhas, S.; Rodinova, M.; Vodicka, P. Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes 2019, 7, 17. [Google Scholar] [CrossRef]
- Genschmer, K.R.; Russell, D.W.; Lal, C.; Szul, T.; Bratcher, P.E.; Noerager, B.D.; Abdul Roda, M.; Xu, X.; Rezonzew, G.; Viera, L.; et al. Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung. Cell 2019, 176, 113–126.e15. [Google Scholar] [CrossRef]
- Bromfeld, J.J. A Role for Seminal Plasma in Modulating Pregnancy Outcomes in Domestic Species. Reproduction 2016, 152, R223–R232. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rodríguez, M.; Martinez-Pastor, F. Molecular Determinants of Seminal Plasma on Sperm Biology and Fertility. Int. J. Mol. Sci. 2021, 22, 3555. [Google Scholar] [CrossRef] [PubMed]
- Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. Cells 2020, 9, 1955. [Google Scholar] [CrossRef]
- Parra, A.; Padilla, L.; Lucas, X.; Rodriguez-Martinez, H.; Barranco, I.; Roca, J. Seminal Extracellular Vesicles and Their Involvement in Male (in)Fertility: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 4818. [Google Scholar] [CrossRef]
- Hashem, N.M.; Gonzalez-Bulnes, A. Nanotechnology and Reproductive Management of Farm Animals: Challenges and Advances. Animals 2021, 11, 1932. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, C.; Larson, J.; Lamb, G.C. Impacts of Reproductive Technologies on Beef Production in the United States. Adv. Exp. Med. Biol. 2014, 752, 97–114. [Google Scholar] [CrossRef]
- Ederer, P.; Baltenweck, I.; Blignaut, J.N.; Moretti, C.; Tarawali, S. Affordability of Meat for Global Consumers and the Need to Sustain Investment Capacity for Livestock Farmers. Anim. Front. 2023, 13, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal Experimental Requirements for Definition of Extracellular Vesicles and Their Functions: A Position Statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques Used for the Isolation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey. J. Extracell. Vesicles 2016, 5, 32945. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Guo, Y.; Huang, Y.; Cheng, M.; Wu, X.; Gong, Y. Characterization and Proteomics of Chicken Seminal Plasma Extracellular Vesicles. Reprod. Domest. Anim. 2022, 57, 98–110. [Google Scholar] [CrossRef]
- Barranco, I.; Sanchez-López, C.M.; Bucci, D.; Alvarez-Barrientos, A.; Rodriguez-Martinez, H.; Marcilla, A.; Roca, J. The Proteome of Large or Small Extracellular Vesicles in Pig Seminal Plasma Differs, Defining Sources and Biological Functions. Mol. Cell Proteom. 2023, 22, 100514. [Google Scholar] [CrossRef]
- Padilla, L.; Barranco, I.; Martínez-Hernández, J.; Parra, A.; Parrilla, I.; Pastor, L.M.; Rodriguez-Martinez, H.; Lucas, X.; Roca, J. Extracellular Vesicles Would Be Involved in the Release and Delivery of Seminal TGF-β Isoforms in Pigs. Front. Vet. Sci. 2023, 10, 1102049. [Google Scholar] [CrossRef]
- Barranco, I.; Alvarez-Barrientos, A.; Parra, A.; Martínez-Díaz, P.; Lucas, X.; Roca, J. Immunophenotype Profile by Flow Cytometry Reveals Different Subtypes of Extracellular Vesicles in Porcine Seminal Plasma. Cell Commun. Signal. 2024, 22, 63. [Google Scholar] [CrossRef]
- Martínez-Díaz, P.; Parra, A.; Sanchez-López, C.M.; Casas, J.; Lucas, X.; Marcilla, A.; Roca, J.; Barranco, I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int. J. Mol. Sci. 2024, 25, 7492. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Barranco, I.; Martínez-Díaz, P.; González, E.; Albóniga, O.E.; Cabrera, D.; Falcón-Pérez, J.M.; Roca, J. Cryogenic Electromicroscopy Reveals Morphologically Distinct Subtypes of Extracellular Vesicles among Porcine Ejaculate Fractions. Sci. Rep. 2024, 14, 16175. [Google Scholar] [CrossRef]
- Ding, Y.; Ding, N.; Zhang, Y.; Xie, S.; Huang, M.; Ding, X.; Dong, W.; Zhang, Q.; Jiang, L. MicroRNA-222 Transferred From Semen Extracellular Vesicles Inhibits Sperm Apoptosis by Targeting BCL2L11. Front. Cell Dev. Biol. 2021, 9, 736864. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, Y.; Huang, M.; Liu, J.; Wang, C.; Zhang, C.; Cao, J.; Zhang, Q.; Jiang, L. Circ-CREBBP Inhibits Sperm Apoptosis via the PI3K-Akt Signaling Pathway by Sponging MiR-10384 and MiR-143-3p. Commun. Biol. 2022, 5, 1339. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, J.; Sun, J.; He, J.; Sun, Y.; Yuan, R.; Li, Z. Motility-Related MicroRNAs Identified in Pig Seminal Plasma Exosomes by High-Throughput Small RNA Sequencing. Theriogenology 2024, 215, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, N.; Cao, J.; Zhang, J.; Liu, J.; Zhang, C.; Jiang, L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J. Proteome Res. 2024, 23, 3769–3779. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xie, Y.; Wu, C.; Gu, T.; Zhang, X.; Yang, J.; Yang, H.; Zheng, E.; Huang, S.; Xu, Z.; et al. The Effects of Boar Seminal Plasma Extracellular Vesicles on Sperm Fertility. Theriogenology 2024, 213, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jin, Y.; Lv, Y.; Han, Y.; Qu, X.; Zhang, Y.; Li, C.; Jin, Y. Extracellular Vesicles in Porcine Seminal Plasma Maintain Sperm Function by Reducing Lyso-PC. Livest. Sci. 2023, 276, 105298. [Google Scholar] [CrossRef]
- Sakr, O.G.; Gad, A.; Cañón-Beltrán, K.; Cajas, Y.N.; Prochazka, R.; Rizos, D.; Rebollar, P.G. Characterization and Identification of Extracellular Vesicles-Coupled MiRNA Profiles in Seminal Plasma of Fertile and Subfertile Rabbit Bucks. Theriogenology 2023, 209, 76–88. [Google Scholar] [CrossRef]
- Mateo-Otero, Y.; Yeste, M.; Roca, J.; Llavanera, M.; Bucci, D.; Galeati, G.; Spinaci, M.; Barranco, I. Seminal Extracellular Vesicles Subsets Modulate Gene Expression in Cumulus Cells of Porcine in Vitro Matured Oocytes. Sci. Rep. 2022, 12, 19096. [Google Scholar] [CrossRef]
- Barranco, I.; Spinaci, M.; Nesci, S.; Mateo-Otero, Y.; Baldassarro, V.A.; Algieri, C.; Bucci, D.; Roca, J. Seminal Extracellular Vesicles Alter Porcine in Vitro Fertilization Outcome by Modulating Sperm Metabolism. Theriogenology 2024, 219, 167–179. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, Y.; Cui, Z.; Chang, S.; Zhao, P. Semen-Derived Exosomes Mediate Immune Escape and Transmission of Reticuloendotheliosis Virus. Front. Immunol. 2021, 12, 735280. [Google Scholar] [CrossRef]
- Liao, L.; Chen, W.; Zhang, X.; Zhang, H.; Li, A.; Yan, Y.; Xie, Z.; Li, H.; Lin, W.; Ma, J.; et al. Semen Extracellular Vesicles Mediate Vertical Transmission of Subgroup J Avian Leukosis Virus. Virol. Sin. 2022, 37, 284–294. [Google Scholar] [CrossRef]
- Carossino, M.; Dini, P.; Kalbfleisch, T.S.; Loynachan, A.T.; Canisso, I.F.; Shuck, K.M.; Timoney, P.J.; Cook, R.F.; Balasuriya, U.B.R. Downregulation of MicroRNA Eca-Mir-128 in Seminal Exosomes and Enhanced Expression of CXCL16 in the Stallion Reproductive Tract Are Associated with Long-Term Persistence of Equine Arteritis Virus. J. Virol. 2018, 92, e00015-18. [Google Scholar] [CrossRef]
- Schrobback, P.; Dennis, G.; Li, Y.; Mayberry, D.; Shaw, A.; Knight-Jones, T.; Marsh, T.L.; Pendell, D.L.; Torgerson, P.R.; Gilbert, W.; et al. Approximating the Global Economic (Market) Value of Farmed Animals. Glob. Food Secur. 2023, 39, 100722. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.A.; Martinez, C.A.; Cambra, J.M.; Maside, C.; Lucas, X.; Vazquez, J.L.; Vazquez, J.M.; Roca, J.; Rodriguez-Martinez, H.; Gil, M.A.; et al. Achievements and Future Perspectives of Embryo Transfer Technology in Pigs. Reprod. Domest. Anim. 2019, 54, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Bortolozzo, F.P.; Zanin, G.P.; Christ, T.S.; Rech, R.D.; da Rosa Ulguim, R.; Mellagi, A.P.G. Artificial Insemination and Optimization of the Use of Seminal Doses in Swine. Anim. Reprod. Sci. 2024, 18, 107501. [Google Scholar] [CrossRef] [PubMed]
- Jaśkowski, B.M.; Opałka, A.; Gehrke, M.; Herudzińska, M.; Czeladko, J.; Baumgartner, W.; Jaśkowski, J.M. A Critical Overview on Prostaglandin Inhibitors and Their Influence on Pregnancy Results after Insemination and Embryo Transfer in Cows. Animals 2021, 11, 3368. [Google Scholar] [CrossRef]
- Alvarez-Rodriguez, M.; Ljunggren, S.A.; Karlsson, H.; Rodriguez-Martinez, H. Exosomes in Specific Fractions of the Boar Ejaculate Contain CD44: A Marker for Epididymosomes? Theriogenology 2019, 140, 143–152. [Google Scholar] [CrossRef]
- Cordeiro, L.; Lin, H.H.; Carvalho, A.V.; Grasseau, I.; Uzbekov, R.; Blesbois, E. First Insights on Seminal Extracellular Vesicles in Chickens of Contrasted Fertility. Reproduction 2021, 161, 489–498. [Google Scholar] [CrossRef]
- Barranco, I.; Padilla, L.; Parrilla, I.; Álvarez-Barrientos, A.; Pérez-Patiño, C.; Peña, F.J.; Martínez, E.A.; Rodriguez-Martínez, H.; Roca, J. Extracellular Vesicles Isolated from Porcine Seminal Plasma Exhibit Different Tetraspanin Expression Profiles. Sci. Rep. 2019, 9, 11584. [Google Scholar] [CrossRef]
- Monguió-Tortajada, M.; Gálvez-Montón, C.; Bayes-Genis, A.; Roura, S.; Borràs, F.E. Extracellular Vesicle Isolation Methods: Rising Impact of Size-Exclusion Chromatography. Cell Mol. Life Sci. 2019, 76, 2369–2382. [Google Scholar] [CrossRef]
- Théry, C.; Clayton, A.; Amigorena, S.; Raposo, G. Isolation and Characterization of Exosomes from Cell Culture Supernatants. Curr. Protoc. Cell Biol. 2006, 30, 3.22.1–3.22.29. [Google Scholar] [CrossRef]
- Azkargorta, M.; Iloro, I.; Escobes, I.; Cabrera, D.; Falcon-Perez, J.M.; Elortza, F.; Royo, F. Human Serum Extracellular Vesicle Proteomic Profile Depends on the Enrichment Method Employed. Int. J. Mol. Sci. 2021, 22, 11144. [Google Scholar] [CrossRef]
- Webber, J.; Clayton, A. How Pure Are Your Vesicles? J. Extracell. Vesicles 2013, 2, 19861. [Google Scholar] [CrossRef] [PubMed]
- Baranyai, T.; Herczeg, K.; Onódi, Z.; Voszka, I.; Módos, K.; Marton, N.; Nagy, G.; Mäger, I.; Wood, M.J.; El Andaloussi, S.; et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE 2015, 10, e0145686. [Google Scholar] [CrossRef] [PubMed]
- Linares, R.; Tan, S.; Gounou, C.; Arraud, N.; Brisson, A.R. High-Speed Centrifugation Induces Aggregation of Extracellular Vesicles. J. Extracell. Vesicles 2015, 4, 29509. [Google Scholar] [CrossRef] [PubMed]
- Monguió-Tortajada, M.; Morón-Font, M.; Gámez-Valero, A.; Carreras-Planella, L.; Borràs, F.E.; Franquesa, M. Extracellular-Vesicle Isolation from Different Biological Fluids by Size-Exclusion Chromatography. Curr. Protoc. Stem. Cell Biol. 2019, 49, e82. [Google Scholar] [CrossRef]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Robertson, S.A.; Ingman, W.V.; O’Leary, S.; Sharkey, D.J.; Tremellen, K.P. Transforming Growth Factor β—A Mediator of Immune Deviation in Seminal Plasma. J. Reprod. Immunol. 2002, 57, 109–128. [Google Scholar] [CrossRef]
Authors and Reference | Species | EV Isolation Procedure | EV Characterization Techniques | Research Topic | Main Conclusion |
---|---|---|---|---|---|
Skalnikova et al. [19] | Porcine | Serial centrifugations and UC | TEM, flow cytometry (CFSE), Western blot (TSG101, Alix, lamin A/C, β-tubulin, UQCRC1) | Characterization of EVs isolated from blood plasma, cerebrospinal fluid, and seminal plasma | Seminal plasma is richer in EVs than are cerebrospinal fluid and blood plasma |
Luo et al. [33] | Chicken | Precipitation and UC | BCA protein assay, TEM, SEM, NTA, Western blot (TSG101, CD9, CD63, CD81, CD44, HSP70, calnexin) | Proteomic characterization of chicken sEVs | sEVs contain proteins related to sperm maturation and function |
Barranco et al. [34] | Porcine | Serial centrifugations, ultrafiltration, and SEC | DLS, NTA, TEM, flow cytometry (CD63, HSP90β, albumin) | Proteomic characterization of two differently sized sEV subtypes | Small and large sEVs differ in proteins with biological functional relevance |
Padilla et al. [35] | Porcine | Serial centrifugations, ultrafiltration, and SEC | Micro-BCA protein assay, NTA, DLS, cryo-EM, flow cytometry (CD63, CD44, HSP90β, albumin) | Presence of TGF-β isoforms in sEVs | sEVs carry TGF-β isoforms mainly in the outer coronal layer |
Barranco et al. [36] | Porcine | Serial centrifugations, ultrafiltration, and SEC | BCA protein assay, DLS, TEM, Western blot (albumin), flow cytometry (CFSE, CD9, CD44, CD63, CD81, HSP90β, albumin) | Immunophenotypic characterization of differently sized sEV subsets from different ejaculate fractions | Highly sensitive flow cytometry allows the identification of sEV subsets |
Martínez-Díaz et al. [37] | Porcine | Serial centrifugations, ultrafiltration, and SEC | Micro-BCA protein assay, NTA, DLS, TEM, flow cytometry (CD63, HSP90β, albumin) | Lipidomic characterization of two differently sized sEV subsets | Small and large sEVs show differences in the lipidomic profile |
Parra et al. [38] | Porcine | Serial centrifugations, ultrafiltration, and SEC | Micro-BCA protein assay, cryo-EM, DLS, flow cytometry (CD63, HSP90β, albumin) | Phenotypical characterization of sEV subsets using cryo-EM | sEVs are structurally and morphologically heterogeneous |
Authors and Reference * | Species | EV Isolation Procedure | EV Characterization Techniques | Research Topic | Main Conclusions |
---|---|---|---|---|---|
Ding et al. [39] | Porcine | Centrifugation and UC | TEM, NTA, Western blot (Alix, CD63, TSG101, calnexin) | Role of sEV-associated RNAs and proteins in regulating sperm motility and apoptosis | sEV-miR-222 improves sperm motility and reduces sperm apoptosis |
Ding et al. [40] | Porcine | Serial centrifugations and UC | TEM, NTA, Western blot (calnexin, Alix, TSG101, CD81, CD9) | Role of sEVs in sperm motility | circRNA profile differs between sEVs from boars with high or low sperm motility |
Zhao et al. [41] | Porcine | Centrifugation, UC, and UC with gradients | TEM, NTA, Western blot (HSP70, TSG101, calnexin) | Relationship between miRNA profiles of sEVs and sperm motility | sEV miRNA expression differs between low and high motile sperm samples |
Zhang et al. [42] | Porcine | Serial centrifugations and UC | NTA, TEM, Western blot (TSG101, Alix, CD9, calnexin) | Characterization of the proteomic and metabolomic profile of sEVs from boars with high and low sperm motility | sEVs carry several proteins and metabolites that modulate sperm motility |
Xu et al. [43] | Porcine | Serial centrifugations, UC, and UC with gradients | TEM, NTA, Western blot (CD9, CD63, calnexin), BCA protein assay | Interaction between sEVs and sperm and effects on sperm functionality | sEVs impair acrosome reaction and IVF outcomes |
Chen et al. [44] | Porcine | Serial centrifugations and UC | BCA protein assay, TEM, NTA, Western blot (HSP70, CD63, calnexin) | Role of sEVs in sperm preservation | sEVs inhibit lysophosphatidylcholine metabolism and reduce mitochondrial ROS production |
Sakr et al. [45] | Rabbit | Serial centrifugations, SEC, and ultrafiltration | TEM, NTA, Western blot (HSP70, CD9, Alix, calnexin) | Characterization of the miRNA expression profile of sEVs from rabbit bucks with different fertility status | sEVs from fertile and subfertile rabbits differ in miRNAs related to spermatogenesis and sperm quality |
Mateo-Otero et al. [46] | Porcine | Serial centrifugations, ultrafiltration, and SEC | BCA protein assay, NTA, DLS, TEM, flow cytometry (CFSE, CD44, HSP90β, albumin) | Role of sEVs on cumulus-oocyte complexes during IVM | sEVs bind to cumulus cells but not to oocytes. They do not affect oocyte maturation, but can modulate cumulus cell function |
Barranco et al. [47] | Porcine | Serial centrifugations, ultrafiltration, and SEC | Micro BCA protein assay, cryo-EM, flow cytometry (CD81, HSP90β, albumin) | Effects of sEVs on IVF outcomes | sEVs decrease sperm–ZP binding and impair IVF process |
Su et al. [48] | Chicken | Serial centrifugations, ultrafiltration, precipitation, and immunocapture (CD63) | Western blot (CD9, CD63, Alix, GRP94), TEM, BCA protein assay | Role of sEVs in reticuloendotheliosis virus (REV) transmission | sEVs from REV-positive chickens contain viral genomic RNA and viral proteins |
Liao et al. [49] | Chicken | Serial centrifugations, precipitation, and immunocapture (CD63) | TEM, immunogold labeling (CD63), NTA, Western blot (CD81, CD63, TSG101, GRP78) | Role of sEVs in vertical transmission of avian leukosis subgroup J virus (ALV-J) | sEVs from subgroup ALV-J-infected roosters can transmit ALV-J infection to host cells |
Carossino et al. [50] | Horse | Precipitation | TEM, immunogold labeling (CD9), Western blot (CD9, HSP70, calreticulin) | Role of sEV-associated miRNAs in persistent equine arteritis virus infection | sEV-associated eca-mir-128 modulates CXCL16 expression in the reproductive tract |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Díaz, P.; Parra, A.; Montesdeoca, M.; Barranco, I.; Roca, J. Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals 2024, 14, 3135. https://doi.org/10.3390/ani14213135
Martínez-Díaz P, Parra A, Montesdeoca M, Barranco I, Roca J. Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals. 2024; 14(21):3135. https://doi.org/10.3390/ani14213135
Chicago/Turabian StyleMartínez-Díaz, Pablo, Ana Parra, Marina Montesdeoca, Isabel Barranco, and Jordi Roca. 2024. "Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review" Animals 14, no. 21: 3135. https://doi.org/10.3390/ani14213135
APA StyleMartínez-Díaz, P., Parra, A., Montesdeoca, M., Barranco, I., & Roca, J. (2024). Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals, 14(21), 3135. https://doi.org/10.3390/ani14213135