Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile
<p>Phenotypic characterization of large (L) and small (S) porcine seminal extracellular vesicles (sEVs). Box plots showing (<b>A</b>) total protein concentration and (<b>B</b>) particle concentration measured by nanoparticle tracking analysis. (<b>C</b>) Particle size distribution measured by dynamic light scattering analysis (blue line indicates S-sEVs and red line indicates L-sEVs). (<b>D</b>) Representative transmission electron microscopy images showing the morphology of sEVs. **** <span class="html-italic">p</span> < 0.0001. Box plots: Boxes enclose the 25th and 75th percentiles, whiskers extend to the 5th and 95th percentiles, and line represents median.</p> "> Figure 2
<p>Representative flow cytometry plots (violet side scatter [violet-SSC]/direct side scatter [FSC]) showing CFSE, CD63, HSP90β and albumin positive events in samples of small and large seminal extracellular vesicles (sEVs) isolated from porcine seminal plasma.</p> "> Figure 3
<p>Lipid species identified and quantified in porcine seminal extracellular vesicles distributed by lipid categories (each with a different box color) and lipid classes within each lipid category. The data show the number of lipid species that were identified and quantified. Cer: ceramides; DHCer: dihydroceramides; SM: sphingomyelin; DHSM: dihydrosphingomyelin; HexCer: hexosylceramides; CDH: ceramide dihexoside; PC: phosphatidylcholines; LPC: lyso-phosphatidylcholines; PE: phosphatidylethanolamines; PE O-: ether-linked phosphatidylethanolamines; DG: diacylglycerols; TG: triacylglycerols; FC: free cholesterol; CE: cholesteryl esters.</p> "> Figure 4
<p>Histograms showing the differences between large (L-) and small (S-) seminal extracellular vesicles (sEVs) in the relative abundance of sphingolipids (<b>A</b>), glycerophospholipids (<b>B</b>), glycerolipids (<b>C</b>), and sterol lipids (<b>D</b>). Data are expressed as pmol eq/mg protein and are the mean ± SD. **** <span class="html-italic">p</span> value < 0.0001, ** <span class="html-italic">p</span> value < 0.01.</p> "> Figure 5
<p>Histograms showing the differences between large (L-) and small (S-) porcine seminal extracellular vesicles (sEVs) in the relative abundance of identified and quantified lipid classes distributed by lipid categories: sphingolipids (<b>A</b>), glycerophospholipids (<b>B</b>), glycerolipids (<b>C</b>), and sterol lipids (<b>D</b>). Data are expressed as pmol eq/mg protein and are the mean ± SD. **** <span class="html-italic">p</span> value < 0.0001, *** <span class="html-italic">p</span> value < 0.001, ** <span class="html-italic">p</span> value < 0.01, * <span class="html-italic">p</span> value < 0.05.</p> "> Figure 6
<p>Pie charts and supplementary tables showing the distribution of different categories (<b>A</b>) and classes of lipids (<b>B</b>–<b>E</b>) between small (S-) and large (L-) porcine seminal extracellular vesicles (sEVs). Data in tables show the mean percentage (%) ± SD. **** <span class="html-italic">p</span> value < 0.0001, *** <span class="html-italic">p</span> value < 0.001, ** <span class="html-italic">p</span> value < 0.01, * <span class="html-italic">p</span> value < 0.05, ns <span class="html-italic">p</span> value > 0.05. a, b, c, d, e indicates differences at <span class="html-italic">p</span> < 0.05 between lipid classes within a lipid category. SP: sphingolipids; GP: glycerophospholipids; GL: glycerolipids; ST: sterol lipids; Cer: ceramides; DHCer: dihydroceramides; SM: sphingomyelin; DHSM: dihydrosphingomyelin; HexCer: hexosylceramide; CDH: ceramide dihexoside; PC: phosphatidylcholine; LPC: lyso-phosphatidylcholine; PE: phosphatidylethanolamine; PE O-: ether-linked phosphatidylethanolamine; DG: diacylglycerols; TG: triacylglycerols; FC: free cholesterol; CE: cholesteryl esters.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Characterization of sEVs
2.2. Lipids Identified in sEVs by LC–MS Lipidomic Analysis
2.3. Comparison of Lipidomic Profile between S-sEVs and L-sEVs
3. Discussion
4. Materials and Methods
4.1. Animals and Seminal Plasma Samples
4.2. Isolation of sEVs
4.3. Characterization of sEVs
4.4. Lipidomic Analysis
4.4.1. Determination of Total Protein Concentration
4.4.2. Lipid Extraction
4.4.3. Liquid Chromatography–High-Resolution Mass Spectrometry
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Martinez, H.; Martinez, E.A.; Calvete, J.J.; Peña Vega, F.J.; Roca, J. Seminal Plasma: Relevant for Fertility? Int. J. Mol. Sci. 2021, 22, 4368. [Google Scholar] [CrossRef] [PubMed]
- López Rodríguez, A.; Rijsselaere, T.; Beek, J.; Vyt, P.; Van Soom, A.; Maes, D. Boar Seminal Plasma Components and Their Relation with Semen Quality. Syst. Biol. Reprod. Med. 2013, 59, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Sá, R.; Barros, A.; Sousa, M. Major Regulatory Mechanisms Involved in Sperm Motility. Asian J. Androl. 2017, 19, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rodriguez, M.; Atikuzzaman, M.; Venhoranta, H.; Wright, D.; Rodriguez-Martinez, H. Expression of Immune Regulatory Genes in the Porcine Internal Genital Tract Is Differentially Triggered by Spermatozoa and Seminal Plasma. Int. J. Mol. Sci. 2019, 20, 513. [Google Scholar] [CrossRef]
- Waberski, D.; Schäfer, J.; Bölling, A.; Scheld, M.; Henning, H.; Hambruch, N.; Schuberth, H.J.; Pfarrer, C.; Wrenzycki, C.; Hunter, R.H.F. Seminal Plasma Modulates the Immune-Cytokine Network in the Porcine Uterine Tissue and Pre-Ovulatory Follicles. PLoS ONE 2018, 13, e0202654. [Google Scholar] [CrossRef]
- Barranco, I.; Sanchez-López, C.M.; Bucci, D.; Alvarez-Barrientos, A.; Rodriguez-Martinez, H.; Marcilla, A.; Roca, J. The Proteome of Large or Small Extracellular Vesicles in Pig Seminal Plasma Differs, Defining Sources and Biological Functions. Mol. Cell. Proteom. 2023, 22, 100514. [Google Scholar] [CrossRef]
- Piehl, L.L.; Cisale, H.; Torres, N.; Capani, F.; Sterin-Speziale, N.; Hager, A. Biochemical Characterization and Membrane Fluidity of Membranous Vesicles Isolated from Boar Seminal Plasma. Anim. Reprod. Sci. 2006, 92, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xie, Y.; Zhou, C.; Hu, Q.; Gu, T.; Yang, J.; Zheng, E.; Huang, S.; Xu, Z.; Cai, G.; et al. Expression Pattern of Seminal Plasma Extracellular Vesicle Small RNAs in Boar Semen. Front. Vet. Sci. 2020, 7, 585276. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, H.; Roca, J. Extracellular Vesicles in Seminal Plasma: A Safe and Relevant Tool to Improve Fertility in Livestock? Anim. Reprod. Sci. 2022, 244, 107051. [Google Scholar] [CrossRef]
- Roca, J.; Rodriguez-Martinez, H.; Padilla, L.; Lucas, X.; Barranco, I. Extracellular Vesicles in Seminal Fluid and Effects on Male Reproduction. An Overview in Farm Animals and Pets. Anim. Reprod. Sci. 2022, 246, 106853. [Google Scholar] [CrossRef]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rodriguez, M.; Ljunggren, S.A.; Karlsson, H.; Rodriguez-Martinez, H. Exosomes in Specific Fractions of the Boar Ejaculate Contain CD44: A Marker for Epididymosomes? Theriogenology 2019, 140, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Padilla, L.; Parrilla, I.; Álvarez-Barrientos, A.; Pérez-Patiño, C.; Peña, F.J.; Martínez, E.A.; Rodriguez-Martínez, H.; Roca, J. Extracellular Vesicles Isolated from Porcine Seminal Plasma Exhibit Different Tetraspanin Expression Profiles. Sci. Rep. 2019, 9, 11584. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Monguió-Tortajada, M.; Gálvez-Montón, C.; Bayes-Genis, A.; Roura, S.; Borràs, F.E. Extracellular Vesicle Isolation Methods: Rising Impact of Size-Exclusion Chromatography. Cell. Mol. Life Sci. 2019, 76, 2369–2382. [Google Scholar] [CrossRef]
- Martínez-Díaz, P.; Parra, A.; Sánchez-López, C.M.; Marcilla, A.; Bucci, D.; Roca, J.; Barranco, I. A Size-Exclusion Chromatography-Based Procedure for Isolating Extracellular Vesicle Subsets from Porcine Seminal Plasma. Methods Mol. Biol. 2024, in press. [Google Scholar]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.M.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzás, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Gaud, C.; Sousa, B.C.; Nguyen, A.; Fedorova, M.; Ni, Z.; O’Donnell, V.B.; Wakelam, M.J.O.; Andrews, S.; Lopez-Clavijo, A.F. BioPAN: A Web-Based Tool to Explore Mammalian Lipidome Metabolic Pathways on LIPID MAPS. F1000Research 2021, 10, 4. [Google Scholar] [CrossRef]
- Fyfe, J.; Casari, I.; Manfredi, M.; Falasca, M. Role of Lipid Signalling in Extracellular Vesicles-Mediated Cell-to-Cell Communication. Cytokine Growth Factor Rev. 2023, 73, 20–26. [Google Scholar] [CrossRef]
- Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal Lipid Composition and the Role of Ether Lipids and Phosphoinositides in Exosome Biology. J. Lipid Res. 2019, 60, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Padilla, L.; Lucas, X.; Rodriguez-Martinez, H.; Barranco, I.; Roca, J. Seminal Extracellular Vesicles and Their Involvement in Male (In)Fertility: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 4818. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, S.; Belov, A.M.; Ghiran, I.; Murthy, S.K.; Frank, D.A.; Ivanov, A.R. Mass-Spectrometry-Based Molecular Characterization of Extracellular Vesicles: Lipidomics and Proteomics. J. Proteome Res. 2015, 14, 2367–2384. [Google Scholar] [CrossRef]
- Arienti, G.; Carlini, E.; Polci, A.; Cosmi, E.V.; Palmerini, C.A. Fatty Acid Pattern of Human Prostasome Lipid. Arch. Biochem. Biophys. 1998, 358, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, J.F.; Aalberts, M.; Jansen, J.W.A.; van Niel, G.; Wauben, M.H.; Stout, T.A.E.; Helms, J.B.; Stoorvogel, W. Distinct Lipid Compositions of Two Types of Human Prostasomes. Proteomics 2013, 13, 1660–1666. [Google Scholar] [CrossRef]
- Arienti, G.; Polci, A.; De Cosmo, A.; Saccardi, C.; Carlini, E.; Palmerini, C.A. Lipid Fatty Acid and Protein Pattern of Equine Prostasome-like Vesicles. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 128, 661–666. [Google Scholar] [CrossRef]
- Jung, H.R.; Sylvänne, T.; Koistinen, K.M.; Tarasov, K.; Kauhanen, D.; Ekroos, K. High Throughput Quantitative Molecular Lipidomics. Biochim. Biophys. Acta 2011, 1811, 925–934. [Google Scholar] [CrossRef]
- Chitti, S.V.; Gummadi, S.; Kang, T.; Shahi, S.; Marzan, A.L.; Nedeva, C.; Sanwlani, R.; Bramich, K.; Stewart, S.; Petrovska, M.; et al. Vesiclepedia 2024: An Extracellular Vesicles and Extracellular Particles Repository. Nucleic Acids Res. 2024, 52, D1694–D1698. [Google Scholar] [CrossRef]
- Durcin, M.; Fleury, A.; Taillebois, E.; Hilairet, G.; Krupova, Z.; Henry, C.; Truchet, S.; Trötzmüller, M.; Köfeler, H.; Mabilleau, G.; et al. Characterisation of Adipocyte-Derived Extracellular Vesicle Subtypes Identifies Distinct Protein and Lipid Signatures for Large and Small Extracellular Vesicles. J. Extracell. Vesicles 2017, 6, 1305677. [Google Scholar] [CrossRef]
- Haraszti, R.A.; Didiot, M.C.; Sapp, E.; Leszyk, J.; Shaffer, S.A.; Rockwell, H.E.; Gao, F.; Narain, N.R.; DiFiglia, M.; Kiebish, M.A.; et al. High-Resolution Proteomic and Lipidomic Analysis of Exosomes and Microvesicles from Different Cell Sources. J. Extracell. Vesicles 2016, 5, 32570. [Google Scholar] [CrossRef]
- Kim, Y.B.; Lee, G.B.; Moon, M.H. Size Separation of Exosomes and Microvesicles Using Flow Field-Flow Fractionation/Multiangle Light Scattering and Lipidomic Comparison. Anal. Chem. 2022, 94, 8958–8965. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.C.; Lim, S.K. Membrane Lipids Define Small Extracellular Vesicle Subtypes Secreted by Mesenchymal Stromal Cells. J. Lipid Res. 2019, 60, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J.; Raposo, G. As We Wait: Coping with an Imperfect Nomenclature for Extracellular Vesicles. J. Extracell. Vesicles 2013, 2, 20389. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Alvarez-Barrientos, A.; Parra, A.; Martínez-Díaz, P.; Lucas, X.; Roca, J. Immunophenotype Profile by Flow Cytometry Reveals Different Subtypes of Extracellular Vesicles in Porcine Seminal Plasma. Cell Commun. Signal. 2024, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.V.T.; Witwer, K.W.; Verhaar, M.C.; Strunk, D.; van Balkom, B.W.M. Functional Assays to Assess the Therapeutic Potential of Extracellular Vesicles. J. Extracell. Vesicles 2020, 10, e12033. [Google Scholar] [CrossRef] [PubMed]
- Van Deun, J.; Jo, A.; Li, H.; Lin, H.; Weissleder, R.; Im, H.Y.; Lee, H. Integrated Dual-Mode Chromatography to Enrich Extracellular Vesicles from Plasma. Adv. Biosyst. 2020, 4, e1900310. [Google Scholar] [CrossRef] [PubMed]
- Sódar, B.W.; Kittel, Á.; Pálóczi, K.; Vukman, K.V.; Osteikoetxea, X.; Szabó-Taylor, K.; Németh, A.; Sperlágh, B.; Baranyai, T.; Giricz, Z.; et al. Low-Density Lipoprotein Mimics Blood Plasma-Derived Exosomes and Microvesicles during Isolation and Detection. Sci. Rep. 2016, 6, 24316. [Google Scholar] [CrossRef] [PubMed]
- Peterka, O.; Jirásko, R.; Chocholoušková, M.; Kuchař, L.; Wolrab, D.; Hájek, R.; Vrána, D.; Strouhal, O.; Melichar, B.; Holčapek, M. Lipidomic Characterization of Exosomes Isolated from Human Plasma Using Various Mass Spectrometry Techniques. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158634. [Google Scholar] [CrossRef] [PubMed]
- Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019, 20, 2167. [Google Scholar] [CrossRef]
- Chacko, K.M.; Nouri, M.Z.; Schramm, W.C.; Malik, Z.; Liu, L.P.; Denslow, N.D.; Alli, A.A. Tempol Alters Urinary Extracellular Vesicle Lipid Content and Release While Reducing Blood Pressure during the Development of Salt-Sensitive Hypertension. Biomolecules 2021, 11, 1804. [Google Scholar] [CrossRef]
- Su, H.; Rustam, Y.H.; Masters, C.L.; Makalic, E.; McLean, C.A.; Hill, A.F.; Barnham, K.J.; Reid, G.E.; Vella, L.J. Characterization of Brain-Derived Extracellular Vesicle Lipids in Alzheimer’s Disease. J. Extracell. Vesicles 2021, 10, e12089. [Google Scholar] [CrossRef] [PubMed]
- Serna, J.; García-Seisdedos, D.; Alcázar, A.; Lasunción, M.Á.; Busto, R.; Pastor, Ó. Quantitative Lipidomic Analysis of Plasma and Plasma Lipoproteins Using MALDI-TOF Mass Spectrometry. Chem. Phys. Lipids 2015, 189, 7–18. [Google Scholar] [CrossRef]
- Woud, W.W.; van der Pol, E.; Mul, E.; Hoogduijn, M.J.; Baan, C.C.; Boer, K.; Merino, A. An Imaging Flow Cytometry-Based Methodology for the Analysis of Single Extracellular Vesicles in Unprocessed Human Plasma. Commun. Biol. 2022, 5, 633. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Datta-Chaudhuri, A.; Deme, P.; Dickens, A.; Dastgheyb, R.; Bhargava, P.; Bi, H.; Haughey, N.J. Lipidomic Characterization of Extracellular Vesicles in Human Serum. J. Circ. Biomark. 2019, 8, 1849454419879848. [Google Scholar] [CrossRef]
- Royo, F.; Gil-Carton, D.; Gonzalez, E.; Mleczko, J.; Palomo, L.; Perez-Cormenzana, M.; Mayo, R.; Alonso, C.; Falcon-Perez, J.M. Differences in the Metabolite Composition and Mechanical Properties of Extracellular Vesicles Secreted by Hepatic Cellular Models. J. Extracell. Vesicles 2019, 8, 1575678. [Google Scholar] [CrossRef] [PubMed]
- Busatto, S.; Yang, Y.; Walker, S.A.; Davidovich, I.; Lin, W.H.; Lewis-Tuffin, L.; Anastasiadis, P.Z.; Sarkaria, J.; Talmon, Y.; Wurtz, G.; et al. Brain Metastases-Derived Extracellular Vesicles Induce Binding and Aggregation of Low-Density Lipoprotein. J. Nanobiotechnol. 2020, 18, 162. [Google Scholar] [CrossRef]
- Skotland, T.; Sagini, K.; Sandvig, K.; Llorente, A. An Emerging Focus on Lipids in Extracellular Vesicles. Adv. Drug Deliv. Rev. 2020, 159, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Leahy, T.; Rickard, J.P.; Pini, T.; Gadella, B.M.; de Graaf, S.P. Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sperm Membrane. Proteomics 2020, 20, e1900289. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Deng, K.; Bian, Y.; Liu, Z.; Zou, H. Spectacular Role of Epididymis and Bio-Active Cargo of Nano-Scale Exosome in Sperm Maturation: A Review. Biomed. Pharmacother. 2023, 164, 114889. [Google Scholar] [CrossRef]
- Zhou, W.; Stanger, S.J.; Anderson, A.L.; Bernstein, I.R.; De Iuliis, G.N.; McCluskey, A.; McLaughlin, E.A.; Dun, M.D.; Nixon, B. Mechanisms of Tethering and Cargo Transfer during Epididymosome-Sperm Interactions. BMC Biol. 2019, 17, 35. [Google Scholar] [CrossRef]
- Stival, C.; Puga Molina, L.D.C.; Paudel, B.; Buffone, M.G.; Visconti, P.E.; Krapf, D. Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. Adv. Anat. Embryol. Cell Biol. 2016, 220, 93–106. [Google Scholar] [CrossRef]
- Shan, S.; Xu, F.; Hirschfeld, M.; Brenig, B. Sperm Lipid Markers of Male Fertility in Mammals. Int. J. Mol. Sci. 2021, 22, 8767. [Google Scholar] [CrossRef] [PubMed]
- Dalal, J.; Kumar, P.; Chandolia, R.K.; Pawaria, S.; Bala, R.; Kumar, D.; Yadav, P.S. A New Role of H89: Reduces Capacitation-like Changes through Inhibition of Cholesterol Efflux, Calcium Influx, and Proteins Tyrosine Phosphorylation during Sperm Cryopreservation in Buffalo. Theriogenology 2023, 204, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Piehl, L.L.; Fischman, M.L.; Hellman, U.; Cisale, H.; Miranda, P.V. Boar Seminal Plasma Exosomes: Effect on Sperm Function and Protein Identification by Sequencing. Theriogenology 2013, 79, 1071–1082. [Google Scholar] [CrossRef]
- Aalberts, M.; Stout, T.A.E.; Stoorvogel, W. Prostasomes: Extracellular Vesicles from the Prostate. Reproduction 2013, 147, R1–R14. [Google Scholar] [CrossRef]
- Du, J.; Shen, J.; Wang, Y.; Pan, C.; Pang, W.; Diao, H.; Dong, W. Boar Seminal Plasma Exosomes Maintain Sperm Function by Infiltrating into the Sperm Membrane. Oncotarget 2016, 7, 58832–58847. [Google Scholar] [CrossRef]
- Lucio, C.F.; Brito, M.M.; Angrimani, D.; Belaz, K.; Morais, D.; Zampieri, D.; Losano, J.; Assumpção, M.; Nichi, M.; Eberlin, M.N.; et al. Lipid Composition of the Canine Sperm Plasma Membrane as Markers of Sperm Motility. Reprod. Domest. Anim. 2017, 52, 208–213. [Google Scholar] [CrossRef]
- Desnoyers, L.; Manjunath, P. Major Proteins of Bovine Seminal Plasma Exhibit Novel Interactions with Phospholipid. J. Biol. Chem. 1992, 267, 10149–10155. [Google Scholar] [CrossRef]
- Simpson, A.M.; Swan, M.A.; White, I.G. Susceptibility of Epididymal Boar Sperm to Cold Shock and Protective Action of Phosphatidylcholine. Gamete Res. 1987, 17, 355–373. [Google Scholar] [CrossRef]
- Gómez-Torres, M.J.; García, E.M.; Guerrero, J.; Medina, S.; Izquierdo-Rico, M.J.; Gil-Izquierdo, Á.; Orduna, J.; Savirón, M.; González-Brusi, L.; Ten, J.; et al. Metabolites Involved in Cellular Communication among Human Cumulus-Oocyte-Complex and Sperm during in Vitro Fertilization. Reprod. Biol. Endocrinol. 2015, 13, 123. [Google Scholar] [CrossRef]
- Ehrenwald, E.; Parks, J.E.; Foote, R.H. Cholesterol Efflux from Bovine Sperm. I. Induction of the Acrosome Reaction with Lysophosphatidylcholine after Reducing Sperm Cholesterol. Gamete Res. 1988, 20, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Pérez Aguirreburualde, M.S.; Fernández, S.; Córdoba, M. Acrosin Activity Regulation by Protein Kinase C and Tyrosine Kinase in Bovine Sperm Acrosome Exocytosis Induced by Lysophosphatidylcholine. Reprod. Domest. Anim. 2012, 47, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Xu, F.; Bleyer, M.; Becker, S.; Melbaum, T.; Wemheuer, W.; Hirschfeld, M.; Wacker, C.; Zhao, S.; Schütz, E.; et al. Association of α/β-Hydrolase D16b with Bovine Conception Rate and Sperm Plasma Membrane Lipid Composition. Int. J. Mol. Sci. 2020, 21, 627. [Google Scholar] [CrossRef] [PubMed]
- García, M.F.; Nuñez Favre, R.; Stornelli, M.C.; Rearte, R.; García Mitacek, M.C.; de la Sota, R.L.; Stornelli, M.A. Relationship between Semen Quality and Seminal Plasma Cholesterol, Triacylglycerols and Proteins in the Domestic Cat. J. Feline Med. Surg. 2020, 22, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Cross, N.L. Sphingomyelin Modulates Capacitation of Human Sperm in Vitro. Biol. Reprod. 2000, 63, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jin, Y.; Lv, Y.; Han, Y.; Qu, X.; Zhang, Y.; Li, C.; Jin, Y. Extracellular Vesicles in Porcine Seminal Plasma Maintain Sperm Function by Reducing Lyso-PC. Livest. Sci. 2023, 276, 105298. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane Lipids, Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic Comparison Defines Novel Markers to Characterize Heterogeneous Populations of Extracellular Vesicle Subtypes. Proc. Natl. Acad. Sci. USA 2016, 113, E968–E977. [Google Scholar] [CrossRef]
- Nakai, W.; Yoshida, T.; Diez, D.; Miyatake, Y.; Nishibu, T.; Imawaka, N.; Naruse, K.; Sadamura, Y.; Hanayama, R. A Novel Affinity-Based Method for the Isolation of Highly Purified Extracellular Vesicles. Sci. Rep. 2016, 6, 33935. [Google Scholar] [CrossRef]
- Hallal, S.; Tűzesi, Á.; Grau, G.E.; Buckland, M.E.; Alexander, K.L. Understanding the Extracellular Vesicle Surface for Clinical Molecular Biology. J. Extracell. Vesicles 2022, 11, e12260. [Google Scholar] [CrossRef]
- Lydic, T.A.; Townsend, S.; Adda, C.G.; Collins, C.; Mathivanan, S.; Reid, G.E. Rapid and Comprehensive ‘Shotgun’ Lipidome Profiling of Colorectal Cancer Cell Derived Exosomes. Methods 2015, 87, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Barreca, V.; Boussadia, Z.; Polignano, D.; Galli, L.; Tirelli, V.; Sanchez, M.; Falchi, M.; Bertuccini, L.; Ioisi, F.; Tatti, M.; et al. Metabolic Labelling of a Subpopulation of Small Extracellular Vesicles Using a Fluorescent Palmitic Acid Analogue. J. Extracell. Vesicles 2023, 12, e12392. [Google Scholar] [CrossRef] [PubMed]
- Koifman, N.; Biran, I.; Aharon, A.; Brenner, B.; Talmon, Y. A Direct-Imaging Cryo-EM Study of Shedding Extracellular Vesicles from Leukemic Monocytes. J. Struct. Biol. 2017, 198, 177–185. [Google Scholar] [CrossRef]
- Barranco, I.; Spinaci, M.; Nesci, S.; Mateo-Otero, Y.; Baldassarro, V.A.; Algieri, C.; Bucci, D.; Roca, J. Seminal Extracellular Vesicles Alter Porcine in Vitro Fertilization Outcome by Modulating Sperm Metabolism. Theriogenology 2024, 219, 167–179. [Google Scholar] [CrossRef]
- Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr. Protoc. Cell Biol. 2006, 30, 3–22. [Google Scholar] [CrossRef]
- Welsh, J.A.; Van Der Pol, E.; Arkesteijn, G.J.A.; Bremer, M.; Brisson, A.; Coumans, F.; Dignat-George, F.; Duggan, E.; Ghiran, I.; Giebel, B.; et al. MIFlowCyt-EV: A Framework for Standardized Reporting of Extracellular Vesicle Flow Cytometry Experiments. J. Extracell. Vesicles 2020, 9, 1713526. [Google Scholar] [CrossRef]
- Van Deun, J.; Mestdagh, P.; Agostinis, P.; Akay, Ö.; Anand, S.; Anckaert, J.; Martinez, Z.A.; Baetens, T.; Beghein, E.; Bertier, L.; et al. EV-TRACK: Transparent Reporting and Centralizing Knowledge in Extracellular Vesicle Research. Nat. Methods 2017, 14, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Simbari, F.; McCaskill, J.; Coakley, G.; Millar, M.; Maizels, R.M.; Fabriás, G.; Casas, J.; Buck, A.H. Plasmalogen Enrichment in Exosomes Secreted by a Nematode Parasite versus Those Derived from Its Mouse Host: Implications for Exosome Stability and Biology. J. Extracell. Vesicles 2016, 5, 30741. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Díaz, P.; Parra, A.; Sanchez-López, C.M.; Casas, J.; Lucas, X.; Marcilla, A.; Roca, J.; Barranco, I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int. J. Mol. Sci. 2024, 25, 7492. https://doi.org/10.3390/ijms25137492
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. International Journal of Molecular Sciences. 2024; 25(13):7492. https://doi.org/10.3390/ijms25137492
Chicago/Turabian StyleMartínez-Díaz, Pablo, Ana Parra, Christian M. Sanchez-López, Josefina Casas, Xiomara Lucas, Antonio Marcilla, Jordi Roca, and Isabel Barranco. 2024. "Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile" International Journal of Molecular Sciences 25, no. 13: 7492. https://doi.org/10.3390/ijms25137492
APA StyleMartínez-Díaz, P., Parra, A., Sanchez-López, C. M., Casas, J., Lucas, X., Marcilla, A., Roca, J., & Barranco, I. (2024). Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. International Journal of Molecular Sciences, 25(13), 7492. https://doi.org/10.3390/ijms25137492