Antimicrobial Resistance and Virulence Potential of Bacterial Species from Captive Birds of Prey—Consequences of Falconry for Public Health
Abstract
:Simple Summary
Abstract
1. Review Methodology
2. History of Falconry
3. Modern Falconry
4. One Health: Antimicrobial Resistance
5. Bacteria Found in Captive Birds of Prey
5.1. Bacterial Diseases
5.2. Microbiome
6. Pet Birds as Reservoirs of Resistant and Zoonotic Bacteria
7. Impact of Synanthropic Species and Humans: A One Health Approach
8. Disease and Bacterial Transmission Prevention
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Educational, Scientific and Cultural Organization. Nomination File No. 01708 for Inscription in 2021 on the Representative List of the Intangible Cultural Heritage of Humanity; UNESCO: Paris, France, 2021. [Google Scholar]
- Eason, C. Fabulous Creatures, Mythical Monsters, and Animal Power Symbols: A Handbook; Bloomsbury Academic: New York, NY, USA, 2008. [Google Scholar]
- Jones, M. Falconry and Raptor Medicine. In Proceedings of the Western Veterinary Conference 2007, Las Vegas, NV, USA, 18–22 February 2007. [Google Scholar]
- Cooper, J.E. Introduction—The History of Raptor Medicine. In Birds of Prey: Health & Disease, 2nd ed.; Cooper, J.E., Ed.; Blackwell Science: Oxford, UK, 2002; pp. 1–8. [Google Scholar]
- Frederick II of Hohenstaufen. 1250 de Arte Venandi Cum Avibus (the Art of Falconry); Wood, C.A., Fyfe, F.M., Eds.; Stanford University Press: Stanford, CA, USA, 1943. [Google Scholar]
- Rueda, J.M.F. Falconry on the Iberian Peninsula—Its history and literature. In Raptor and Human—Falconry and Bird Symbolism throughout the Millennia on a Global Scale; Gersmann, K.H., Grimm, O., Eds.; ZBSA: Schleswig, Germany, 2014; pp. 1195–1214. [Google Scholar]
- Ford, S.; Chitty, J.; Jones, M. Raptor Medicine and Case Management. In Proceedings of the 2007 Association of Avian Veterinarians Annual Conference & Expo, Providence, RI, USA, 4–8 August 2007. [Google Scholar]
- McClure, C.J.W.; Schulwitz, S.E.; Anderson, D.L.; Robinson, B.W.; Mojica, E.K.; Therrien, J.-F.; Oleyar, M.D.; Johnson, J. Commentary: Defining Raptors and Birds of Prey. J. Raptor Res. 2019, 53, 419. [Google Scholar] [CrossRef]
- Schuster, R.K.; Azmanis, P.; Naldo, J.; Wencel, P.; Alkepti, G.; Hebel, C.; Seti, C.S. On Serratspiculum (Nematoda; Dicheilonematidae) Species Occurring in Hunting Falcons in the United Arab Emirates in Respect with Their Origin. Vet. Parasitol. Reg. Stud. Rep. 2023, 37, 100818. [Google Scholar] [CrossRef]
- Erickson, W.A.; Marsh, R.E.; Salmon, T.P. A review of falconry as a bird-hazing technique. In Proceedings of the Vertebrate Pest Conference, Sacramento, CA, USA, 6–8 March 1990. [Google Scholar]
- Teffo, T.R.; Fuszonecker, G.; Katona, K. Testing Pigeon Control Efficiency by Different Methods in Urban Industrial Areas, Hungary. Biol. Futur. 2022, 73, 87–93. [Google Scholar] [CrossRef]
- Thiériot, E.; Patenaude-Monette, M.; Molina, P.; Giroux, J.-F. The Efficiency of an Integrated Program Using Falconry to Deter Gulls from Landfills. Animals 2015, 5, 214–225. [Google Scholar] [CrossRef]
- Katzner, E.E. Providing good welfare for the education raptors in our care—Innovations in raptor education. In Proceedings of the 2017 Raptor Research Foundation Conference, Salt Lake City, UT, USA, 7–11 October 2017. [Google Scholar]
- White, R.L.; Eberstein, K.; Scott, D.M. Birds in the Playground: Evaluating the Effectiveness of an Urban Environmental Education Project in Enhancing School Children’s Awareness, Knowledge and Attitudes towards Local Wildlife. PLoS ONE 2018, 13, e0193993. [Google Scholar] [CrossRef]
- Amuasi, J.H.; Lucas, T.; Horton, R.; Winkler, A.S. Reconnecting for Our Future: The Lancet One Health Commission. Lancet 2020, 395, 1469–1471. [Google Scholar] [CrossRef]
- Ahmad, N.; Joji, R.M.; Shahid, M. Evolution and Implementation of One Health to Control the Dissemination of Antibiotic-Resistant Bacteria and Resistance Genes: A Review. Front. Cell. Infect. Microbiol. 2023, 12, 1065796. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Bonten, M.; Koopmans, M. Pandemics—One Health Preparedness for the Next. Lancet Reg. Health-Eur. 2021, 9, 100210. [Google Scholar] [CrossRef] [PubMed]
- Serna, C.; Gonzalez-Zorn, B. Antimicrobial Resistance and One Health. Rev. Esp. Quimioter. 2022, 35, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic Resistance Is Ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Hummels, K.R.; Berry, S.P.; Li, Z.; Taguchi, A.; Min, J.K.; Walker, S.; Marks, D.S.; Bernhardt, T.G. Coordination of Bacterial Cell Wall and Outer Membrane Biosynthesis. Nature 2023, 615, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic Resistance Genes in Bacteria: Occurrence, Spread, and Control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef] [PubMed]
- Wernery, U.; Wernery, R.; Zachariah, R.; Kinne, J. Salmonellosis in Relation to Chlamydiosis and Pox and Salmonella Infections in Captive Falcons in the United Arab Emirates. J. Vet. Med. Ser. B 1998, 45, 577–583. [Google Scholar] [CrossRef]
- Turkmen, S.; Alinier, G.; Elmoheen, A.M.; Qureshi, A.A.; Ponappan, B.R.; Majed, K.; Bahgat, M.; Khan, R.; Azad, A. Injuries Related to Pets, Exotic Animals, and Falconry in Qatar. Qatar Med. J. 2023, 2023, 27. [Google Scholar] [CrossRef]
- Ehrensperger, F.; Riederer, L.; Friedl, A. Tularemia in a Jogger Woman after the Attack by a Common Buzzard (Buteo buteo): A “One Health” Case Report. SAT 2018, 160, 185–188. [Google Scholar] [CrossRef]
- Smith, K.E.; Anderson, F.; Medus, C.; Leano, F.; Adams, J. Outbreaks of Salmonellosis at Elementary Schools Associated with Dissection of Owl Pellets. Vector-Borne Zoonotic Dis. 2005, 5, 133–136. [Google Scholar] [CrossRef]
- Huckabee, J.R. Raptor Therapeutics. Vet. Clin. N. Am. Exot. Anim. Pract. 2000, 3, 91–116. [Google Scholar] [CrossRef]
- Joseph, V. Raptor Medicine: An Approach to Wild, Falconry, and Educational Birds of Prey. Vet. Clin. N. Am. Exot. Anim. Pract. 2006, 9, 321–345. [Google Scholar] [CrossRef] [PubMed]
- Tristan, T. The Aging Raptor. Vet. Clin. N. Am. Exot. Anim. Pract. 2010, 13, 51–84. [Google Scholar] [CrossRef]
- Oster, S.C.; Pariaut, R. Cardiac Disease of Raptors. J. Avian Med. Surg. 2022, 35, 382–389. [Google Scholar] [CrossRef]
- Blanco, G.; Frías, Ó.; Pitarch, A.; Carrete, M. Oral Disease Is Linked to Low Nestling Condition and Brood Size in a Raptor Species Living in a Highly Modified Environment. Curr. Zool. 2023, 69, 109–120. [Google Scholar] [CrossRef]
- Pinto, A.; Simões, R.; Oliveira, M.; Vaz-Pires, P.; Brandão, R.; Da Costa, P.M. Multidrug Resistance in Wild Bird Populations: Importance of the Food Chain. J. Zoo Wildl. Med. 2015, 46, 723–731. [Google Scholar] [CrossRef]
- Kohls, A.; Hafez, H.M.; Harder, T.; Jansen, A.; Lierz, P.; Lüschow, D.; Schweiger, B.; Lierz, M. Avian Influenza Virus Risk Assessment in Falconry. Virol. J. 2011, 8, 187. [Google Scholar] [CrossRef]
- Sauvala, M.; Woivalin, E.; Kivistö, R.; Laukkanen-Ninios, R.; Laaksonen, S.; Stephan, R.; Fredriksson-Ahomaa, M. Hunted Game Birds—Carriers of Foodborne Pathogens. Food Microbiol. 2021, 98, 103768. [Google Scholar] [CrossRef]
- Standard, M. Raptors: Infectious diseases. In BSAVA Manual of Raptors, Pigeons and Passerine Birds; Chitty, J., Lierz, M., Eds.; BSAVA; Waterwells: Gloucester, UK, 2008; pp. 212–222. [Google Scholar]
- Sander, S.; Whittington, J.K.; Bennett, A.; Burgdorf-Moisuk, A.; Mitchell, M.A. Advancement Flap as a Novel Treatment for a Pododermatitis Lesion in a Red-Tailed Hawk (Buteo jamaicensis). J. Avian Med. Surg. 2013, 27, 294–300. [Google Scholar] [CrossRef]
- Rodríguez Díez, C.; González, F.; López, I.; Suárez, L.; Moraleda, V.; Rodríguez, C. Pododermatitis in Raptors Admitted in a Wildlife Rehabilitation Centre in Central Spain. Prev. Vet. Med. 2020, 175, 104875. [Google Scholar] [CrossRef] [PubMed]
- Maier, K.; Fischer, D.; Hartmann, A.; Vet, D.M.; Kershaw, O.; Vet, D.M.; Prenger-Berninghoff, E.; Vet, D.M.; Pendl, H.; Vet, D.M.; et al. Vertebral Osteomyelitis and Septic Arthritis Associated With Staphylococcus Hyicus in a Juvenile Peregrine Falcon (Falco peregrinus). J. Avian Med. Surg. 2015, 29, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Beaufrère, H.; Laniesse, D.; Stickings, P.; Tierney, R.; Sesardic, T.; Slavic, D.; Compo, N.; Smith, D.A. Generalized Tetanus in a Gyrfalcon (Falco rusticolus) with Pododermatitis. Avian Dis. 2016, 60, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Baron, H.R.; Phalen, D.N.; Silvanose, C.-D.; Binoy, A.; Azmanis, P.N. Multicentric Septic Osteomyelitis and Arthritis Caused by Staphylococcus Aureus in a Gyrfalcon (Falco rusticolus). J. Avian Med. Surg. 2019, 33, 406. [Google Scholar] [CrossRef]
- Kriz, P.; Kaevska, M.; Bartejsova, I.; Pavlik, I. Mycobacterium avium Subsp. avium Found in Raptors Exposed to Infected Domestic Fowl. Avian Dis. 2013, 57, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Shafiei, M.; Ghasemian, A.; Valizadeh, S.; Al-Marzoqi, A.H.; Shokouhi Mostafavi, S.K.; Nojoomi, F.; Mirforughi, S.A. Mycobacterium avium paratuberculosis and Mycobacterium avium Complex and Related Subspecies as Causative Agents of Zoonotic and Occupational Diseases. J. Cell. Physiol. 2019, 234, 12415–12421. [Google Scholar] [CrossRef] [PubMed]
- Battisti, A.; Giovanni, D.G.; Agrimi, U.; Bozzano, A.I. Embryonic and Neonatal Mortality from Salmonellosis in Captive Bred Raptors. J. Wildl. Dis. 1998, 34, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Reche, M.P.; Jiménez, P.A.; Alvarez, F.; García De Los Ríos, J.E.; Rojas, A.M.; De Pedro, P. Incidence of Salmonellae in Captive and Wild Free-Living Raptorial Birds in Central Spain. J. Vet. Med. Ser. B 2003, 50, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.I.; Blanco, G.; Madariaga, M.J.; Boeri, E.; Teijeiro, M.L.; Bianco, G.; Lambertucci, S.A. Scavenger Birds Exploiting Rubbish Dumps: Pathogens at the Gates. Transbound. Emerg. Dis. 2019, 66, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Martín-Maldonado, B.; Vega, S.; Mencía-Gutiérrez, A.; Lorenzo-Rebenaque, L.; De Frutos, C.; González, F.; Revuelta, L.; Marin, C. Urban Birds: An Important Source of Antimicrobial Resistant Salmonella Strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101519. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, M.; Małaszczuk, M.; Paluch, E.; Pawlak, A. Zoonotic Potential and Prevalence of Salmonella Serovars Isolated from Pets. Infect. Ecol. Epidemiol. 2021, 11, 1975530. [Google Scholar] [CrossRef]
- Fowler, M.E.; Schulz, T.; Ardans, A.; Reynolds, B.; Behymer, D. Chlamydiosis in captive raptors. Avian Dis. 1990, 34, 657–662. [Google Scholar] [CrossRef]
- Stalder, S.; Marti, H.; Borel, N.; Vogler, B.R.; Pesch, T.; Prähauser, B.; Wencel, P.; Laroucau, K.; Albini, S. Falcons From the United Arab Emirates Infected With Chlamydia psittaci/C. abortus Intermediates Specified as Chlamydia buteonis by Polymerase Chain Reaction. J. Avian Med. Surg. 2021, 35, 333–340. [Google Scholar] [CrossRef]
- Cheong, H.C.; Lee, C.Y.Q.; Cheok, Y.Y.; Tan, G.M.Y.; Looi, C.Y.; Wong, W.F. Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019, 7, 146. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Li, K.-P.; Hsieh, M.-K.; Chang, P.-C.; Shien, J.-H.; Ou, S.-C. Prevalence and Genotyping of Chlamydia psittaci from Domestic Waterfowl, Companion Birds, and Wild Birds in Taiwan. Vector-Borne Zoonotic Dis. 2019, 19, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Stokes, H.S.; Berg, M.L.; Bennett, A.T.D. A Review of Chlamydial Infections in Wild Birds. Pathogens 2021, 10, 948. [Google Scholar] [CrossRef]
- Rybarczyk, J.; Versteele, C.; Lernout, T.; Vanrompay, D. Human Psittacosis: A Review with Emphasis on Surveillance in Belgium. Acta Clin. Belg. 2020, 75, 42–48. [Google Scholar] [CrossRef]
- Lierz, M.; Hafez, H.M. Occurrence of Mycoplasmas in Semen Samples of Birds of Prey. Avian Pathol. 2008, 37, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Lierz, M.; Hagen, N.; Lueschow, D.; Hafez, H.M. Species-Specific Polymerase Chain Reactions for the Detection of Mycoplasma buteonis, Mycoplasma flconis, Mycoplasma gypis, and Mycoplasma corogypsi in Captive Birds of Prey. Avian Dis. 2008, 52, 94–99. [Google Scholar] [CrossRef]
- Lierz, M.; Hagen, N.; Lueschow, D.; Hafez, H.M. Use of Polymerase Chain Reactions to Detect Mycoplasma gallisepticum, Mycoplasma imitans, Mycoplasma iowae, Mycoplasma meleagridis and Mycoplasma synoviae in Birds of Prey. Avian Pathol. 2008, 37, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Loria, G.R.; Ferrantelli, E.; Giardina, G.; Vecchi, L.L.; Sparacino, L.; Oliveri, F.; McAuliffe, L.; Nicholas, R.A.J. Isolation and Characterization of Unusual Mycoplasma Spp. from Captive Eurasian Griffon (Gyps fulvus) in Sicily. J. Wildl. Dis. 2008, 44, 159–163. [Google Scholar] [CrossRef]
- Carpenter, J.W.; Harms, C.A. (Eds.) Carpenter’s Exotic Animal Formulary, 6th ed.; Elsevier: St. Louis, MI, USA, 2023; ISBN 978-0-323-83392-9. [Google Scholar]
- Nagai, K.; Tokita, K.; Ono, H.; Uchida, K.; Sakamoto, F.; Higuchi, H. Hindgut Bacterial Flora Analysis in Oriental Honey Buzzard (Pernis ptilorhynchus). Zool. Sci. 2019, 36, 77. [Google Scholar] [CrossRef]
- Oliveira, B.C.M.; Murray, M.; Tseng, F.; Widmer, G. The Fecal Microbiota of Wild and Captive Raptors. Anim. Microbiome 2020, 2, 15. [Google Scholar] [CrossRef]
- Alba, C.; Sansano-Maestre, J.; Cid Vázquez, M.D.; Martínez-Herrero, M.D.C.; Garijo-Toledo, M.M.; Azami-Conesa, I.; Moraleda Fernández, V.; Gómez-Muñoz, M.T.; Rodríguez, J.M. Captive Breeding and Trichomonas gallinae Alter the Oral Microbiome of Bonelli’s Eagle Chicks. Microb. Ecol. 2023, 85, 1541–1551. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; Gong, X.; Sui, J. Gut Microbiome Differences in Rescued Common Kestrels (Falco tinnunculus) Before and After Captivity. Front. Microbiol. 2022, 13, 858592. [Google Scholar] [CrossRef]
- Ogasawara, K.; Yamada, N.; Nakayama, S.M.; Watanabe, Y.; Saito, K.; Chiba, A.; Uchida, Y.; Ueda, K.; Takenaka, Y.; Kazama, K.; et al. Surveys of Eleven Species of Wild and Zoo Birds and Feeding Experiments in White-Tailed Eagles Reveal Differences in the Composition of the Avian Gut Microbiome Based on Dietary Habits between and within Species. J. Vet. Med. Sci. 2023, 85, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.R.; Ridgeway, S.; Shibl, A.A.; Idaghdour, Y.; Jha, A.R. Falcon Gut Microbiota Is Shaped by Diet and Enriched in Salmonella. PLoS ONE 2024, 19, e0293895. [Google Scholar] [CrossRef]
- Bangert, R.L.; Ward, A.C.; Stauber, E.H.; Cho, B.R.; Widders, P.R. A survey of the aerobic bacteria in the feces of captive raptors. Avian Dis. 1988, 32, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Steger, L.; Rinder, M.; Korbel, R. PPhenotypical antibiotic resistances of bacteriological isolates originating from pet, zoo and falconry birds. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2020, 48, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, P.; Vasudevan, S.; David, H.; Shaktivel, A.; Shanmugam, K.; Neelakantan, P.; Solomon, A.P. Revisiting ESKAPE Pathogens: Virulence, Resistance, and Combating Strategies Focusing on Quorum Sensing. Front. Cell. Infect. Microbiol. 2023, 13, 1159798. [Google Scholar] [CrossRef] [PubMed]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef]
- Sala, A.; Taddei, S.; Santospirito, D.; Sandri, C.; Magnone, W.; Cabassi, C.S. Antibiotic Resistance in Conjunctival and Enteric Bacterial Flora in Raptors Housed in a Zoological Garden. Vet. Med. Sci. 2016, 2, 239–245. [Google Scholar] [CrossRef]
- Martinez-Hernandez, J.E.; Berrios, P.; Santibáñez, R.; Cuesta Astroz, Y.; Sanchez, C.; Martin, A.J.M.; Trombert, A.N. First Metagenomic Analysis of the Andean Condor (Vultur gryphus) Gut Microbiome Reveals Microbial Diversity and Wide Resistome. PeerJ 2023, 11, e15235. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanchez, P.; Romero-Trancón, D.; Sainz, T.; Calvo, C.; Iglesias, I.; Perez-Hernando, B.; Hurtado-Gallego, J.; Sánchez, R.; Alcolea, S.; Moya, L.; et al. The Role of Veterinarians in Zoonosis Prevention: Advising Families of Immunocompromised Children with Pets. One Health 2024, 18, 100662. [Google Scholar] [CrossRef]
- Romero, B.; Susperregui, J.; Sahagún, A.M.; Fernández, N.; López, C.; De La Puente, R.; Altónaga, J.R.; Díez, R. Drug Prescription Pattern in Exotic Pet and Wildlife Animal Practice: A Retrospective Study in a Spanish Veterinary Teaching Hospital from 2018 to 2022. Front. Vet. Sci. 2024, 10, 1328698. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.A.; Awad, N.F.S.; Abd El-Hamid, M.I.; Shaker, A.; Mohamed, R.E.; Elsohaby, I. Pet Birds as Potential Reservoirs of Virulent and Antibiotic Resistant Zoonotic Bacteria. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101606. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Ueda, T.; Nukazawa, K.; Hiroki, H.; Xie, H.; Arimizu, Y.; Hayashi, T.; Suzuki, Y. The Level of Antimicrobial Resistance of Sewage Isolates Is Higher than That of River Isolates in Different Escherichia coli Lineages. Sci. Rep. 2020, 10, 17880. [Google Scholar] [CrossRef]
- Karkman, A.; Berglund, F.; Flach, C.-F.; Kristiansson, E.; Larsson, D.G.J. Predicting Clinical Resistance Prevalence Using Sewage Metagenomic Data. Commun. Biol. 2020, 3, 711. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.H.K.; Aarestrup, F.M.; Petersen, T.N. Importance of Mobile Genetic Elements for Dissemination of Antimicrobial Resistance in Metagenomic Sewage Samples across the World. PLoS ONE 2023, 18, e0293169. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.-B.; Zeng, Z.-L.; Yang, X.-W.; Huang, Y.; Liu, J.-H. The Role of Wildlife (Wild Birds) in the Global Transmission of Antimicrobial Resistance Genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef]
- Oliveira, M.; Pedroso, N.M.; Sales-Luís, T.; Santos-Reis, M.; Tavares, L.; Vilela, C.L. Antimicrobial-Resistant Salmonella Isolated from Eurasian Otters (Lutra lutra Linnaeus, 1758) in Portugal. J. Wildl. Dis. 2010, 46, 1257–1261. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, L.; Zhang, H.; Bi, W.; Zhao, L.; Wang, X.; Lu, X.; Xu, X.; Sun, R.; Alvarez, P.J.J. Characteristics of Wild Bird Resistomes and Dissemination of Antibiotic Resistance Genes in Interconnected Bird-Habitat Systems Revealed by Similarity of Bla TEM Polymorphic Sequences. Environ. Sci. Technol. 2022, 56, 15084–15095. [Google Scholar] [CrossRef]
- Prandi, I.; Bellato, A.; Nebbia, P.; Stella, M.C.; Ala, U.; Von Degerfeld, M.M.; Quaranta, G.; Robino, P. Antibiotic Resistant Escherichia coli in Wild Birds Hospitalised in a Wildlife Rescue Centre. Comp. Immunol. Microbiol. Infect. Dis. 2023, 93, 101945. [Google Scholar] [CrossRef]
- Sousa, M.; Silva, N.; Igrejas, G.; Silva, F.; Sargo, R.; Alegria, N.; Benito, D.; Gómez, P.; Lozano, C.; Gómez-Sanz, E.; et al. Antimicrobial Resistance Determinants in Staphylococcus Spp. Recovered from Birds of Prey in Portugal. Vet. Microbiol. 2014, 171, 436–440. [Google Scholar] [CrossRef]
- Mencía-Gutiérrez, A.; Martín-Maldonado, B.; Pastor-Tiburón, N.; Moraleda, V.; González, F.; García-Peña, F.J.; Pérez-Cobo, I.; Revuelta, L.; Marín, M. Prevalence and Antimicrobial Resistance of Campylobacter from Wild Birds of Prey in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101712. [Google Scholar] [CrossRef]
- Silva, V.; Lopes, A.F.; Soeiro, V.; Caniça, M.; Manageiro, V.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; Igrejas, G.; Poeta, P. Nocturnal Birds of Prey as Carriers of Staphylococcus aureus and Other Staphylococci: Diversity, Antimicrobial Resistance and Clonal Lineages. Antibiotics 2022, 11, 240. [Google Scholar] [CrossRef]
- Sacristán, C.; Esperón, F.; Herrera-León, S.; Iglesias, I.; Neves, E.; Nogal, V.; Muñoz, M.J.; De La Torre, A. Virulence Genes, Antibiotic Resistance and Integrons in Escherichia coli Strains Isolated from Synanthropic Birds from Spain. Avian Pathol. 2014, 43, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, C.A.; Van Toor, M.L.; Woksepp, H.; Chandler, J.C.; Reed, J.A.; Reeves, A.B.; Waldenström, J.; Franklin, A.B.; Douglas, D.C.; Bonnedahl, J.; et al. Evidence for Continental-Scale Dispersal of Antimicrobial Resistant Bacteria by Landfill-Foraging Gulls. Sci. Total Environ. 2021, 764, 144551. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.P.V.; Oliveira, M.C.V.; Oliveira, M.G.X.; Menão, M.C.; Knöbl, T. CTX-M-Producing Escherichia Coli Isolated from Urban Pigeons (Columba livia domestica) in Brazil. J. Infect. Dev. Ctries. 2019, 13, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Sano, E.; Fontana, H.; Esposito, F.; Cardoso, B.; Fuga, B.; Costa, G.C.V.; Bosqueiro, T.C.M.; Sinhorini, J.A.; Orico, L.D.; De Masi, E.; et al. Genomic Analysis of Fluoroquinolone-Resistant Leclercia adecarboxylata Carrying the ISKpn19-Orf-qnrS1-ΔIS3-blaLAP-2 Module in a Synanthropic Pigeon, Brazil. J. Glob. Antimicrob. Resist. 2023, 33, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, C.A.; Bonnedahl, J.; Woksepp, H.; Hernandez, J.; Reed, J.A.; Tibbitts, L.; Olsen, B.; Douglas, D.C.; Ramey, A.M. Satellite Tracking of Gulls and Genomic Characterization of Faecal Bacteria Reveals Environmentally Mediated Acquisition and Dispersal of Antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Mol. Ecol. 2019, 28, 2531–2545. [Google Scholar] [CrossRef] [PubMed]
- Zeballos-Gross, D.; Rojas-Sereno, Z.; Salgado-Caxito, M.; Poeta, P.; Torres, C.; Benavides, J.A. The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. Front. Microbiol. 2021, 12, 703886. [Google Scholar] [CrossRef] [PubMed]
- Vredenburg, J.; Varela, A.R.; Hasan, B.; Bertilsson, S.; Olsen, B.; Narciso-da-Rocha, C.; Bonnedahl, J.; Stedt, J.; Da Costa, P.M.; Manaia, C.M. Quinolone-resistant Escherichia coli Isolated from Birds of Prey in Portugal Are Genetically Distinct from Those Isolated from Water Environments and Gulls in Portugal, Spain and Sweden. Environ. Microbiol. 2014, 16, 995–1004. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Ramey, A.M.; Woksepp, H.; Bonnedahl, J. Early Emergence of Mcr-1-positive Enterobacteriaceae in Gulls from Spain and Portugal. Environ. Microbiol. Rep. 2019, 11, 669–671. [Google Scholar] [CrossRef]
- Cooper, J.E.; Cooper, J.E. Birds of Prey: Health & Disease, 3rd ed.; Blackwell Science: Oxford, UK; Malden, MA, USA, 2002; ISBN 978-0-632-05115-1. [Google Scholar]
- Witte, C.; Vaida, F.; Papendick, R.; Hungerford, L.L.; Rideout, B.A.; Fowler, J.H. Longitudinal Social Network Analysis of Avian Mycobacteriosis Incidence in a Large Population of Zoo Birds. Prev. Vet. Med. 2021, 193, 105415. [Google Scholar] [CrossRef]
- Rasidi, E.K.; Cornejo, J. Managing the Health of Captive Flocks of Birds. Vet. Clin. N. Am. Exot. Anim. Pract. 2021, 24, 521–530. [Google Scholar] [CrossRef]
- Tolba, H.M.N.; Abou Elez, R.M.M.; Elsohaby, I. Risk Factors Associated with Chlamydia psittaci Infections in Psittacine Birds and Bird Handlers. J. Appl. Microbiol. 2019, 126, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, G.; Maxted, A.M.; Midla, J.W.; Murphy, J.M.; Wohrle, R.; Edling, T.M.; Fish, P.H.; Flammer, K.; Hyde, D.; Kutty, P.K.; et al. Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017. J. Avian Med. Surg. 2017, 31, 262–282. [Google Scholar] [CrossRef] [PubMed]
- Domanska-Blicharz, K.; Opolska, J.; Lisowska, A.; Szczotka-Bochniarz, A. Bacterial and Viral Rodent-Borne Infections on Poultry Farms. An Attempt at a Systematic Review. J. Vet. Res. 2023, 67, 1–10. [Google Scholar] [CrossRef]
- Jung, H.-R.; Lim, S.-K.; Lee, Y.J. Comprehensive Analysis of Biosecurity Practices and Antimicrobial Use in Broiler Chicken Production by Integrated Operations in Korea. Poult. Sci. 2023, 102, 102994. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Dosage and Administration | Reference |
---|---|---|
Amikacin | 15–20 mg/kg i.m. q24 h | [59] |
Amoxicillin | 150 mg/kg i.m. q24 h 150 mg/kg orally q12 h | [36] |
Amoxicillin/Clavulanate | 150 mg/kg orally 150 mg/kg i.v. q12h or i.m. q24 h | [36] |
Azithromycin | 50 mg/kg orally q24 h 5 days for Chlamydophilosis | [36] |
Cefalexin | 40–100 mg/kg i.m. or orally q6–8 h | [59] |
Cefazolin | 50–100 mg/kg i.m. or orally q12 h | [59] |
Clindamycin | 100 mg/kg orally q24 h | [36] |
Doxycycline | 50–75 mg/kg orally q12 h 100 mg/kg i.m. for 5–7 days | [36] |
Enrofloxacin | 15 mg/kg orally or i.m. q12 h | [36] |
Marbofloxacin | 10–15 mg/kg i.m. or orally q12–24 h | [59] |
Gentamicin | 2.5 mg/kg i.m. q8 h | [59] |
Oxytetracycline | 16 mg/kg i.m. q24 h in great horned owls | [59] |
48 mg/kg i.m. q48 h in owls 25–50 mg/kg i.m. or orally q8 h for 5–7 days 50–200 mg/kg i.m. q3–5 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, R.; Tavares, L.; Oliveira, M. Antimicrobial Resistance and Virulence Potential of Bacterial Species from Captive Birds of Prey—Consequences of Falconry for Public Health. Animals 2024, 14, 856. https://doi.org/10.3390/ani14060856
Magalhães R, Tavares L, Oliveira M. Antimicrobial Resistance and Virulence Potential of Bacterial Species from Captive Birds of Prey—Consequences of Falconry for Public Health. Animals. 2024; 14(6):856. https://doi.org/10.3390/ani14060856
Chicago/Turabian StyleMagalhães, Rita, Luís Tavares, and Manuela Oliveira. 2024. "Antimicrobial Resistance and Virulence Potential of Bacterial Species from Captive Birds of Prey—Consequences of Falconry for Public Health" Animals 14, no. 6: 856. https://doi.org/10.3390/ani14060856
APA StyleMagalhães, R., Tavares, L., & Oliveira, M. (2024). Antimicrobial Resistance and Virulence Potential of Bacterial Species from Captive Birds of Prey—Consequences of Falconry for Public Health. Animals, 14(6), 856. https://doi.org/10.3390/ani14060856