Different Concentrations of Probiotic Pediococcus pentosaceus GT001 on Growth Performance, Antioxidant Capacity, Immune Function, Intestinal Microflora and Histomorphology of Broiler Chickens
<p>Electron micrograph images of the duodenum (<b>A</b>), ileum (<b>B</b>) and jejunum (<b>C</b>) tissues from the treatment birds. (T1)—basal diet (corn and soybean based); (T2)—basal diet supplemented with antibact 3X 1 g/kg feed; (T3)—basal diet supplemented with <span class="html-italic">P. pentosaceus</span> GT001 at 4.0 × 10<sup>8</sup> cfu/g feed; (T4)—basal diet supplemented with <span class="html-italic">P. pentosaceus</span> at 8.0 × 10<sup>8</sup> cfu/g feed; and (T5)—basal diet supplemented with <span class="html-italic">P. pentosaceus</span> at 1.2 × 10<sup>9</sup> cfu/g.</p> "> Figure 1 Cont.
<p>Electron micrograph images of the duodenum (<b>A</b>), ileum (<b>B</b>) and jejunum (<b>C</b>) tissues from the treatment birds. (T1)—basal diet (corn and soybean based); (T2)—basal diet supplemented with antibact 3X 1 g/kg feed; (T3)—basal diet supplemented with <span class="html-italic">P. pentosaceus</span> GT001 at 4.0 × 10<sup>8</sup> cfu/g feed; (T4)—basal diet supplemented with <span class="html-italic">P. pentosaceus</span> at 8.0 × 10<sup>8</sup> cfu/g feed; and (T5)—basal diet supplemented with <span class="html-italic">P. pentosaceus</span> at 1.2 × 10<sup>9</sup> cfu/g.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Pediococcus Pentosaceus Production and Administration
2.3. Birds, Housing, Diet and Experimental Design
2.4. Management
2.5. Growth Performance
2.6. Serum Samples
Biochemistry Analysis
2.7. Intestinal Measurement and pH Determination
2.8. Digestive Enzymes
2.9. Intestinal Histology and Morphology
2.10. Intestinal Microflora
2.11. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Liver Function
3.3. Lipid Profile
3.4. Intestinal pH and Length
3.5. Serum and Intestinal Digestive Enzymes
3.6. Antioxidant Capacity
3.7. Serum Cytokines and Immunoglobin
3.8. Intestinal Morphology
3.9. Intestinal Microflora Count
4. Discussion
4.1. Growth Performance
4.2. Liver Function
4.3. Lipid Profile
4.4. Intestinal pH and Length
4.5. Digestive Enzymes
4.6. Serum Antioxidant Capacity of Broiler Chickens
4.7. Serum Cytokines and Immunoglobin
4.8. Small Intestinal Morphology
4.9. Microbial Count
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramlucken, U.; Lalloo, R.; Roets, Y.; Moonsamy, G.; Rensburg, C.; Jansen, van.; Thantsha, M.S. Advantages of Bacillus-based probiotics in poultry production. Livest. Sci. 2020, 241, 104215. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Mabelebele, M.; Sebola, N.A.; Mbajiorgu, C. Bacillus probiotics as alternatives to in-feed antibiotics and its influence on growth, serum chemistry, antioxidant status, intestinal histomorphology, and lesion scores in disease-challenged broiler chickens. Front. Vet. Sci. 2022, 9, 876725. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Ali, M.; Nassan, M.; Saleh, A. Ameliorative effect of Bacillus subtilis on growth performance and intestinal architecture in broiler infected with Salmonella. Animals 2019, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, R.; Liu, Y.; Ma, L.; Zha, J.; Qiao, X.; Chai, T.; Wu, B. Benefit of dietary supplementation with Bacillus subtilis BYS2 on growth performance, immune response, and disease resistance of broilers. Probiotics Antimicrob. Proteins 2020, 12, 1385–1397. [Google Scholar] [CrossRef]
- Aziz, S.M.; Hosseini, H.; Mirhosseini, S.A. A review of dietary probiotics in poultry. J. Appl. Biotechnol. Rep. 2018, 5, 48–54. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Lee, T.Y.; Yu, B. The effects of the supplementation of multi-strain probiotics on intestinal microbiota, metabolites and inflammation of young SPF chickens challenged with Salmonella enterica subsp. enterica. Anim. Sci. J. 2019, 90, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Biagioli, M.; Carino, A.; Di Giorgio, C.; Marchianò, S.; Bordoni, M.; Roselli, R.; Distrutti, E.; Fiorucci, S. Discovery of a novel multi-strains probiotic formulation with improved efficacy toward intestinal inflammation. Nutrients 2020, 12, 1945. [Google Scholar] [CrossRef] [PubMed]
- Soomro, R.N.; Abd El-Hack, M.E.; Shah, S.S.; Taha, A.E.; Alagawany, M.; Swelum, A.A.; Hussein, E.O.S.; Ba-Aawdh, H.A.; Saadeldin, I.; El-Edel, M.A.; et al. Impact of restricting feed and probiotic supplementation on growth performance, mortality and carcass traits of meat-type quails. Anim. Sci. J. 2019, 90, 1388–1395. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L.; Jiang, Z. Dietary additive probiotics modulation of the intestinal microbiota. Protein Pept. Lett. 2017, 24, 382–387. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb. Cell Fact. 2021, 20, 45. [Google Scholar] [CrossRef]
- Danielsen, M.; Simpson, P.J.; O’Connor, E.B.; Ross, R.P.; Stanton, C. Susceptibility of Pediococcus sp. to antimicrobial agents. J. Appl. Microbiol. 2007, 102, 384–389. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994.
- Erdogmuş, S.Z.; Gülmez, N.; Fındik, A.; Şah, H.; Gülmez, M. Efficacy of probiotics on health status and growth performance of Eimeria tenella infected broiler chickens. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 311–320. [Google Scholar] [CrossRef]
- Arif, M.; Akteruzzaman, M.; Al-Ferdous, T.; Islam, S.; Das, C.; Siddique, M.; Kabir, L. Dietary supplementation of Bacillus-based probiotics on the growth performance, gut morphology, intestinal microbiota and immune response in low biosecurity broiler chickens. Vet. Ani. Sci. 2021, 14, 100216. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E. Are probiotics the new calcium and vitamin D for bone health? Curr. Osteoporos. Rep. 2020, 18, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, S.; Das, P.P.; Saini, P.C.; Roy, B.; Chatterjee, P.N. Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poult. Sci. 2017, 96, 2614–2622. [Google Scholar] [CrossRef] [PubMed]
- Poudel, S.; Tabler, G.T.; Lin, J.; Zhai, W.; Zhang, L. Riboflavin and Bacillus subtilis effects on growth performance and woody-breast of Ross 708 broilers with or without Eimeria spp. challenge. J. Anim. Sci. Technol. 2022, 64, 443–461. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.M.; Jackson, M.E.; Ayres, V.E.; Boltz, T.P.; Lynch, E.A.; Moritz, J.S. Performance, carcass quality, tibia ash, and mineral digestibility responses of Ross 708 broilers to increasing dose of two commercially available mixer-added phytases. J. Appl. Poult. Res. 2022, 31, 100264. [Google Scholar] [CrossRef]
- Pietras, M.; Barowicz, T.; Ocon, E. Effect of Lactobacillus rhamnosus on the growth performance, weight of organs and plasma lipid indices of broiler chickens. Pol. J. Nat. Sci. 2006, 3, 483–490. [Google Scholar]
- Begum, S.A.; Upadhyaya, T.N.; Baruah, G.K. Hematobiochemical alterations of acute chlorpyriphos intoxication in indigenous chicken. J. Vet. World 2015, 8, 750–754. [Google Scholar] [CrossRef]
- Fathi, M. Effects of Lactobacillus cultures as Probiotic on Blood Parameters, Plasma Enzymes Activities and Mortality in Broiler Chicken. Res. J. Anim. Sci. 2013, 7, 78–81. [Google Scholar]
- Mohamed, T.M.; Sun, W.; Bumbie, G.Z.; Dosoky, W.M.; Rao, Z.; Hu, P.; Wu, L.; Tang, Z. Effect of dietary supplementation of Bacillus subtilis on growth performance, organ weight, digestive enzyme activities, and serum biochemical indices in broiler. Animals 2022, 12, 1558. [Google Scholar] [CrossRef]
- Lim, Y.H.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Abdullah, N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J. Anim. Sci. Biotechnol. 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Sharma, S.R. Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico-lipid profile of broiler chickens. J. Poult. Sci. 2006, 43, 235–240. [Google Scholar] [CrossRef]
- Alaqil, A.A.; Abbas, A.O.; El-Beltagi, H.S.; El-Atty, H.K.A. Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens. Animals 2020, 10, 1588. [Google Scholar] [CrossRef] [PubMed]
- Hasanuddin, S.; Yunianto, V.D.; Sukamto, B. Fat and cholesterol meat of broiler chicken feed by step down protein with addition lime juice as acidifier. Bul. Nutr. Makanan Ternak 2013, 9, 47–53. [Google Scholar]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A mini-review of human studies on cholesterol-lowering properties of probiotics. Sci. Pharm. 2019, 87, 26. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S. Application of probiotics in poultry production. World’s Poult. Sci. J. 2013, 69, 621–632. [Google Scholar] [CrossRef]
- Reid, G.; Burton, J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 2002, 4, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Xun, X.; Hu, Y.; Li, N.; Yang, C.; Jiang, X.; Liu, Y. Research on the effect of Pediococcus pentosaceus on Salmonella enteritidis-infected chicken. BioMed Res. Int. 2020, 2020, 6416451. [Google Scholar] [CrossRef]
- Alzawqari, M.H.; Al-Baddany, A.A.; Al-Baadani, H.H.; Alhidary, I.A.; Khan, R.U.; Aqil, G.M.; Abdurab, A. Effect of feeding dried sweet orange (Citrus sinensis) peel and lemon grass (Cymbopogon citratus) leaves on growth performance, carcass traits, serum metabolites and antioxidant status in broiler during the finisher phase. Environ. Sci. Pollut. Res. 2016, 23, 17077–17082. [Google Scholar] [CrossRef]
- Peng, H.; Yin, Y.; Pei, Z.; Wei, T.; Li, J.; Li, X.; Li, C.; Bai, H.; Ma, C.; Gong, Y.; et al. Supplement of probiotics improves the meat output and quality of near maturity yellow-feathered broilers. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Wang, Y.; Heng, C.; Zhou, X.; Cao, G.; Jiang, L.; Wang, J.; Li, K.; Wang, D.; Zhan, X. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br. J. Nutr. 2021, 125, 494–507. [Google Scholar] [CrossRef]
- Cao, X.; Tang, L.; Zeng, Z.; Wang, B.; Zhou, Y.; Wang, Q.; Zou, P.; Li, W. Effects of probiotics Basc06 on intestinal digestion and absorption, antioxidant capacity, microbiota composition, and macrophage polarization in pigs for fattening. Front. Vet. Sci. 2020, 7, 570593. [Google Scholar] [CrossRef]
- Lei, X.; Piao, X.; Ru, Y.; Zhang, H.; Peron, A.; Zhang, H. Effect of Bacillus amyloliquefaciens-based direct-fed microbial on performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. Asian Austral. J. Anim. 2015, 28, 239–246. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, J.F.; Tang, S.G.; Guo, S.C.; He, C.Q.; Qu, X.Y. Effects of essential oil/palygorskite composite on performance, egg quality, plasma biochemistry, oxidation status, immune response and intestinal morphology of laying hens. Poult. Sci. 2022, 101, 101632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, K.; Zhang, J.; Xu, W.; Huang, Q.; Wang, T. Dietary effects of Bacillus subtilis fmbj on the antioxidant capacity of broilers at an early age. Poult. Sci. 2017, 96, 3564–3573. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Wang, B.; Xu, H.; Mei, X.; Xu, X.; Zhang, X.; Ni, J.; Li, W. Bacillus amyloliquefaciens SC06 protects mice against high-fat diet-induced obesity and liver injury via regulating host metabolism and gut microbiota. Front. Microbiol. 2019, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Choi, Y.H.; Choi, Y.S.; Alam, M.B.; Lee, S.H.; Yoo, J.C. A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. Food Chem. 2018, 239, 502–510. [Google Scholar] [CrossRef]
- Zhou, J.; Ao, X.; Lei, Y.; Ji, C.; Ma, Q. Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows. Anim. Nutr. 2020, 6, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Xu, H.; Mei, X.; Gong, L.; Wang, B.; Li, W.; Jiang, S. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow feathered broilers. Poult. Sci. 2018, 97, 3540–3549. [Google Scholar] [CrossRef]
- Yang, H.; Deng, J.; Yuan, Y.; Fan, D.; Zhang, Y.; Zhang, R.; Han, B. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: Antioxidation and effect on oxidative stress. Curr. Microbiol. 2015, 70, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Kleniewska, P.; Pawliczak, R. Antioxidative activity of probiotics. Arch. Med. Sci. 2019, 17, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.L.; Anja, G.; Diaa, T.; Fray, L.M. Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. Fems Immunol. Med. Microbiol. 2004, 42, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Zeng, X.; Zhou, L.; Cao, G.; Yang, C. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. J. Anim. Sci. Biotechnol. 2016, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Rajput, I.R.; Li, L.Y.; Xin, X.; Wu, B.; Juan, Z.; Cui, Z.; Yu, D.; Li, W. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult. Sci. 2013, 92, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Selvam, R.; Maheswari, P.; Kavitha, P.; Ravichandran, M.; Sas, B.; Ramchand, C.N. Effect of Bacillus subtilis PB6, a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease. Indian J. Biochem. Biophys. 2009, 46, 79–85. [Google Scholar]
- Rout, S.K.; Pradhan, C.R.; Rath, R.; Panda, N.; Panigrahi, B. Effect of supplementation of probiotics and acidifier on immunity, caecal coliform count, intestinal histomorphology and serum biochemical parameters in broilers. Indian J. Ani. Nut. 2015, 32, 227–231. [Google Scholar]
- Zhang, H.Y. Study on the Therapeutic Effect and Mechanism of Compound Chinese Traditional Medicine on Chicken Colibacillosis. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2018. [Google Scholar]
- Mantis, N.J.; Rol, N.; Corthesy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef]
- Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2017, 96, 74–82. [Google Scholar] [CrossRef]
- Neveling, D.P.; Dicks, L.M. Probiotics: An antibiotic replacement strategy for healthy broilers and productive rearing. Probiotics Antimicrob. Proteins 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Paiva, D.; Walk, C.; McElroy, A. Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode. Poult. Sci. 2014, 93, 2752–2762. [Google Scholar] [CrossRef]
- Lee, K.W.; Lee, S.H.; Lillehoj, H.S.; Li, G.X.; Jang, S.I.; Babu, U.S.; Park, M.S.; Kim, D.K.; Lillehoj, E.P.; Neumann, A.P.; et al. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poult. Sci. 2010, 89, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, G.; Shao, D.; Wang, Q.; Hu, Y.; Wu, T.; Ji, C.; Shi, S. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poult. Sci. 2021, 100, 100935. [Google Scholar] [CrossRef] [PubMed]
- Cisek, A.A.; Binek, M. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Polish J. Vet. Sci. 2014, 17, 385–394. [Google Scholar] [CrossRef]
- Salim, H.M.; Kang, H.K.; Akter, N.; Kim, D.W.; Kim, J.H.; Kim, M.J. Supplementation of direct fed microbials as an alternative to antibiotic on growth performance, immune responses, cecal microbial population, and ileal morphology of broiler chickens. Poult. Sci. 2013, 92, 2084–2090. [Google Scholar] [CrossRef]
- Yang, C.M.; Cao, G.T.; Ferket, P.R.; Liu, T.T.; Zhou, L.; Zhang, L. Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult. Sci. 2012, 91, 2121–2129. [Google Scholar] [CrossRef]
- Ravangard, A.H.; Houshmand, M.; Khajavi, M.; Naghiha, R. Performance and cecal bacteria counts of broilers fed low protein diets with and without a combination of probiotic and prebiotic. Braz. J. Poult. Sci. 2017, 19, 75–82. [Google Scholar] [CrossRef]
Ingredients (kg) | Starter (1–21 Days) | Finisher (22–42 Days) |
---|---|---|
Maize | 58.2 | 63.5 |
Soya | 30.0 | 25.0 |
Fish | 5.3 | 5.0 |
Limestone | 1.3 | 1.3 |
Soyabean oil | 2.0 | 2.0 |
L-Lysine | 0.2 | 0.2 |
DL-Methionine | 0.2 | 0.2 |
Di calcium phosphate | 1.5 | 1.5 |
Salt | 0.3 | 0.3 |
Premix | 1.0 | 1.0 |
Total | 100 | 100 |
Calculated composition | ||
Energy | 3251 | 3255 |
Crude Protein | 22.11 | 20.08 |
Total Phosphorus | 0.73 | 0.65 |
Methionine | 0.24 | 0.23 |
Methionine + Cysteine | 0.93 | 0.87 |
Lysine | 1.39 | 1.25 |
Ether Extract | 5.22 | 5.29 |
Crude Fibre | 3.04 | 2.85 |
Parameters (g) | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Initial Weight | 38.24 | 38.16 | 38.05 | 38.54 | 38.71 | - | - |
Final Weight | 1468.0 a | 1285.9 b | 1484.0 a | 1421.0 ab | 1287.0 b | 52.9 | 0.030 |
Feed Intake/Day | 70.57 bc | 63.60 d | 75.59 a | 71.46 b | 67.55 c | 1.30 | <0.001 |
Total Weight Gain | 1429.8 a | 1247.8 b | 1446.0 a | 1382.5 ab | 1248.3 b | 52.9 | 0.030 |
Average Daily Gain | 34.04 a | 29.71 b | 34.43 a | 32.92 ab | 29.72 b | 1.26 | 0.030 |
Feed Conversion Ratio | 2.08 | 2.15 | 2.20 | 2.18 | 2.20 | 0.05 | 0.514 |
Parameters | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Total Protein (g/L) | 28.27 | 28.42 | 29.92 | 27.32 | 29.77 | 3.06 | 0.970 |
Albumin (g/L) | 13.24 | 17.33 | 13.25 | 14.46 | 14.27 | 1.44 | 0.285 |
Globulin (g/L) | 21.02 | 18.93 | 20.27 | 16.85 | 19.50 | 2.52 | 0.808 |
Creatinine (ummol/L) | 35.33 a | 22.09 b | 20.45 b | 15.25 b | 25.60 ab | 3.08 | 0.003 |
AST (U/L) | 171.70 | 141.30 | 175.5 | 155.32 | 145.53 | 26.20 | 0.580 |
ALT (U/L) | 12.84 b | 6.47 c | 15.85 ab | 20.13 a | 4.81 c | 2.59 | 0.002 |
Parameters (mmol/L) | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Total cholesterol | 299.3 a | 116.3 b | 281.5 a | 212.6 ab | 161.7 b | 27.7 | 0.001 |
Triglycerides | 61.41 ab | 76.09 a | 27.41 b | 83.87 a | 58.20 ab | 8.20 | 0.001 |
HDL | 57.98 ab | 54.74 ab | 44.22 b | 65.41 a | 56.32 ab | 4.35 | 0.040 |
LDL | 200.00 ab | 70.50 c | 298.80 a | 263.00 a | 122.9 b | 29.30 | <0.001 |
Parameters | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
pH | |||||||
Duodenum | 6.262 | 6.384 | 6.208 | 6.260 | 6.242 | 0.123 | 0.879 |
Jejunum | 6.888 a | 6.790 a | 6.294 b | 6.326 b | 6.542 ab | 0.156 | 0.046 |
Ileum | 7.418 a | 6.914 ab | 6.476 b | 6.436 b | 6.676 b | 0.218 | 0.028 |
Length (cm) | |||||||
Duodenum | 29.20 | 30.40 | 30.00 | 30.80 | 34.00 | 1.61 | 0.300 |
Jejunum | 81.00 | 74.60 | 73.60 | 79.00 | 84.20 | 2.92 | 0.096 |
Ileum | 79.80 | 76.00 | 71.80 | 74.00 | 69.40 | 4.90 | 0.627 |
Parameters (ng/mL) | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Serum | |||||||
Amylase | 51.55 b | 46.98 c | 62.79 a | 61.29 a | 54.18 b | 0.738 | <0.001 |
Lipase | 22.63 d | 25.94 d | 44.82 a | 36.36 b | 30.51 c | 0.867 | <0.001 |
Intestinal | |||||||
Amylase | 25.13 a | 21.88 b | 26.52 a | 24.36 a | 24.34 a | 0.536 | <0.001 |
Lipase | 12.05 c | 10.60 d | 15.42 a | 13.86 b | 13.66 b | 0.321 | <0.001 |
Parameters | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
T-AOC (nmol/L) | 0.45 b | 0.36 c | 0.53 a | 0.38 c | 0.37 c | 0.02 | <0.001 |
SOD (nmol/L) | 131.48 d | 135.24 c | 140.99 ab | 143.16 a | 138.71 b | 0.721 | <0.001 |
GHS-Px (U/mL) | 564.62 c | 579.09 c | 615.56 b | 633.88 a | 623.80 ab | 3.78 | <0.001 |
CAT (U/mL) | 305.05 c | 327.26 b | 377.20 a | 385.95 a | 381.09 a | 4.03 | <0.001 |
MDA (U/mL) | 4.20 a | 3.51 bc | 3.90 ab | 3.10 c | 3.20 c | 0.109 | <0.001 |
Parameters | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Cytokines | |||||||
TNF-α (pg/mL) | 116.83 a | 104.16 b | 105.22 b | 93.52 c | 100.08 cb | 2.15 | <0.001 |
IL 6 (pg/mL) | 63.24 a | 57.74 bc | 62.92 a | 55.67 c | 59.45 b | 0.781 | <0.001 |
IL 10 (pg/mL) | 29.92 b | 31.01 b | 34.28 a | 35.05 a | 33.36 a | 0.510 | <0.001 |
Immunoglobin | |||||||
IgA (g/L) | 0.92 bc | 0.87 c | 1.06 a | 1.01 ab | 0.93 bc | 0.0244 | <0.001 |
IgG (g/L) | 8.17 b | 8.08 b | 8.69 a | 8.76 a | 8.67 a | 0.0898 | <0.001 |
IgM (g/L) | 0.78 b | 0.77 b | 0.94 a | 0.90 a | 0.87 a | 0.0191 | <0.001 |
Parameters (μm) | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Duodenum | |||||||
Villus height | 1248.60 b | 1090.60 c | 1377.00 a | 1302.00 ab | 1212.20 b | 28.2 | <0.001 |
Crypt depth | 219.00 ab | 217.60 ab | 229.00 ab | 232.00 a | 208.00 b | 5.06 | 0.023 |
VH/CP | 5.72 ab | 5.02 b | 6.04 a | 5.63 ab | 5.83 a | 0.18 | 0.010 |
Ileum | |||||||
Villus height | 960.60 a | 866.20 b | 989.20 a | 938.80 ab | 951.80 a | 18.50 | 0.002 |
Crypt depth | 207.40 a | 184.20 b | 158.00 c | 186.40 b | 186.00 b | 3.96 | <0.001 |
VH/CP | 4.64 b | 4.70 b | 6.27 a | 5.06 b | 5.12 b | 0.141 | <0.001 |
Jejunum | |||||||
Villus height | 1179.40 b | 1221.40 ab | 1312.20 a | 1237.60 ab | 1209.60 ab | 25.4 | 0.018 |
Crypt depth | 229.00 a | 221.60 ab | 204.60 b | 216.00 ab | 229.20 a | 4.11 | 0.002 |
VH/CP | 5.16 c | 5.52 bc | 6.43 a | 5.73 bc | 5.28 b | 0.130 | <0.001 |
Treatments | Pediococcus spp. (103) | Total Viable Count (TVC) (106) | Total Coliform Count (TCC) (102) | Non-Lactose Fermenters (NLF) | E. Coli (101) | Enterobacter Count (EBC) | Enterococcus Count (ECC) | Salmonella Count (SC) |
---|---|---|---|---|---|---|---|---|
T1 | 0.0013 b | 1.46 ab | 1.21 a | No growth | 0.15 | No growth | No growth | No growth |
T2 | 0.0012 b | 2.38 a | 0.013 a | No growth | 0.22 | No growth | No growth | No growth |
T3 | 2.32 ab | 5.22 b | 0.0002 b | No growth | 0.13 | No growth | No growth | No growth |
T4 | 4.7 a | 1.26 ab | 0.0008 b | No growth | 0.35 | No growth | No growth | No growth |
T5 | 3.76 a | 2.45 a | 0.0004 b | No growth | 0.12 | No growth | No growth | No growth |
SEM | 447 | 24.3 | 4.94 | - | 0.753 | - | - | - |
p-Value | 0.002 | 0.011 | <0.001 | - | 0.306 | - | - | - |
Treatments | Pediococcus spp. (103) | Total Viable Count (TVC) (106) | Total Coliform Count (TCC) (102) | Non-Lactose Fermenters (NLF) | E. Coli (101) | Enterobacter Count (EBC) | Enterococcus Count (ECC) (101) | Salmonella Count (SC) |
---|---|---|---|---|---|---|---|---|
T1 | 0.0012 b | 6.81 | 5.55 a | No growth | 1.71 a | No growth | 0.57 c | No growth |
T2 | 0.0017 b | 6.06 | 4.82 a | No growth | 1.08 b | No growth | 1.89 a | No growth |
T3 | 1.56 ab | 1.91 | 1.67 b | No growth | 1.12 b | No growth | 1.13 b | No growth |
T4 | 5.89 a | 4.11 | 1.26 b | No growth | 4.20 b | No growth | 1.04 bc | No growth |
T5 | 3.76 a | 4.62 | 0.24 c | No growth | 1.20 b | No growth | 0.42 d | No growth |
SEM | 382 | 1.42 | 63.6 | - | 4.27 | - | 0.881 | - |
p-Value | <0.001 | 0.269 | 0.0040 | - | 0.015 | - | <0.001 | - |
Treatments | Pediococcus spp. (103) | Total Viable Count (TVC) (109) | Total Coliform Count (TCC) (104) | Non-Lactose Fermenters (NLF) (101) | E. Coli (102) | Enterobacter Count (EBC) (101) | Enterococcus Count (ECC) (101) | Salmonella Count (SC) |
---|---|---|---|---|---|---|---|---|
T1 | 0.0062 c | 4.78 a | 8.67 a | 2.40 | 7.31 a | 1.61 | 2.04 a | No growth |
T2 | 0.0065 c | 1.16 b | 5.51 ab | 1.83 | 7.96 a | 2.63 | 1.82 a | No growth |
T3 | 2.81 b | 0.14 b | 1.82 b | 1.60 | 5.22 b | 2.41 | 1.74 a | No growth |
T4 | 4.10 a | 0.94 b | 2.13 b | 4.43 | 1.73 bc | 1.15 | 1.54 ab | No growth |
T5 | 4.31 a | 1.03 b | 0.57 b | 5.28 | 1.13 c | 1.16 | 1.17 b | No growth |
SEM | 159 | 292 | 10.85 | 8.48 | 64.4 | 3.13 | 0.96 | - |
p-Value | <0.001 | 0.001 | 0.015 | 0.088 | 0.002 | 0.074 | 0.015 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumbie, G.Z.; Abormegah, L.; Asiedu, P.; Oduro-Owusu, A.D.; Danso, F.; Ansah, K.O.; Mohamed, T.M.; Tang, Z. Different Concentrations of Probiotic Pediococcus pentosaceus GT001 on Growth Performance, Antioxidant Capacity, Immune Function, Intestinal Microflora and Histomorphology of Broiler Chickens. Animals 2023, 13, 3724. https://doi.org/10.3390/ani13233724
Bumbie GZ, Abormegah L, Asiedu P, Oduro-Owusu AD, Danso F, Ansah KO, Mohamed TM, Tang Z. Different Concentrations of Probiotic Pediococcus pentosaceus GT001 on Growth Performance, Antioxidant Capacity, Immune Function, Intestinal Microflora and Histomorphology of Broiler Chickens. Animals. 2023; 13(23):3724. https://doi.org/10.3390/ani13233724
Chicago/Turabian StyleBumbie, Gifty Ziema, Leonardo Abormegah, Peter Asiedu, Akua Durowaa Oduro-Owusu, Frederick Danso, Kwabena Owusu Ansah, Taha Mohamed Mohamed, and Zhiru Tang. 2023. "Different Concentrations of Probiotic Pediococcus pentosaceus GT001 on Growth Performance, Antioxidant Capacity, Immune Function, Intestinal Microflora and Histomorphology of Broiler Chickens" Animals 13, no. 23: 3724. https://doi.org/10.3390/ani13233724
APA StyleBumbie, G. Z., Abormegah, L., Asiedu, P., Oduro-Owusu, A. D., Danso, F., Ansah, K. O., Mohamed, T. M., & Tang, Z. (2023). Different Concentrations of Probiotic Pediococcus pentosaceus GT001 on Growth Performance, Antioxidant Capacity, Immune Function, Intestinal Microflora and Histomorphology of Broiler Chickens. Animals, 13(23), 3724. https://doi.org/10.3390/ani13233724