Acid-Sensing Ion Channels in Zebrafish
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. The Acid-Sensing Ion Channel Superfamily
1.2. ASICs in Zebrafish
2. ASICs in Zebrafish Sensory Organs
2.1. Lateral Line and Inner Ear
2.2. Taste Buds
2.3. Olfactory Epithelium
2.4. Retina
3. ASICs in Zebrafish Gills
4. ASICs in Zebrafish Gut
5. ASICS in Zebrafish Brain
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kress, M.; Waldmann, R. Chapter 8 Acid Sensing Ionic Channels. In Current Topics in Membranes; Academic Press: Cambridge, MA, USA, 2006; Volume 57, pp. 241–276. ISBN 978-0-12-815456-4. [Google Scholar]
- Sherwood, T.W.; Frey, E.N.; Askwith, C.C. Structure and Activity of the Acid-Sensing Ion Channels. Am. J. Physiol. Cell Physiol. 2012, 303, C699–C710. [Google Scholar] [CrossRef] [Green Version]
- Hanukoglu, I. ASIC and ENaC Type Sodium Channels: Conformational States and the Structures of the Ion Selectivity Filters. FEBS J. 2017, 284, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Gründer, S.; Chen, X. Structure, Function, and Pharmacology of Acid-Sensing Ion Channels (ASICs): Focus on ASIC1a. Int. J. Physiol. Pathophysiol. Pharm. 2010, 2, 73–94. [Google Scholar]
- Krishtal, O. Receptor for Protons: First Observations on Acid Sensing Ion Channels. Neuropharmacology 2015, 94, 4–8. [Google Scholar] [CrossRef]
- Holzer, P. Acid-Sensitive Ion Channels and Receptors. In Sensory Nerves; Canning, B.J., Spina, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 283–332. ISBN 978-3-540-79090-7. [Google Scholar]
- Delmas, P.; Coste, B. Mechano-Gated Ion Channels in Sensory Systems. Cell 2013, 155, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-C.; Zimmer, A.; Sun, W.-H.; Hall, J.; Brownstein, M.J.; Zimmer, A. A Role for ASIC3 in the Modulation of High-Intensity Pain Stimuli. Proc. Natl. Acad. Sci. USA 2002, 99, 8992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, X. Acid-Sensing Ion Channels: Trafficking and Synaptic Function. Mol. Brain 2013, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Ogura, T.; Kinnamon, S.C. Acid-Activated Cation Currents in Rat Vallate Taste Receptor Cells. J. Neurophysiol. 2002, 88, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Ugawa, S. Identification of Sour-Taste Receptor Genes. Anat. Sci. Int. 2003, 78, 205–210. [Google Scholar] [CrossRef]
- Krishtal, O. The ASICs: Signaling Molecules? Modulators? Trends Neurosci. 2003, 26, 477–483. [Google Scholar] [CrossRef]
- Holzer, P. Acid-Sensitive Ion Channels in Gastrointestinal Function. Curr. Opin. Pharmacol. 2003, 3, 618–625. [Google Scholar] [CrossRef]
- Wemmie, J.A.; Price, M.P.; Welsh, M.J. Acid-Sensing Ion Channels: Advances, Questions and Therapeutic Opportunities. Trends Neurosci. 2006, 29, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Lingueglia, E. Acid-Sensing Ion Channels in Sensory Perception. J. Biol. Chem. 2007, 282, 17325–17329. [Google Scholar] [CrossRef] [Green Version]
- Holzer, P. Acid Sensing by Visceral Afferent Neurones. Acta Physiol. 2011, 201, 63–75. [Google Scholar] [CrossRef]
- Lingueglia, E. Les canaux ioniques ASIC dans la douleur. Biol. Aujourd’hui 2014, 208, 13–20. [Google Scholar] [CrossRef]
- Hill, A.S.; Ben-Shahar, Y. The Synaptic Action of Degenerin/Epithelial Sodium Channels. Channels 2018, 12, 262–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.-G.; Xu, T.-L. ASIC3 Channels in Multimodal Sensory Perception. ACS Chem. Neurosci. 2011, 2, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshikawa, M.; Kato, A.; Hojo, H.; Shibata, Y.; Kumamoto, N.; Watanabe, M.; Ugawa, S. Distribution of ASIC4 Transcripts in the Adult Wild-Type Mouse Brain. Neurosci. Lett. 2017, 651, 57–64. [Google Scholar] [CrossRef]
- Gründer, S.; Geissler, H.S.; Bässler, E.L.; Ruppersberg, J.P. A New Member of Acid-Sensing Ion Channels from Pituitary Gland. Neuroreport 2000, 11, 1607–1611. [Google Scholar] [CrossRef] [PubMed]
- Yiangou, Y.; Facer, P.; Smith, J.; Sangameswaran, L.; Eglen, R.; Birch, R.; Knowles, C.; Williams, N.; Anand, P. Increased Acid-Sensing Ion Channel ASIC-3 in Inflamed Human Intestine. Eur. J. Gastroenterol. Hepatol. 2001, 13, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, L.U. Evolution of Nociception and Pain: Evidence from Fish Models. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190290. [Google Scholar] [CrossRef]
- Takei, Y. The Digestive Tract as an Essential Organ for Water Acquisition in Marine Teleosts: Lessons from Euryhaline Eels. Zool. Lett. 2021, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Dymowska, A.K.; Schultz, A.G.; Blair, S.D.; Chamot, D.; Goss, G.G. Acid-Sensing Ion Channels Are Involved in Epithelial Na+ Uptake in the Rainbow Trout Oncorhynchus Mykiss. Am. J. Physiol. Cell Physiol. 2014, 307, C255–C265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dymowska, A.K.; Boyle, D.; Schultz, A.G.; Goss, G.G. The Role of Acid-Sensing Ion Channels in Epithelial Na+ Uptake in Adult Zebrafish (Danio Rerio). J. Exp. Biol. 2015, 218, 1244–1251. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Bao, B.; Li, H. Using Zebrafish as a Model to Study the Role of Epigenetics in Hearing Loss. Expert Opin. Drug Discov. 2017, 12, 967–975. [Google Scholar] [CrossRef]
- Nicolson, T. The Genetics of Hearing and Balance in Zebrafish. Annu. Rev. Genet. 2005, 39, 9–22. [Google Scholar] [CrossRef]
- Orlando, L. Odor Detection in Zebrafish. Trends Neurosci. 2001, 24, 257–258. [Google Scholar] [CrossRef]
- Paukert, M.; Sidi, S.; Russell, C.; Siba, M.; Wilson, S.W.; Nicolson, T.; Gründer, S. A Family of Acid-Sensing Ion Channels from the Zebrafish: Widespread Expression in the Central Nervous System Suggests a Conserved Role in Neuronal Communication. J. Biol. Chem. 2004, 279, 18783–18791. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Polleichtner, G.; Kadurin, I.; Gründer, S. Zebrafish Acid-Sensing Ion Channel (ASIC) 4, Characterization of Homo- and Heteromeric Channels, and Identification of Regions Important for Activation by H+. J. Biol. Chem. 2007, 282, 30406–30413. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.M.; Dymowska, A.K.; Kumai, Y.; Goss, G.G.; Perry, S.F.; Kwong, R.W.M. Assessing the Role of the Acid-Sensing Ion Channel ASIC4b in Sodium Uptake by Larval Zebrafish. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2018, 226, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Viña, E.; Parisi, V.; Sánchez-Ramos, C.; Cabo, R.; Guerrera, M.C.; Quirós, L.M.; Germanà, A.; Vega, J.A.; García-Suárez, O. Acid-Sensing Ion Channels (ASICs) 2 and 4.2 Are Expressed in the Retina of the Adult Zebrafish. Cell Tissue Res. 2015, 360, 223–231. [Google Scholar] [CrossRef]
- Detrich, H.W., 3rd; Westerfield, M.; Zon, L.I. The Zebrafish. Preface. Methods Cell Biol. 2011, 105, xxi–xxii. [Google Scholar] [CrossRef]
- Kotrschal, K.; Krautgartner, W.-D.; Hansen, A. Ontogeny of the Solitary Chemosensory Cells in the Zebrafish, Danio Rerio. Chem. Senses 1997, 22, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Laurà, R.; Abbate, F.; Germanà, G.P.; Montalbano, G.; Germanà, A.; Levanti, M. Fine Structure of the Canal Neuromasts of the Lateral Line System in the Adult Zebrafish. Anat. Histol. Embryol. 2018, 47, 322–329. [Google Scholar] [CrossRef]
- Montalbano, G.; Capillo, G.; Laurà, R.; Abbate, F.; Levanti, M.; Guerrera, M.C.; Ciriaco, E.; Germanà, A. Neuromast Hair Cells Retain the Capacity of Regeneration during Heavy Metal Exposure. Ann. Anat.-Anat. Anz. 2018, 218, 183–189. [Google Scholar] [CrossRef]
- Germana, A.; Abbate, F.; González-Martı́nez, T.; del Valle, M.E.; de Carlos, F.; Germanà, G.; Vega, J.A. S100 Protein Is a Useful and Specific Marker for Hair Cells of the Lateral Line System in Postembryonic Zebrafish. Neurosci. Lett. 2004, 365, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Bang, P.I.; Sewell, W.F.; Malicki, J.J. Morphology and Cell Type Heterogeneities of the Inner Ear Epithelia in Adult and Juvenile Zebrafish (Danio Rerio). J. Comp. Neurol. 2001, 438, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Ghysen, A.; Dambly-Chaudière, C. The Lateral Line Microcosmos. Genes Dev. 2007, 21, 2118–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranade, S.S.; Syeda, R.; Patapoutian, A. Mechanically Activated Ion Channels. Neuron 2015, 87, 1162–1179. [Google Scholar] [CrossRef] [Green Version]
- Abbate, F.; Madrigrano, M.; Scopitteri, T.; Levanti, M.; Cobo, J.L.; Germanà, A.; Vega, J.A.; Laurà, R. Acid-Sensing Ion Channel Immunoreactivities in the Cephalic Neuromasts of Adult Zebrafish. Ann. Anat.-Anat. Anz. 2016, 207, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Popper, A.N. Organization of the Inner Ear and Auditory Processing. Fish. Neurobiol. 1983, 1, 125–177. [Google Scholar]
- Higgs, D.M.; Rollo, A.K.; Souza, M.J.; Popper, A.N. Development of Form and Function in Peripheral Auditory Structures of the Zebrafish (Danio Rerio). J. Acoust. Soc. Am. 2003, 113, 1145–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germanà, A.; Muriel, J.D.; Cobo, R.; García-Suárez, O.; Cobo, J.; Vega, J.A. Transient-Receptor Potential (TRP) and Acid-Sensing Ion Channels (ASICs) in the Sensory Organs of Adult Zebrafish. In Recent Advances in Zebrafish Researches; IntechOpen: London, UK, 2018. [Google Scholar]
- Hansen, A.; Reutter, K.; Zeiske, E. Taste Bud Development in the Zebrafish, Danio Rerio. Dev. Dyn. 2002, 223, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Korsching, S.I. 3.23—Taste and Smell in Zebrafish. In The Senses: A Comprehensive Reference, 2nd ed.; Fritzsch, B., Ed.; Elsevier: Oxford, UK, 2020; pp. 466–492. ISBN 978-0-12-805409-3. [Google Scholar]
- Viña, E.; Parisi, V.; Cabo, R.; Laurà, R.; López-Velasco, S.; López-Muñiz, A.; García-Suárez, O.; Germanà, A.; Vega, J.A. Acid-Sensing Ion Channels (ASICs) in the Taste Buds of Adult Zebrafish. Neurosci. Lett. 2013, 536, 35–40. [Google Scholar] [CrossRef]
- Levanti, M.; Randazzo, B.; Viña, E.; Montalbano, G.; Garcia-Suarez, O.; Germanà, A.; Vega, J.A.; Abbate, F. Acid-Sensing Ion Channels and Transient-Receptor Potential Ion Channels in Zebrafish Taste Buds. Ann. Anat.-Anat. Anz. 2016, 207, 32–37. [Google Scholar] [CrossRef]
- Sepahi, A.; Kraus, A.; Casadei, E.; Johnston, C.A.; Galindo-Villegas, J.; Kelly, C.; García-Moreno, D.; Muñoz, P.; Mulero, V.; Huertas, M.; et al. Olfactory Sensory Neurons Mediate Ultrarapid Antiviral Immune Responses in a TrkA-Dependent Manner. Proc. Natl. Acad. Sci. USA 2019, 116, 12428–12436. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.; Zielinski, B.S. Diversity in the Olfactory Epithelium of Bony Fishes: Development, Lamellar Arrangement, Sensory Neuron Cell Types and Transduction Components. J. Neurocytol. 2005, 34, 183–208. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Eckart, Z. The Peripheral Olfactory Organ of the Zebrafish, Danio Rerio: An Ultrastructural Study. Chem. Senses 1998, 23, 39–48. [Google Scholar] [CrossRef]
- Parisi, V.; Guerrera, M.C.; Abbate, F.; Garcia-Suarez, O.; Viña, E.; Vega, J.A.; Germanà, A. Immunohistochemical Characterization of the Crypt Neurons in the Olfactory Epithelium of Adult Zebrafish. Ann. Anat.-Anat. Anz. 2014, 196, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Viña, E.; Parisi, V.; Abbate, F.; Cabo, R.; Guerrera, M.C.; Laurà, R.; Quirós, L.M.; Pérez-Varela, J.C.; Cobo, T.; Germanà, A.; et al. Acid-Sensing Ion Channel 2 (ASIC2) Is Selectively Localized in the Cilia of the Non-Sensory Olfactory Epithelium of Adult Zebrafish. Histochem. Cell Biol. 2015, 143, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, M.-X.; Mao, C.-J.; Cheng, X.-Y.; Wang, C.-T.; Huang, J.; Zhong, Z.-M.; Hu, W.-D.; Wang, F.; Hu, L.-F.; et al. Expression and Functions of ASIC1 in the Zebrafish Retina. Biochem. Biophys. Res. Commun. 2014, 455, 353–357. [Google Scholar] [CrossRef]
- Link, B.A.; Collery, R.F. Zebrafish Models of Retinal Disease. Annu. Rev. Vis. Sci. 2015, 1, 125–153. [Google Scholar] [CrossRef]
- Gestri, G.; Link, B.A.; Neuhauss, S.C.F. The Visual System of Zebrafish and Its Use to Model Human Ocular Diseases. Dev. Neurobiol. 2012, 72, 302–327. [Google Scholar] [CrossRef]
- Wilson, J.M.; Laurent, P. Fish Gill Morphology: Inside Out. J. Exp. Zool. 2002, 293, 192–213. [Google Scholar] [CrossRef]
- Galindo-Villegas, J.; Montalban-Arques, A.; Liarte, S.; de Oliveira, S.; Pardo-Pastor, C.; Rubio-Moscardo, F.; Meseguer, J.; Valverde, M.A.; Mulero, V. TRPV4-Mediated Detection of Hyposmotic Stress by Skin Keratinocytes Activates Developmental Immunity. J. Immunol. 2016, 196, 738–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, C. Autonomic Innervation of the Fish Gut. Acta Histochem. 2009, 111, 185–195. [Google Scholar] [CrossRef]
- Levanti, M.B.; Guerrera, M.C.; Calavia, M.G.; Ciriaco, E.; Montalbano, G.; Cobo, J.; Germanà, A.; Vega, J.A. Acid-Sensing Ion Channel 2 (ASIC2) in the Intestine of Adult Zebrafish. Neurosci. Lett. 2011, 494, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Mercado, F.; López, I.A.; Acuna, D.; Vega, R.; Soto, E. Acid-Sensing Ionic Channels in the Rat Vestibular Endorgans and Ganglia. J. Neurophysiol. 2006, 96, 1615–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, R.; Rodríguez, U.; Soto, E. Acid-Sensing Ionic-Channel Functional Expression in the Vestibular Endorgans. Neurosci. Lett. 2009, 463, 199–202. [Google Scholar] [CrossRef]
- González-Garrido, A.; Vega, R.; Mercado, F.; López, I.A.; Soto, E. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons. Front. Cell. Neurosci. 2015, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Burks, C.A.; Hansen, D.R.; Kinnamon, S.C.; Gilbertson, T.A. Taste Receptor Cells Express PH-Sensitive Leak K+ Channels. J. Neurophysiol. 2004, 92, 2909–2919. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Simon, S.A. Acidic Stimuli Activates Two Distinct Pathways in Taste Receptor Cells from Rat Fungiform Papillae. Brain Res. 2001, 923, 58–70. [Google Scholar] [CrossRef]
- Richter, T.A.; Dvoryanchikov, G.A.; Roper, S.D.; Chaudhari, N. Acid-Sensing Ion Channel-2 Is Not Necessary for Sour Taste in Mice. J. Neurosci. 2004, 24, 4088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, S.; Ueda, T.; Ishida, Y.; Yamamoto, T.; Ugawa, S. Acid-Sensing Ion Channels in Taste Buds. Arch. Histol. Cytol. 2006, 69, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockway, L.M.; Zhou, Z.-H.; Bubien, J.K.; Jovov, B.; Benos, D.J.; Keyser, K.T. Rabbit Retinal Neurons and Glia Express a Variety of ENaC/DEG Subunits. Am. J. Physiol. Cell Physiol. 2002, 283, C126–C134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettaiche, M.; Guy, N.; Hofman, P.; Lazdunski, M.; Waldmann, R. Acid-Sensing Ion Channel 2 Is Important for Retinal Function and Protects against Light-Induced Retinal Degeneration. J. Neurosci. 2004, 24, 1005. [Google Scholar] [CrossRef] [PubMed]
- Ettaiche, M.; Deval, E.; Cougnon, M.; Lazdunski, M.; Voilley, N. Silencing Acid-Sensing Ion Channel 1a Alters Cone-Mediated Retinal Function. J. Neurosci. 2006, 26, 5800. [Google Scholar] [CrossRef]
- Tan, J.; Ye, X.; Xu, Y.; Wang, H.; Sheng, M.; Wang, F. Acid-Sensing Ion Channel 1a Is Involved in Retinal Ganglion Cell Death Induced by Hypoxia. Mol. Vis. 2011, 17, 3300–3308. [Google Scholar]
- Tan, J.; Xu, Y.; Liu, G.; Ye, X. Involvement of Acid-Sensing Ion Channel 1a in Functions of Cultured Human Retinal Pigment Epithelial Cells. J. Huazhong Univ. Sci. Technol. 2013, 33, 137–141. [Google Scholar] [CrossRef]
- Dibas, A.; Millar, C.; Al-Farra, A.; Yorio, T. Neuroprotective Effects of Psalmotoxin-1, an Acid-Sensing Ion Channel (ASIC) Inhibitor, in Ischemia Reperfusion in Mouse Eyes. Curr. Eye Res. 2018, 43, 921–933. [Google Scholar] [CrossRef]
- Miyake, T.; Nishiwaki, A.; Yasukawa, T.; Ugawa, S.; Shimada, S.; Ogura, Y. Possible Implications of Acid-Sensing Ion Channels in Ischemia-Induced Retinal Injury in Rats. Jpn. J. Ophthalmol. 2013, 57, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.A.; Brierley, S.M.; Young, R.L.; Blackshaw, L.A. Localization and Comparative Analysis of Acid-Sensing Ion Channel (ASIC1, 2, and 3) MRNA Expression in Mouse Colonic Sensory Neurons within Thoracolumbar Dorsal Root Ganglia. J. Comp. Neurol. 2007, 500, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Brierley, S.M.; Martin, C.M.; Price, M.P.; Symonds, E.; Butler, R.; Wemmie, J.A.; Blackshaw, L.A. Different Contributions of ASIC Channels 1a, 2, and 3 in Gastrointestinal Mechanosensory Function. Gut 2005, 54, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.C.W.; Xu, L.; Gebhart, G.F. The Mechanosensitivity of Mouse Colon Afferent Fibers and Their Sensitization by Inflammatory Mediators Require Transient Receptor Potential Vanilloid 1 and Acid-Sensing Ion Channel 3. J. Neurosci. 2005, 25, 10981. [Google Scholar] [CrossRef]
- Chu, X.-P.; Xiong, Z.-G. Physiological and Pathological Functions of Acid-Sensing Ion Channels in the Central Nervous System. Curr. Drug Targets 2012, 13, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, A.; Lingueglia, E. Pharmacology of Acid-Sensing Ion Channels—Physiological and Therapeutical Perspectives. Neuropharmacology 2015, 94, 19–35. [Google Scholar] [CrossRef]
- Omerbašić, D.; Schuhmacher, L.-N.; Bernal Sierra, Y.-A.; St Smith, E.J.; Lewin, G.R. ASICs and Mammalian Mechanoreceptor Function. Neuropharmacology 2015, 94, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, T.T. Zebrafish as a Model for Hearing and Deafness. J. Neurobiol. 2002, 53, 157–171. [Google Scholar] [CrossRef] [PubMed]
ASIC1 | ASIC2 | ASIC3 | ASIC4 | ZASIC1 | ZASIC2 | ZASIC3 | ZASIC4 | |
---|---|---|---|---|---|---|---|---|
Neuromast | + | + | + | + | - | - | - | - |
Inner ear | + | + | + | - | - | - | - | - |
Taste buds | + | + | - | + | - | - | - | - |
Olfactory epithelium | - | + | - | - | - | - | - | - |
Retina | + | + | - | + | + | - | - | - |
Gills | - | - | - | + | - | - | - | - |
Intestine | - | + | - | - | - | - | - | - |
Brain | - | - | - | - | + | + | - | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalbano, G.; Levanti, M.; Mhalhel, K.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Germanà, A. Acid-Sensing Ion Channels in Zebrafish. Animals 2021, 11, 2471. https://doi.org/10.3390/ani11082471
Montalbano G, Levanti M, Mhalhel K, Abbate F, Laurà R, Guerrera MC, Aragona M, Germanà A. Acid-Sensing Ion Channels in Zebrafish. Animals. 2021; 11(8):2471. https://doi.org/10.3390/ani11082471
Chicago/Turabian StyleMontalbano, Giuseppe, Maria Levanti, Kamel Mhalhel, Francesco Abbate, Rosaria Laurà, Maria Cristina Guerrera, Marialuisa Aragona, and Antonino Germanà. 2021. "Acid-Sensing Ion Channels in Zebrafish" Animals 11, no. 8: 2471. https://doi.org/10.3390/ani11082471
APA StyleMontalbano, G., Levanti, M., Mhalhel, K., Abbate, F., Laurà, R., Guerrera, M. C., Aragona, M., & Germanà, A. (2021). Acid-Sensing Ion Channels in Zebrafish. Animals, 11(8), 2471. https://doi.org/10.3390/ani11082471