Productive and Qualitative Traits of Amaranthus Cruentus L.: An Unconventional Healthy Ingredient in Animal Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiment and Plant Material
2.2. Productive and Qualitative Measurements
2.3. Statistical Analysis
3. Results
3.1. Agronomic Traits
3.2. Oil, Fatty Acid Content, Antioxidant Activity, and Total Phenolic Content
3.3. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Research Council. Amaranth: Modern Prospects for an Ancient Crop; The National Academies Press: Washington, DC, USA, 1984. [Google Scholar]
- Mosyakin, S.L.; Robertson, K.R. Amaranthus. In Flora of North America, North of Mexico; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Sauer, J.D. Grain amaranths. In Evolution of Crop Plants; Simonds, N.W., Ed.; Longman Group: London, UK, 1976; pp. 4–7. [Google Scholar]
- Cristaudo, A.; Gresta, F.; Restuccia, A.; Catara, S.; Onofri, A. Germinative response of redroot pigweed (Amaranthus retroflexus L.) to environmental conditions: Is there a seasonal pattern? Plant Biosyst. 2016, 150, 583–591. [Google Scholar] [CrossRef]
- Irving, D.W.; Betschart, A.A.; Saunders, R.M. Morphological studies on Amaranthus cruentus. J. Food Sci. 1981, 46, 1170–1174. [Google Scholar] [CrossRef]
- Sogbohossou, O.E.D.; Achigan-Dako, E.G. Phenetic differentiation and use-type delimitation in Amaranthus spp.from worldwide origins. Sci. Hortic. 2014, 178, 31–42. [Google Scholar] [CrossRef]
- Pasko, P.; Sajewicz, M.; Gorinstein, S.; Zachwieja, Z. Analysis of the selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC method. Acta Chromatogr. 2008, 20, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Marrelli, M.; Carmela, C.; Menichini, F.; Valentina, P.; Uzunov, D.; Statti, G.A.; Duez, P.; Menichini, F. Bioactive phytonutrients (omega fatty acids, tocopherols, polyphenols), in vitro inhibition of nitric oxide production and free radical scavenging activity of non-cultivated Mediterranean vegetables. Food Chem. 2011, 129, 1413–1419. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Nasirpour-Tabrizi, P.; Azadmard-Damirchi, S.; Hesari, J.; Piravi-Vanak, Z. Amaranth Seed Oil Composition. In Nutritional Value of Amaranth; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, J.; Rouzbehan, Y.; Fazaeli, H.; Zahedifar, M. Effects of substituting amaranth silage for corn silage on intake, growth performance, diet digestibility, microbial protein, nitrogen retention and ruminal fermentation in fattening lambs. Anim. Feed Sci. Technol. 2014, 192, 29–38. [Google Scholar] [CrossRef]
- Seguin, P.; Mustafa, A.F.; Donnelly, D.J.; Gélinas, B. Chemical composition and ruminal nutrient degradability of fresh and ensiled amaranth forage. J. Sci. Food Agric. 2013, 93, 3730–3736. [Google Scholar] [CrossRef]
- Pospišil, A.; Pospišil, M.; Maæešiæ, D.; Sveènjak, Z. Yield and quality of forage sorghum and different amaranth species (Amaranthus spp.) biomass. Agric. Conspec. Sci. 2009, 74, 85–89. [Google Scholar]
- Alegbejo, J. Nutritional value and utilization of Amaranthus (Amaranthus spp.)—A review. Bayero J. Pure Appl. Sci. 2013, 6, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, J.; Rouzbehan, Y.; Fazaeli, H. Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Anim. Feed Sci. Technol. 2009, 151, 153–160. [Google Scholar] [CrossRef]
- Rezaei, J.; Rouzbehan, Y.; Fazaeli, H.; Zahedifar, M. Carcass characteristics, non-carcass components and blood parameters of fattening lambs fed on diets containing amaranth silage substituted for corn silage. Small Rumin. Res. 2013, 114, 225–232. [Google Scholar] [CrossRef]
- Rodríguez, P.; Pérez, E.; Romel, G.; Dufour, D. Characterization of the proteins fractions extracted from leaves of Amaranthus dubius (Amaranthus spp.). Afr. J. Food Sci. 2011, 5, 417–424. [Google Scholar]
- Grobelnik Mlakar, S.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura 2009, 6, 43–53. [Google Scholar]
- Saunders, R.M.; Becker, R. Amaranthus: A potential food and feed resource. In Advances in Cereal Science and Technology; American Association of Cereal Chemists, INC.: Saint Paul, MN, USA, 1984; Volume VI, pp. 357–397. [Google Scholar]
- Schnetzler, K.A.; Breene, W.M. Food uses and amaranth product research: A comprehensive review. In Amaranth Biology, Chemistry and Technology; Peredes- López, O., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 155–184. [Google Scholar]
- Punita, A.; Chaturvedi, A. Effect of feeding crude red palm oil (Elaeis guineensis) and grain amaranth (Amaranthus paniculatus) to hens on total lipids, cholesterol, PUFA levels and acceptability of eggs. Plant Foods Hum. Nutr. 2000, 55, 147–157. [Google Scholar] [CrossRef]
- Roučková, J.; Trčková, M.; Herzig, I. The use of amaranth grain in diets for broiler chickens and its effect on per- formance and selected biochemical indicators. Czech J. Anim. Sci. 2004, 49, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Zralý, Z.; Písaříková, B.; Hudcova, H.; Trčková, M.; Herzig, I. Effect of feeding amaranth on growth efficiency and health of market pigs. Acta Vet. Br. 2004, 73, 437–444. [Google Scholar] [CrossRef]
- Písaříkovaá, B.; Zralý, Z.; Kráčmar, S.; Trčková, M.; Herzig, I. Nutritional value of amaranth (genus Amaranthus L.) grain in diets for broiler chickens. Czech J. Anim. Sci. 2005, 50, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Bracho, B.; Sánchez- Urdaneta, A. Effects of diets with Amaranthus dubius Mart. Ex Thell. on performance and digestibility of growing rabbits. World Rabbit. Sci. 2015, 23, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Kambashi, B.; Picron, P.; Boudry, C.; Thewis, A.; Kiatoko, H.; Bindelle, J. Nutritive value of tropical forage plants fed to pigs in the Western provinces of the Democratic Republic of the Congo. Anim. Feed Sci. Technol. 2014, 191, 47–56. [Google Scholar] [CrossRef]
- Písaøíková, B.; Peterka, J.; Trakova, M.; Moudr, J.; Zral, Z.; Herzig, I. Chemical composition of the above-ground biomass of Amaranthus cruentus and A. hypochondriacus. Acta Vet. Brno 2006, 75, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, D.; Rouzbehan, Y.; Rezaei, J. Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus). Anim. Feed Sci. Technol. 2012, 171, 6–13. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Christie, W.W. A simple procedure of rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–192. [Google Scholar] [CrossRef]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Sci. 2013, 93, 703–714. [Google Scholar]
- López-Mejía, O.A.; López-Malo, A.; Palou, E. Antioxidant capacity of extracts from amaranth (Amaranthus Hypochondriacus L.) seeds or leaves. Ind. Crop. Prod. 2014, 53, 55–59. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free-radical method to evaluated antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Onofri, A. Routine statistical analyses of field experiments by using an excel extension. In Proceedings of the 6th National Conference Italian Biometric Society: La statistica nelle scienze della vita e dell’ambiente, Pisa, Italy, 20–22 June 2007; pp. 93–99. [Google Scholar]
- MacCallum, R.; Widaman, K.; Zhang, S.; Hong, S. Sample Size in Factor Analysis. Psychol. Methods 1999, 4, 84–99. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Mujica, A. The genetic resources of Andean grain amaranths (Amaranthus caudatus L., A. cruentus and A. hypochondriacus L.) in America. Plant Genet. Resour. Newsl. 2003, 133, 41–44. [Google Scholar]
- Casini, P.; La Rocca, F. Amaranthus cruentus L. is suitable for cultivation in Central Italy: Field evaluation and response to plant densities. Ital. J. Agron. 2014, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Maseko, I.; Beletse, Y.G.; Nogemane, N.; du Plooy, C.P.; Mabhaudhi, T. Growth, physiology and yield responses of Amaranthus cruentus, Corchorus olitorius and Vigna unguiculata to plant density underdrip-irrigated commercial production. S. Afr. J. Plant Soil 2015, 32, 87–94. [Google Scholar] [CrossRef]
- El Gendy, A.N.G.; Tavarini, S.; Conte, G.; Pistelli, L.; Hendawy, S.F.; Omer, E.A.; Angelini, L.G. Yield and qualitative characterisation of seeds of Amaranthus hypochondriacus L. and Amaranthus cruentus L. grown in central Italy. Ital. J. Agron. 2018, 13, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Gresta, F.; Guerrini, A.; Sacchetti, G.; Tacchini, M.; Sortino, O.; Ceravolo, G.; Onofri, A. Agronomic, chemical, and antioxidant characterization of grain amaranths grown in a Mediterranean environment. Crop Sci. 2017, 57, 2688–2698. [Google Scholar] [CrossRef]
- Gimplinger, D.M.; Dobos, G.; Schönlechner, R.; Kaul, H.-P. Yield and quality of grain amaranth (Amaranthus spp.) in Eastern Austria. Plant Soil Environ. 2007, 53, 105–112. [Google Scholar]
- Marta, H.; Suryadi, E.; Ruswandi, D. Chemical Composition and Genetics of Indonesian Maize Hybrids. Am. J. Food Technol. 2017, 12, 116–123. [Google Scholar]
- Palavecino, P.M.; Penci, M.C.; Calderon-Dominguez, G.; Ribotta, P.D. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina. Starch/Stärke 2016, 68, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Raiciu, A.D.; Popescu, M.; Ivopol, G.C.; Bordei, N.; Alexandru, G.; Crisan, I.; Manea, S.; Dima, S.O. Therapeutic Applications of Vegetable Oils and GC-MS Evaluation of w-3, w-6 and w-9 Amounts in Six Oleaginous Plants. Rev. Chim. (Buchar.) 2016, 67, 2449–2453. [Google Scholar]
- He, H.; Cai, Y.; Sun, M.; Corke, H. Extraction and Purification of Squalene from Amaranthus Grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Corke, H. Oil and Squalene in Amaranthus Grain and Leaf. J. Agric. Food Chem. 2003, 51, 7913–7920. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Pal, M. Seed protein, fat and fatty acid profile of Amaranthus species. J. Sci. Food Agric. 1992, 58, 145–147. [Google Scholar] [CrossRef]
- Pond, W.G.; Lehmann, I.W. Nutritive value of a vegetable amaranth cultivar for growing lambs. J. Anim. Sci. 1989, 67, 3036–3039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamikole, M.A.; Ezenwa, I.; Adewumi, M.K.; Omojola, A.B.; Adetimirin, V.O.; Arigbede, O.M.; Orisadeyi, S.A. Alternative feed resources for formulating concentrate diets of rabbits. 1. Unthreshed grain amaranth seedhead. World Rabbit Sci. 2000, 8, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Zralý, Z.; Písaříková, B.; Trčková, M.; Herzig, I.; Jůzl, M.; Simeonovova, J. Effect of lupine and amaranth on growth efficiency, health, and carcass characteristics and meat quality of market pigs. Acta Vet. Brno 2006, 75, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Sokól, J.L.; Bobel, B.K.; Fabijanska, M.; Bekta, M. Preliminary results on the influence of amaranthus seeds on carcass and meat quality of fatteners. J. Anim. Feed Sci. 2001, 10, 203–208. [Google Scholar] [CrossRef]
- Jahaniaval, F.; Kakuda, Y.; Marcone, M.F. Fatty Acid and Triacylglycerol Compositions of Seed Oils of Five Amaranthus Accessions and Their Comparison to Other Oils. J. Am. Oil Chem. Soc. 2000, 77, 847–852. [Google Scholar] [CrossRef]
- Egesel, C.O.; Kahrıman, F.; Gül, M.K. Discrimination of maize inbreds for kernel quality traits and fatty acid composition by a multivariate technique. Acta Sci. Agron. 2011, 33, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Kan, A. Characterization of the Fatty Acid and Mineral Compositions of Selected Cereal Cultivars from Turkey. Rec. Nat. Prod. 2015, 9, 124–134. [Google Scholar]
- Chiofalo, B.; Di Rosa, A.R.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Effect of supplementation of herd diet with olive cake on the composition profile of milk and on the composition, quality and sensory profile of cheeses made therefrom. Animals 2020, 10, 977. [Google Scholar] [CrossRef] [PubMed]
- Chiofalo, V.; Liotta, L.; Lo Presti, V.; Gresta, F.; Di Rosa, A.; Chiofalo, B. Effect of dietary olive cake supplementation on performance, carcass characteristics and meat quality of beef cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef]
- Liotta, L.; Chiofalo, V.; Lo Presti, V.; Chiofalo, B. In vivo performances, carcass traits, and meat quality of pigs fed olive cake processing waste. Animals 2019, 9, 1155. [Google Scholar]
- Kabiri, N.; Asgary, S.; Madani, H.; Mahzouni, P. Effects of Amaranthus caudatus L. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. J. Med. Plant Res. 2010, 4, 355–364. [Google Scholar]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 89. [Google Scholar] [PubMed] [Green Version]
- Iordanescu, I.P.; Popa, O.; Babeanu, N.; Nita, S.; Paraschiv, I.; Dobre, N.; Ionica, I. Physico-Chemical Characterization of Amaranth Extracts from Romanian Vegetal Sources with Antioxidant and Antiinflammatory Activities. Rev. Chim. (Bucar.) 2015, 66, 634–636. [Google Scholar]
- Dietschy, J.M. Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. J. Nutr. 1998, 128, 444S–448S. [Google Scholar] [CrossRef] [Green Version]
- Plate, A.Y.A.; Arêas, J.A.G. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chem. 2002, 76, 1–6. [Google Scholar]
- Peiretti, P.G. Amaranth in animal nutrition: A review. Livestock Res. Rural Dev. 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Longato, E.; Meineri, G.; Peiretti, P.G. The effect of Amaranthus caudatus supplementation to diets containing linseed oil on oxidative status, blood serum metabolites, growth performance and meat quality characteristics in broilers. Anim. Sci. Pap. Rep. 2017, 35, 71–86. [Google Scholar]
- Písaříkovaá, B.; Zralý, Z.; Kračmar, S.; Trčková, M.; Herzig, I. The use of amaranth (genus Amaranthus L.) in the diets for broiler chickens. Vet. Med. (Praha) 2006, 51, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Popiela, E.; Króliczewska, B.; Zawadzki, W.; Opaliński, S.; Skiba, T. Effect of extruded amaranth grains on performance, egg traits, fatty acids composition, and selected blood characteristics of laying hens. Livest. Sci. 2013, 155, 308–315. [Google Scholar] [CrossRef]
- Czerwinski, J.; Bartnikowska, E.; Leontowicz, H.; Lange, E.; Leontowicz, M.; Katrich, E.; Trakhtenberg, S.; Gorinstein, S. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol- containing diets. J. Nutr. Biochem. 2004, 15, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Akin-Idowu, P.E.; Ademoyegun, O.T.; Olagunju, Y.O.; Aduloju, A.O.; Adebo, U.G. Phytochemical Content and Antioxidant Activity of Five Grain Amaranth Species. Am. J. Food Sci. Technol. 2017, 5, 249–255. [Google Scholar]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antiox- idant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Stănilă, A.; Cioanca, B.; Diaconeasa, Z.; Stănilă, S.; Sima, N.; Siman, R.M. Phytochemical composition and antioxidant activity of various grain Amaranth cultivars. Not. Bot. Horti Agrobot. 2019, 47, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Burr, M.L. Fish and the cardiovascular system. Prog. Food Nutr. Sci. 1989, 13, 291–316. [Google Scholar]
- Fehily, A.M.; Pickering, J.E.; Yarnell, J.W.G.; Elwood, P.C. Dietary indices of atherogenicity and thrombogenicity and ischemic heart disease risk: The Caerphilly Prospective Study. Br. J. Nutr. 1994, 71, 249–257. [Google Scholar] [CrossRef] [Green Version]
Accession | Origin | Plant Height (cm) | Seed Yield (kg/m2) | 1000 Seed Weight (g) |
---|---|---|---|---|
PI 477913 | Mexico | 129.3 a | 0.37 a | 0.84 a |
PI 511717 | Guatemala | 139.7 a | 0.27 ab | 0.59 b |
PI 538255 | USA, Montana | 123.7 a | 0.37 a | 0.84 a |
PI 566896 | USA, Arizona | 81.0 b | 0.22 ab | 0.75 a |
PI 605354 | USA, Pennsylvania | 84.0 b | 0.23 ab | 0.71 a |
PI 606797 | USA, Illinois | 127.0 a | 0.31 a | 0.85 a |
PI 618962 | Benin | 78.7 b | 0.25 ab | 0.49 b |
PI 628793 | Zaire, Shaba | 85.0 b | 0.09 b | 0.43 b |
Average | 106.0 | 0.27 | 0.69 |
Accession | Origin | OIL | C14:0 | C16:0 | C16:1 | C17:0 | C18:0 | C18:1 n9 | C18:1 n7 | C18:2 n6 | C18:3 n3 | C20:0 | C22 | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PI 477913 | Mexico | 7.05 ab | 0.42 f | 25.78 g | 0.24 d | 0.48 b | 4.44 h | 32.35 e | 1.41 cd | 30.83 b | 0.47 a | 0.74 e | 0.38 d | 2.50 a |
PI 511717 | Guatemala | 5.77 c | 1.84 a | 29.05 c | 1.00 a | 0.44 b | 11.11 a | 32.93 d | 2.16 a | 18.90 h | 0.29 e | 0.67 f | 0.29 f | 1.32 d |
PI 538255 | USA, Montana | 7.12 ab | 0.70 cd | 27.50 d | 0.26 cd | 0.47 b | 5.23 f | 34.42 b | 1.48 c | 26.57 e | 0.36 bc | 0.84 d | 0.40 cd | 1.77 bc |
PI 566896 | USA, Arizona | 6.09 bc | 0.39 f | 24.20 h | 0.23 d | 0.44 b | 4.99 g | 31.02 f | 1.42 c | 34.03 a | 0.45 a | 0.76 e | 0.35 de | 1.72 c |
PI 605354 | USA, Pennsylvania | 5.97 bc | 0.60 e | 27.20 e | 0.25 d | 0.47 b | 5.72 e | 33.58 c | 1.28 d | 27.40 d | 0.34 cd | 0.92 c | 0.44 bc | 1.81 bc |
PI 606797 | USA, Illinois | 7.29 a | 0.91 b | 26.78 f | 0.71 b | 0.36 c | 7.97 b | 36.03 a | 1.83 b | 22.75 g | 0.39 b | 0.64 f | 0.32 ef | 1.33 d |
PI 618962 | Benin | 5.59 c | 0.78 c | 29.46 b | 0.33 c | 0.65 a | 7.12 d | 28.58 g | 1.43 c | 28.04 c | 0.35 c | 1.06 b | 0.48 b | 1.72 c |
PI 628793 | Zaire, Shaba | 5.64 c | 0.64 de | 30.79 a | 0.28 cd | 0.70 a | 7.44 c | 28.53 g | 1.41 cd | 26.08 f | 0.32 d | 1.24 a | 0.56 a | 2.03 b |
Average | 6.31 | 0.78 | 27.79 | 0.41 | 0.50 | 6.75 | 32.18 | 1.55 | 26.82 | 0.37 | 0.86 | 0.40 | 1.77 |
Accession | Origin | SFA | MUFA | PUFA | SFA/UFA | n3 | n6 | AI | TI | HH | PI | TPC | DPPH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PI 477913 | Mexico | 32.21 f | 33.99 d | 31.30 b | 0.49 f | 0.47 a | 30.83 b | 0.42 f | 0.90 f | 2.43 b | 31.77 b | 0.36 a | 0.459 a |
PI 511717 | Guatemala | 43.40 a | 36.09 b | 19.18 h | 0.79 a | 0.29 e | 18.90 h | 0.66 a | 1.48 a | 1.69 g | 19.47 h | 0.34 ab | 0.495 a |
PI 538255 | USA, Montana | 35.13 e | 36.17 b | 26.93 e | 0.56 e | 0.36 bc | 26.57 e | 0.48 e | 1.03 e | 2.18 cd | 27.29 e | 0.17 e | 0.455 a |
PI 566896 | USA, Arizona | 31.14 g | 32.67 e | 34.48 a | 0.46 g | 0.45 a | 34.03 a | 0.38 g | 0.85 g | 2.66 a | 34.93 a | 0.31 c | 0.329 b |
PI 605354 | USA, Pennsylvania | 35.35 e | 35.11 c | 27.74 d | 0.56 e | 0.34 cd | 27.40 d | 0.47 e | 1.04 e | 2.21 c | 28.08 d | 0.14 f | 0.481 a |
PI 606797 | USA, Illinois | 36.98 d | 38.56 a | 23.13 g | 0.60 d | 0.39 b | 22.75 g | 0.49 d | 1.12 d | 2.14 d | 23.52 g | 0.25 d | 0.475 a |
PI 618962 | Benin | 39.55 c | 30.34 f | 28.39 c | 0.67 c | 0.35 c | 28.04 c | 0.55 c | 1.23 c | 1.88 e | 28.74 c | 0.33 b | 0.396 ab |
PI 628793 | Zaire, Shaba | 41.36 b | 30.21 f | 26.40 f | 0.73 b | 0.32 d | 26.08 f | 0.59 b | 1.33 b | 1.75 f | 26.73 f | 0.17 e | 0.303 b |
Average | 36.89 | 34.14 | 27.19 | 0.61 | 0.37 | 26.82 | 0.51 | 1.12 | 2.12 | 27.57 | 0.26 | 0.424 |
Value | PC 1 | PC 2 | PC 3 |
---|---|---|---|
Eigenvalue | 13.791 | 7.442 | 2.068 |
% of Var. | 55.163 | 29.769 | 8.272 |
Cum.% | 55.163 | 84.932 | 93.203 |
Variable | PC 1 | PC 2 | PC 3 |
---|---|---|---|
Oil | 0.326 | 0.692 | 0.321 |
C14:0 | −0.915 | 0.272 | −0.235 |
C16:0 | −0.726 | −0.640 | 0.146 |
C16:1 | −0.827 | 0.473 | −0.279 |
C17:0 | −0.061 | −0.981 | −0.057 |
C18:0 | −0.952 | 0.066 | −0.254 |
C18:1 n9 | −0.080 | 0.894 | 0.439 |
C18:1 n7 | −0.766 | 0.517 | −0.334 |
C18:2 n6 | 0.952 | −0.229 | −0.153 |
C18:3 n3 | 0.881 | 0.288 | −0.271 |
C20:0 | −0.010 | −0.971 | 0.224 |
C22 | 0.132 | −0.931 | 0.311 |
Other | 0.634 | −0.388 | 0.029 |
SFA | −0.934 | −0.345 | −0.065 |
MUFA | −0.230 | 0.910 | 0.339 |
PUFA | 0.954 | −0.223 | −0.155 |
SFA/UFA | −0.924 | −0.360 | −0.104 |
n3 | 0.881 | 0.288 | −0.271 |
n6 | 0.952 | −0.229 | −0.153 |
AI | −0.943 | −0.303 | −0.091 |
TI | −0.944 | −0.303 | −0.111 |
HH | 0.899 | 0.401 | −0.051 |
PI | 0.955 | −0.217 | −0.157 |
TPC | 0.042 | 0.219 | −0.922 |
DPPH• | −0.398 | 0.652 | 0.209 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gresta, F.; Meineri, G.; Oteri, M.; Santonoceto, C.; Lo Presti, V.; Costale, A.; Chiofalo, B. Productive and Qualitative Traits of Amaranthus Cruentus L.: An Unconventional Healthy Ingredient in Animal Feed. Animals 2020, 10, 1428. https://doi.org/10.3390/ani10081428
Gresta F, Meineri G, Oteri M, Santonoceto C, Lo Presti V, Costale A, Chiofalo B. Productive and Qualitative Traits of Amaranthus Cruentus L.: An Unconventional Healthy Ingredient in Animal Feed. Animals. 2020; 10(8):1428. https://doi.org/10.3390/ani10081428
Chicago/Turabian StyleGresta, Fabio, Giorgia Meineri, Marianna Oteri, Carmelo Santonoceto, Vittorio Lo Presti, Annalisa Costale, and Biagina Chiofalo. 2020. "Productive and Qualitative Traits of Amaranthus Cruentus L.: An Unconventional Healthy Ingredient in Animal Feed" Animals 10, no. 8: 1428. https://doi.org/10.3390/ani10081428
APA StyleGresta, F., Meineri, G., Oteri, M., Santonoceto, C., Lo Presti, V., Costale, A., & Chiofalo, B. (2020). Productive and Qualitative Traits of Amaranthus Cruentus L.: An Unconventional Healthy Ingredient in Animal Feed. Animals, 10(8), 1428. https://doi.org/10.3390/ani10081428