Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens)
<p>Phylogenetic analysis of strain Bos-x6-28 based on 16S rRNA gene sequence using the neighbor-joining (NJ) method. The sequence numbers in parentheses represent the GenBank accession numbers of the corresponding strains. The scale bar indicates a 0.02 nucleotide divergence per site.</p> "> Figure 2
<p>Microscopic structure of strain Bos-x6-28. (<b>A</b>) Scanning electron microscopy (SEM) at 20,000× magnification, showing the detailed ultrastructure of Bos-x6-28. (<b>B</b>) Light microscopy at 1000× magnification after Gram staining, illustrating cellular morphology and Gram characteristics.</p> "> Figure 3
<p>Two-dimensional TLC analysis of phospholipid components in strain Bos-x6-28. (<b>A</b>) Ninhydrin staining; (<b>B</b>) Anisaldehyde staining; (<b>C</b>) Phosphomolybdic acid staining.</p> "> Figure 4
<p>Circular genome map of strain Bos-x6-28. The outermost ring denotes the genomic size, with each tick mark representing 5 kb. The second and third rings display genes on the positive and negative strands, respectively, with different colors indicating various COG functional classifications. The fourth ring represents repeat sequences. The fifth ring shows tRNA (blue) and rRNA (purple) genes. The sixth ring illustrates GC content, where light yellow areas indicate regions with GC content higher than the genome’s average, with peak heights corresponding to the extent of deviation from the mean; blue areas denote regions with GC content below the genomic average. The innermost ring represents the GC-skew, with dark gray indicating regions where G content exceeds C content, and red indicating regions where C content exceeds G content.</p> "> Figure 5
<p>Comparative genomic analysis of strain Bos-x6-28 and its closely related species. The outermost ring represents the strain origin and shared core gene clusters, followed by the geometric homogeneity index and functional homogeneity index. Subsequent rings display data for <span class="html-italic">B. safensis</span> subsp. <span class="html-italic">safensis</span> FO-36b, <span class="html-italic">B. pumilus</span> NCTC10337, <span class="html-italic">B. australimaris</span> NH7I-1, <span class="html-italic">B. altitudinis</span> 41KF2b, <span class="html-italic">B. zhangzhouensis</span> DW5-4, <span class="html-italic">B. xiamenensis</span> HYC-10, <span class="html-italic">B. safensis</span> subsp. <span class="html-italic">osmophilus</span> BC09, and Bos-x6-28. The heat map shows the ANI values among these strains, with all ANI values below 95% (indicated in pink), highlighting the genomic divergence among the strains.</p> "> Figure 6
<p>Bioactivity of secondary metabolites from strain Bos-x6-28. (<b>A</b>) Inhibitory activity against <span class="html-italic">B. subtilis</span>, with ampicillin as a positive control and methanol as a negative control. (<b>B</b>) Inhibitory activity against human liver cancer cells (HepG2), using DMSO as the blank control. Data are presented as mean ± SD, derived from three independent experiments conducted in triplicate. Statistical significance is indicated as *** <span class="html-italic">p</span> < 0.001 compared to control cells, and **** <span class="html-italic">p</span> < 0.0001 compared to control cells (Wilcoxon <span class="html-italic">t</span>-test).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of Strain Bos-x6-28 Based on 16S rRNA Gene Sequence Analysis
2.2. Morphological Analysis of Strain Bos-x6-28
2.3. Physiological and Biochemical Characteristics of Strain Bos-x6-28
2.4. Chemical Taxonomic Characteristics of Strain Bos-x6-28
2.5. Genome Sequencing and Comparative Analysis of Strain Bos-x6-28
2.6. Analysis of Secondary Metabolite Biosynthetic Potential of Strain Bos-x6-28
2.7. Antibacterial and Antitumor Activities of Strain Bos-x6-28
3. Discussion
4. Materials and Methods
4.1. Strains
4.2. Morphological Observation
4.3. Physiological and Biochemical Testing
4.4. Chemotaxonomic Characterization
4.5. 16S rRNA Gene Sequence Analysis
4.6. Whole-Genome Sequencing Analysis
4.7. Antibacterial and Cytotoxicity Testing of Fermentation Products from Bos-x6-28
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, N.; Su, X.; Gao, Y.; Yang, R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023, 12, 793. [Google Scholar] [CrossRef] [PubMed]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Su, J.; Li, F.; Tian, X.; Liu, Z.; Ding, G.; Bai, J.; Li, Z.; Ma, Z.; Peppelenbosch, M.P. Yak Gut Microbiota: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2022, 9, 889594. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
- Pavlopoulos, G.A.; Baltoumas, F.A.; Liu, S.; Selvitopi, O.; Camargo, A.P.; Nayfach, S.; Azad, A.; Roux, S.; Call, L.; Ivanova, N.N.; et al. Unraveling the functional dark matter through global metagenomics. Nature 2023, 622, 594–602. [Google Scholar] [CrossRef]
- Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016, 533, 543–546. [Google Scholar] [CrossRef]
- Lagier, J.C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial culturomics: Paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Forster, S.C.; Kumar, N.; Anonye, B.O.; Almeida, A.; Viciani, E.; Stares, M.D.; Dunn, M.; Mkandawire, T.T.; Zhu, A.; Shao, Y.; et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 2019, 37, 186–192. [Google Scholar] [CrossRef]
- Ito, T.; Sekizuka, T.; Kishi, N.; Yamashita, A.; Kuroda, M. Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes 2019, 10, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.L.; Kallstrom, G.; Faith, J.J.; Reyes, A.; Moore, A.; Dantas, G.; Gordon, J.I. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 2011, 108, 6252–6257. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016, 1, 16203. [Google Scholar] [CrossRef] [PubMed]
- Rettedal, E.A.; Gumpert, H.; Sommer, M.O. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 2014, 5, 4714. [Google Scholar] [CrossRef]
- Milshteyn, A.; Colosimo, D.A.; Brady, S.F. Accessing Bioactive Natural Products from the Human Microbiome. Cell Host Microbe 2018, 23, 725–736. [Google Scholar] [CrossRef]
- Wang, L.; Ravichandran, V.; Yin, Y.; Yin, J.; Zhang, Y. Natural Products from Mammalian Gut Microbiota. Trends Biotechnol. 2019, 37, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Pascal Andreu, V.; Augustijn, H.E.; Chen, L.; Zhernakova, A.; Fu, J.; Fischbach, M.A.; Dodd, D.; Medema, M.H. gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota. Nat. Biotechnol. 2023, 41, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, M.; Liu, H.; Yu, T.; Guo, P.; Liu, W.; Jin, X. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana. AMB Express 2021, 11, 111. [Google Scholar] [CrossRef]
- Um, S.; Park, S.H.; Kim, J.; Park, H.J.; Ko, K.; Bang, H.S.; Lee, S.K.; Shin, J.; Oh, D.C. Coprisamides A and B, new branched cyclic peptides from a gut bacterium of the dung beetle Copris tripartitus. Org. Lett. 2015, 17, 1272–1275. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, W.; Chu, M.; Liang, C.; Wu, X.; Yan, P. Adaptation Mechanisms of Yak (Bos grunniens) to High-Altitude Environmental Stress. Animals 2021, 11, 2344. [Google Scholar] [CrossRef]
- Wang, R.; Bai, B.; Huang, Y.; Degen, A.; Mi, J.; Xue, Y.; Hao, L. Yaks Are Dependent on Gut Microbiota for Survival in the Environment of the Qinghai Tibet Plateau. Microorganisms 2024, 12, 1122. [Google Scholar] [CrossRef]
- Huang, X.; Mi, J.; Denman, S.E.; Basangwangdui; Pingcuozhandui; Zhang, Q.; Long, R.; McSweeney, C.S. Changes in rumen microbial community composition in yak in response to seasonal variations. J. Appl. Microbiol. 2022, 132, 1652–1665. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Fan, X.; Jiang, H.; Zhang, Q.; Basangwangdui; Zhang, Q.; Dang, S.; Long, R.; Huang, X. Simulated seasonal diets alter yak rumen microbiota structure and metabolic function. Front. Microbiol. 2022, 13, 1006285. [Google Scholar] [CrossRef]
- Ma, Y.; Xiang, X.; Fan, J.; Zhang, B. Effect of altitude on the diversity of gut microbiota of yaks grazing on the Qinghai-Tibet Plateau. Microbiol. China 2022, 49, 620–634. [Google Scholar] [CrossRef]
- Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ran, X.; Guo, M.; Liu, J.; Yang, F.; Chen, D. Screening, Identification, and Probiotic Properties of Bacillus Pumilus From Yak. Probiotics Antimicrob. Proteins 2024, 16, 531–540. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, J.; Li, Y.; Li, K.; Gong, S.; Li, F.; Wang, P.; Iqbal, M.; Kulyar, M.F.; Li, J. Probiotic Potential of Bacillus licheniformis and Bacillus pumilus Isolated from Tibetan Yaks, China. Probiotics Antimicrob. Proteins 2022, 14, 579–594. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, M.; Zhang, Y.; Lin, Z.; Xu, M.; Wang, L.; Kulyar, M.F.; Li, J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front. Vet. Sci. 2022, 9, 1099150. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.L.; Li, Z.L.; Li, C.T.; Yan, L.; Hu, P.C.; Ma, Y.M. Isolation and Identification of Bacillus Strains from Yak Intestine. China Herbiv. Sci. 2024, 44, 32–38. [Google Scholar]
- Zeng, Z.; Quan, C.; Zhou, S.; Gong, S.; Iqbal, M.; Kulyar, M.F.; Nawaz, S.; Li, K.; Li, J. Gut microbiota and metabolic modulation by supplementation of polysaccharide-producing Bacillus licheniformis from Tibetan Yaks: A comprehensive multi-omics analysis. Int. J. Biol. Macromol. 2024, 254, 127808. [Google Scholar] [CrossRef]
- Li, A.; Jiang, X.; Wang, Y.; Zhang, L.; Zhang, H.; Mehmood, K.; Li, Z.; Waqas, M.; Li, J. The impact of Bacillus subtilis 18 isolated from Tibetan yaks on growth performance and gut microbial community in mice. Microb. Pathog. 2019, 128, 153–161. [Google Scholar] [CrossRef]
- Lai, Q.; Liu, Y.; Shao, Z. Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie Leeuwenhoek 2014, 105, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, Q.; Du, J.; Shao, Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.; Steenkamp, E.T.; Blom, J.; Hedlund, B.P.; Venter, S.N. All ANIs are not created equal: Implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int. J. Syst. Evol. Microbiol. 2020, 70, 2937–2948. [Google Scholar] [CrossRef]
- Pereira, P.P.; Torres Tejerizo, G.A.; Fernandez, M.; Blanch, A.R.; Gonzalez, P.S.; Agostini, E. Polyphasic characterization and identification of the bioremediation agent Bacillus sp. SFC 500-1E. Genomics 2020, 112, 4525–4535. [Google Scholar] [CrossRef]
- Strunecký, O.; Ivanova, A.P.; Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2023, 59, 12–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Caudill, M.T.; Brayton, K.A. The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms 2022, 10, 605. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.M.; Kiefl, E.; Shaiber, A.; Veseli, I.; Miller, S.E.; Schechter, M.S.; Fink, I.; Pan, J.N.; Yousef, M.; Fogarty, E.C.; et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 2021, 6, 3–6. [Google Scholar] [CrossRef]
- Arahal, D.R.; Bull, C.T.; Busse, H.J.; Christensen, H.; Chuvochina, M.; Dedysh, S.N.; Fournier, P.E.; Konstantinidis, K.T.; Parker, C.T.; Rossello-Mora, R.; et al. Guidelines for interpreting the International Code of Nomenclature of Prokaryotes and for preparing a Request for an Opinion. Int. J. Syst. Evol. Microbiol. 2023, 73, 005782. [Google Scholar] [CrossRef]
- Robinson, S.L.; Christenson, J.K.; Wackett, L.P. Biosynthesis and chemical diversity of β-lactone natural products. Nat. Prod. Rep. 2019, 36, 458–475. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.R.; Hou, Z.J.; Ding, M.Z.; Bai, S.; Wei, S.Y.; Qiao, B.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy. ACS Synth. Biol. 2022, 11, 4065–4076. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, X.; Zhang, P.; Wang, P.; Wen, J. Strategies for improving fengycin production: A review. Microb. Cell Fact. 2024, 23, 144. [Google Scholar] [CrossRef]
- Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin—A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 1986, 39, 888–901. [Google Scholar] [CrossRef]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Sivapathasekaran, C.; Das, P.; Mukherjee, S.; Saravanakumar, J.; Mandal, M.; Sen, R. Marine Bacterium Derived Lipopeptides: Characterization and Cytotoxic Activity Against Cancer Cell Lines. Int. J. Pept. Res. Ther. 2010, 16, 215–222. [Google Scholar] [CrossRef]
- Yin, H.; Guo, C.; Wang, Y.; Liu, D.; Lv, Y.; Lv, F.; Lu, Z. Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs 2013, 24, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Gudiña, E.J.; Teixeira, J.A. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol. Adv. 2022, 60, 108013. [Google Scholar] [CrossRef] [PubMed]
- Grangemard, I.; Wallach, J.; Maget-Dana, R.; Peypoux, F. Lichenysin: A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Nerurkar, A.S. Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv. Exp. Med. Biol. 2010, 672, 304–315. [Google Scholar] [CrossRef]
- Yeak, K.Y.C.; Perko, M.; Staring, G.; Fernandez-Ciruelos, B.M.; Wells, J.M.; Abee, T.; Wells-Bennik, M.H.J. Lichenysin Production by Bacillus licheniformis Food Isolates and Toxicity to Human Cells. Front. Microbiol. 2022, 13, 831033. [Google Scholar] [CrossRef] [PubMed]
- Hoste, A.C.R.; Smeralda, W.; Cugnet, A.; Brostaux, Y.; Deleu, M.; Garigliany, M.; Jacques, P. The structure of lipopeptides impacts their antiviral activity and mode of action against SARS-CoV-2 in vitro. Appl. Environ. Microbiol. 2024, 90, e0103624. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Zalewski, P.; Szwajgier, D.; Baranowska-Wójcik, E.; Kaproń, B.; Plech, T.; Żarowski, M.; Cielecka-Piontek, J. Lichen-Derived Compounds and Extracts as Biologically Active Substances with Anticancer and Neuroprotective Properties. Pharmaceuticals 2021, 14, 1293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, Q.; Xu, Y.; Qian, M.C. Isolation, identification, and quantification of lichenysin, a novel nonvolatile compound in Chinese distilled spirits. J. Food Sci. 2014, 79, C1907–C1915. [Google Scholar] [CrossRef] [PubMed]
- Allenby, N.E.; Watts, C.A.; Homuth, G.; Prágai, Z.; Wipat, A.; Ward, A.C.; Harwood, C.R. Phosphate starvation induces the sporulation killing factor of Bacillus subtilis. J. Bacteriol. 2006, 188, 5299–5303. [Google Scholar] [CrossRef]
- González-Pastor, J.E. Cannibalism: A social behavior in sporulating Bacillus subtilis. FEMS Microbiol. Rev. 2011, 35, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The seaweed holobiont: Understanding seaweed-bacteria interactions. FEMS Microbiol. Rev. 2013, 37, 462–476. [Google Scholar] [CrossRef]
- Comba-González, N.B.; Chaves-Moreno, D.; Santamaría-Vanegas, J.; Montoya-Castaño, D. A pan-genomic assessment: Delving into the genome of the marine epiphyte Bacillus altitudinis strain 19_A and other very close Bacillus strains from multiple environments. Heliyon 2024, 10, e27820. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.G.; Krieg, N.R.; Sneathm, P.H.A.; Staley, J.T.; Williams, S.T. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Williams and Wilikins: Baltimore, MD, USA, 1994; pp. 786–788. [Google Scholar]
- Zhou, J.; Wang, X.; Xu, M.; Yang, J.; Lai, X.H.; Jin, D.; Lu, S.; Pu, J.; Yang, C.; Zhang, S.; et al. Nocardioides ochotonae sp. nov., Nocardioides campestrisoli sp. nov. and Nocardioides pantholopis sp. nov., isolated from the Qinghai-Tibet Plateau. Int. J. Syst. Evol. Microbiol. 2022, 72, 005507. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Pei, S.; Lin, X.; Tian, Y.; Zhang, G. A rapid and efficient method for the extraction and identification of menaquinones from Actinomycetes in wet biomass. BMC Microbiol. 2021, 21, 175. [Google Scholar] [CrossRef] [PubMed]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 1990, 20, 1–6. [Google Scholar]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.K.; Xiang, X.; Deng, J.W.; Qiu, Q.H.; Ma, Y.; Zhang, D.J.; Zhang, B.Y. Study on the bioactive secondary metabolites produced by Streptomyces sp. Qhu-M197 derived from the alpine meadow. Chin. J. Antibiot. 2022, 47, 670–676. [Google Scholar] [CrossRef]
Items | Bos-x6-28 | B. xiamenensis HYC-10T | B. zhangzhouensis DW5-4T |
---|---|---|---|
Growth Temperature Range (°C) | 10–40 | 10–40 | 10–40 |
NaCl Tolerance Range (%) | 0–5 | 0–5 | 0–5 |
pH Range | 4–10.0 | 4–10.0 | 4–10 |
D-mannitol | − | − | + |
D-arabinose | − | + | + |
Rhamnose | − | + | − |
D-galactose | + | + | + |
Inositol | + | − | − |
Fructose | + | + | + |
Sorbitol | − | + | − |
Uranose | + | + | + |
D-mannose | + | + | + |
Glucose | + | + | + |
Xylose | + | + | + |
Ribose | + | + | + |
Threonine | + | + | + |
Alanine | + | + | + |
Proline | + | + | + |
Asparagine | + | + | + |
Serine | + | + | + |
Arginine | + | + | + |
Tyrosine | + | + | + |
Glutamate | + | + | + |
Glycine | + | + | + |
H2S production | − | − | − |
Starch hydrolysis | − | − | − |
Twain-20 | + | + | + |
Twain-60 | + | + | + |
Twain-80 | + | + | + |
Alkaline phosphatase | + | + | + |
Esterase (C4) | + | + | + |
Esterase lipase (C8) | + | + | + |
Esterase (C14) | + | + | + |
Leucine arylamidase | + | + | + |
Valine arylamidase | + | + | + |
Cystine arylaminase | + | + | + |
Trypsin | + | + | + |
Chymotrypsinalpha | + | + | + |
Acid phosphatase | + | − | + |
Naphthol-AS-BI-Phosphohydrolase | − | − | + |
α-galactosidase | + | − | + |
β-galactosidase | − | − | + |
β-glucuronidase | − | − | − |
α-glucosidase | + | − | + |
β-glucosidase | − | − | + |
N-acetyl-glucosidase | − | − | − |
α-mannosidase | + | − | + |
α-fucosidase | + | + | + |
Fatty Acid | Bos-x6-28 | B. xiamenensis HYC-10T | B. zhangzhouensis DW5-4T |
---|---|---|---|
C14:0 | 8.75 | tr | tr |
C16:0 | 28.0 | 6.1 | 1.6 |
C16:1ω7c alcohol | nd | tr | tr |
C18:0 | tr | 1.2 | nd |
C18:1ω9c | nd | tr | nd |
Iso-C13:0 | 3.15 | tr | tr |
Iso-C14:0 | tr | 1.8 | 1.6 |
Iso-C15:0 | 5.49 | 39.1 | 45.0 |
Iso-C16:0 | tr | 5.1 | 3.0 |
Iso-C17:0 | 2.55 | 13.1 | 4.5 |
Iso-C17:1ω10c | tr | tr | tr |
Anteiso-C15:0 | 4.61 | 22.7 | 35.6 |
Anteiso-C17:0 | 1.36 | 5.8 | 4.6 |
Iterms | Value |
---|---|
Genome size (bp) | 3,329,571 |
Number of Scaffolds | 3 |
GC content (%) | 40.22 |
Coding genes | 3353 |
Total of gene length (bp) | 2,841,843 |
Average gene length (bp) | 847 |
Total length of repeated sequences (bp) | 4869 |
Number of 5s/16s/23s rRNA | 8/8/8 |
Number of tRNA | 88 |
Number of predicted CRISPR sequence | 6 |
Number of gene islands | 4 |
Strain Types | 16S rRNA Gene Similarity (%) | dDDH (%) | ANI (%) |
---|---|---|---|
B. xiamenensis HYC-10T | 98.91 | 52.1 | 85.88 |
B. zhangzhouensis DW5-4T | 98.91 | 54.7 | 86.71 |
NO. | Types of Gene Clusters | Location of Gene Clusters | Most Similar Known Cluster | Similarity (%) |
---|---|---|---|---|
1 | β-lactone | 1/24,340 | / | / |
2 | Ladderane | 117,458/159,914 | S-layer glycan | 20% |
3 | T3PKS | 455,994/497,091 | / | / |
4 | NRPS | 593,742/622,162 | Fengycin | 53% |
5 | Siderophore | 1,234,652/1,260,666 | Carotenoid | 50% |
6 | RRE-containing | 1,404,864/1,424,767 | / | / |
7 | NRPS | 1,798,336/1,882,055 | Lichenysin | 78% |
8 | Sactipeptide | 1,970,815/1,993,765 | Sporulation Killing factor | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Xiang, X.; Ma, Y.; Li, G.; Liu, X.; Jia, B.; Yang, W.; Yin, H.; Zhang, B. Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens). Antibiotics 2024, 13, 1238. https://doi.org/10.3390/antibiotics13121238
Ma Q, Xiang X, Ma Y, Li G, Liu X, Jia B, Yang W, Yin H, Zhang B. Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens). Antibiotics. 2024; 13(12):1238. https://doi.org/10.3390/antibiotics13121238
Chicago/Turabian StyleMa, Qiang, Xin Xiang, Yan Ma, Guangzhi Li, Xingyu Liu, Boai Jia, Wenlin Yang, Hengxia Yin, and Benyin Zhang. 2024. "Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens)" Antibiotics 13, no. 12: 1238. https://doi.org/10.3390/antibiotics13121238
APA StyleMa, Q., Xiang, X., Ma, Y., Li, G., Liu, X., Jia, B., Yang, W., Yin, H., & Zhang, B. (2024). Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens). Antibiotics, 13(12), 1238. https://doi.org/10.3390/antibiotics13121238