Ellagic Acid Potentiates the Inhibitory Effects of Fluconazole Against Candida albicans
<p>Time-kill curve of <span class="html-italic">C. albicans</span> ATCC 90028 under the action of EA (<b>A</b>) and FLZ (<b>B</b>) and their combination (FIC EA + FLZ) (<b>C</b>) showing the medians. The Shapiro–Wilk test was used to assess the normality of the sample. Significant differences between groups were determined by Kruskal–Wallis analysis followed by Dunn’s test with <span class="html-italic">p</span> > 0.05 considered significant. Legend: FIC = fractional inhibitory combination, MIC = minimal inhibitory concentration, EA = ellagic acid, FLZ = fluconazole.</p> "> Figure 2
<p>Time-kill curve of <span class="html-italic">C. albicans</span> CA 08 under the action of EA (<b>A</b>), FLZ (<b>B</b>) and in combination (FIC EA + FLZ) (<b>C</b>), at different concentrations and control. The Shapiro–Wilk test was applied to analyze normality. Significant differences between groups were determined by Kruskal-Walli’s analysis followed by Dunn’s test, presenting the medians test with (<span class="html-italic">p</span> > 0.05) considered significant. Legend: FIC = fractional inhibitory combinations, MIC = minimal inhibitory concentration, EA = ellagic acid, FLZ = fluconazole.</p> "> Figure 3
<p><span class="html-italic">C. albicans</span> hyphae formation. Clinical isolates: (<b>A</b>) CA 90028; (<b>B</b>) CA 013; (<b>C</b>) CA 010; (<b>D</b>) CA08. The Shapiro–Wilk normality test was applied. The results are presented as mean and standard deviation; significant differences between groups were determined by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison where the value of <span class="html-italic">p</span> < 0.05 (*) was considered significant.</p> "> Figure 4
<p>Cell viability of young <span class="html-italic">C. albicans</span> biofilms. Clinical isolates: (<b>A</b>) CA 90028; (<b>B</b>) CA 013; (<b>C</b>) CA 010; (<b>D</b>) CA08. The Shapiro–Wilk normality test was applied. Results are presented as mean and standard deviation; significant differences between groups were determined by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison where the value of <span class="html-italic">p</span> < 0.05 (*) was significant.</p> "> Figure 5
<p>Cell viability of mature <span class="html-italic">C. albicans</span> biofilms. Clinical isolates: (<b>A</b>) CA 90028; (<b>B</b>) CA 013; (<b>C</b>) CA 010; (<b>D</b>) CA08. The Shapiro–Wilk normality test was applied. Significant differences between groups were determined by Kruskal–Wallis analysis of variance followed by Dunn’s test, where the value of <span class="html-italic">p</span> < 0.05 (*) was significant.</p> "> Figure 6
<p>Hemolytic activity. The Shapiro–Wilk normality test was applied. The test results are presented with mean and standard deviation; significant differences between specific groups were determined by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison, where the value of (* <span class="html-italic">p</span> < 0.05) was significant.</p> "> Figure 7
<p>Cytotoxicity assay in HeLa. Cell viability was evaluated after (<b>A</b>) 24 h, (<b>B</b>) 48 h, and (<b>C</b>) 72 h. The Shapiro–Wilk normality test was applied. Significant differences between groups were determined by Kruskal–Wallis analysis followed by Dunn’s multiple comparisons test, where the value of (* <span class="html-italic">p</span> < 0.05) was significant. EA = ellagic acid; FLZ = fluconazole.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) of EA Against Candida albicans Strains
Microorganisms | MIC EA (µg/mL) | MFC EA (µg/mL) | MFC/MIC | Activity | MIC FLZ (µg/mL) |
---|---|---|---|---|---|
Reference strains | |||||
C. albicans (ATCC 90028) | 500 | 1000 | 2 | Fungicide | 2 (S) |
C. albicans SC5314 (ATCC MYA-2876) | 250 | 1000 | 4 | Fungicide | 8 (S) |
Clinical isolates | |||||
C. albicans CA 01 | 1000 | 2000 | 2 | Fungicide | 4 (S) |
C. albicans CA 02 | 500 | >2000 | - | - | 8 (S) |
C. albicans CA 03 | 1000 | >2000 | - | - | 16 (D-DS) |
C. albicans CA 04 | 500 | 500 | 1 | Fungicide | 16 (D-DS) |
C. albicans CA 05 | 1000 | 2000 | 2 | Fungicide | 32 (D-DS) |
C. albicans CA 06 | 2000 | >2000 | - | - | 8 (S) |
C. albicans CA 07 | 500 | 2000 | 4 | Fungicide | 32 (D-DS) |
C. albicans CA 08 | 1000 | 2000 | 2 | Fungicide | 64 (R) |
C. albicans CA 09 | 500 | 2000 | 4 | Fungicide | 32 (D-DS) |
C. albicans CA 010 | 1000 | 2000 | 2 | Fungicide | 64 (R) |
C. albicans CA 011 | 500 | 1000 | 2 | Fungicide | 32 (D-DS) |
C. albicans CA 012 | 500 | 2000 | 4 | Fungicide | 2 (S) |
C. albicans CA 013 | 1000 | 1000 | 1 | Fungicide | 64 (R) |
C. albicans CA 014 | 250 | >2000 | - | - | 32 (D-DS) |
C. albicans CA 015 | 500 | >2000 | - | - | 64 (R) |
C. albicans CA 016 | 500 | >2000 | - | - | 64 (R) |
C. albicans CA 017 | 500 | >2000 | - | - | 2 (S) |
C. albicans CA 018 | 250 | >2000 | - | - | <0.5 (S) |
C. albicans CA 019 | 250 | >2000 | - | - | 16 (D-DS) |
C. albicans CA 020 | 1000 | >2000 | - | - | 16 (D-DS) |
C. albicans CA 021 | 500 | >2000 | - | - | 16 (D-DS) |
2.2. In Vitro Interaction of Ellagic Acid with Fluconazole
2.3. Evaluation of Time–Kill Curve
2.4. Inhibition of Hyphae and/or Pseudohyphae Formation
2.5. Antibiofilm Activity
2.6. Hemolytic Activity of Ellagic Acid
2.7. Cytotoxic Activity
3. Discussion
4. Materials and Methods
4.1. Strains and Inoculum Standardization
4.2. Determination of Minimum Inhibitory Concentration (MIC)
4.3. Minimum Fungicide Concentration (MFC)
4.4. In Vitro Interaction
- Synergistic: IFIC ≤ 0.5;
- Additive: 0.5 < IFIC ≤ 1.0;
- Indifferent or no interaction: 1.0 < IFIC ≤ 4.0;
- Antagonist: IFIC > 4.0;
4.5. Time–Kill Curve
4.6. Inhibition of Yeast–Hypha Stage Transition
4.7. Action of AE and FLZ and Their Combinations in Biofilm Formation
4.7.1. Young Biofilm
4.7.2. Mature Biofilm
4.8. Hemolytic Activity
4.9. Cytotoxicity Assay
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; p. 33. [Google Scholar]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef] [PubMed]
- Canela, H.M.S.; Cardoso, B.; Vitali, L.H.; Coelho, H.C.; Martinez, R.; Ferreira, M. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses 2018, 61, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Esteves, P.; Bruzzi, P.; Mikulska, M.; Furfaro, E.; Mesini, A.; Tatarelli, P.; Grignolo, S.; Viscoli, C.; Colombo, A.L.; et al. Initial serum (1,3)-beta-D-glucan as a predictor of mortality in proven Candidaemia: Findings from a retrospective study in two teaching hospitals in Italy and Brazil. Clin. Microbiol. Infect. 2015, 21, 954.e9–954.e17. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Cleveland, A.A.; Harrison, L.H.; Farley, M.M.; Hollick, R.; Stein, B.; Chiller, T.M.; Lockhart, S.R.; Park, B.J. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008–2013: Results from population-based surveillance. PLoS ONE 2015, 10, e0120452. [Google Scholar] [CrossRef]
- Pallotta, F.; Viale, P.; Barchiesi, F. Candida auris: The new fungal threat. Infez. Med. 2023, 31, 323. [Google Scholar]
- Marak, M.B.; Dhanashree, B. Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples. Int. J. Microbiol. 2018, 2018, 7495218. [Google Scholar] [CrossRef]
- d’Enfert, C.; Kaune, A.K.; Alaban, L.R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Frois-Martins, R.; Morelli, M.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2021, 45, fuaa060. [Google Scholar] [CrossRef]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Yu, V.L. Meningitis caused by Candida species: An emerging problem in neurosurgical patients. Clin. Infect. Dis. 1995, 21, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, W.J.; Perfect, J.R.; Cabell, C.H.; Fowler, V.G.; Corey, G.R.; Li, J.S.; Zaas, A.K.; Benjamin, D.K., Jr. A meta-analysis of medical versus surgical therapy for Candida endocarditis. J. Infect. 2005, 51, 230–247. [Google Scholar] [CrossRef] [PubMed]
- Nocua-Báez, L.C.; Uribe-Jerez, P.; Tarazona-Guaranga, L.; Robles, R.; Cortés, J.A. Azoles de antes y ahora: Una revisión. Rev. Chil. Infectol. 2020, 37, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Murphy, S.E.; Bicanic, T. Drug resistance and novel therapeutic approaches in invasive candidiasis. Front. Cell Infect. Microbiol. 2021, 11, 759408. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective potential of ellagic acid: A critical review. Adv. Nutr. 2021, 12, 1211–1238. [Google Scholar] [CrossRef]
- De, R.; Sarkar, A.; Ghosh, P.; Ganguly, M.; Karmakar, B.C.; Saha, D.R.; Halder, A.; Chowdhury, A.; Mukhopadhyay, A.K. Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice. J. Antimicrob. Chemother. 2018, 73, 1595–1603. [Google Scholar] [CrossRef]
- Aishwarya, V.; Solaipriya, S.; Sivaramakrishnan, V. Role of ellagic acid for the prevention and treatment of liver diseases. Phytother. Res. 2021, 35, 2925–2944. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent advances in the production and applications of ellagic acid and its derivatives. A review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef]
- CLSI. M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Siddiqui, Z.N.; Farooq, F.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. J. Saudi Chem. Soc. 2013, 17, 237–243. [Google Scholar] [CrossRef]
- Gómez-López, A.; Cuenca-Estrella, M.; Mellado, E.; Rodríguez-Tudela, J.L. In vitro evaluation of combination of terbinafine with itraconazole or amphotericin B against Zygomycota. Diagn. Microbiol. Infect. Dis. 2003, 45, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Ulukaya, E.; Ozdikicioglu, F.; Oral, A.Y.; Demirci, M. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol. In Vitro 2008, 22, 232–239. [Google Scholar] [CrossRef]
- Li, Z.J.; Guo, X.; Dawuti, G.; Aibai, S. Antifungal activity of ellagic acid in vitro and in vivo. Phytother. Res. 2015, 29, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, N.S.; Barbosa, C.; Bezerra, A.H.; Silveira, Z.S.; da Silva, L.; Coutinho, H.D.M.; Dashti, S.; Kim, B.; da Cunha, F.A.B.; da Silva, M.V. Evaluation of ellagic acid and gallic acid as efflux pump inhibitors in strains of Staphylococcus aureus. Biol. Open 2022, 11, bio059434. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, A.V.; Sampaio, A.d.G.; Koga-Ito, C.Y.; Salvador, M.J. Biopharmaceutical and antifungal properties of ellagic acid-cyclodextrin using an in vitro model of invasive candidiasis. Future Microbiol. 2019, 14, 957–967. [Google Scholar] [CrossRef]
- Campos, J.F.; Bonamigo, T.; Rocha, P.; Paula, V.M.B.; Santos, U.P.D.; Balestieri, J.B.P.; Silva, D.B.; Carollo, C.A.; Estevinho, L.M.; de Picoli Souza, K.; et al. Antimicrobial Activity of Propolis from the Brazilian Stingless Bees Melipona quadrifasciata anthidioides and Scaptotrigona depilis (Hymenoptera, Apidae, Meliponini). Microorganisms 2022, 11, 68. [Google Scholar] [CrossRef]
- Bottari, N.B.; Lopes, L.Q.; Pizzuti, K.; Filippi Dos Santos Alves, C.; Corrêa, M.S.; Bolzan, L.P.; Zago, A.; de Almeida Vaucher, R.; Boligon, A.A.; Giongo, J.L.; et al. Antimicrobial activity and phytochemical characterization of Carya illinoensis. Microb. Pathog. 2017, 104, 190–195. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Majdan, M.; Hałasa, R.; Głód, D.; Kula, M.; Fecka, I.; Orzeł, A. The antimicrobial activity of fruits from some cultivar varieties of Rubus idaeus and Rubus occidentalis. Food Funct. 2014, 5, 2536–2541. [Google Scholar] [CrossRef]
- Sampaio, A.d.G.; Gontijo, A.V.L.; Lima, G.d.M.G.; de Oliveira, M.A.C.; Lepesqueur, L.S.S.; Koga-Ito, C.Y. Ellagic acid–cyclodextrin complexes for the treatment of oral candidiasis. Molecules 2021, 26, 505. [Google Scholar] [CrossRef]
- Silva Junior, I.F.; Raimondi, M.; Zacchino, S.; Cechinel Filho, V.; Noldin, V.F.; Rao, V.S.; Lima, J.C.S.; Martins, D.T.O. Evaluation of the antifungal activity and mode of action of Lafoensia pacari A. St.-Hil., Lythraceae, stem-bark extracts, fractions and ellagic acid. Rev. Bras. Farmacogn. 2010, 20, 422–428. [Google Scholar] [CrossRef]
- Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal activity of the phenolic compounds ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) against drug-resistant Candida auris. J. Fungi 2021, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Mba, I.E.; Nweze, E.I. Mechanism of Candida pathogenesis: Revisiting the vital drivers. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1797–1819. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.P.; Coleman, D.C.; Sullivan, D.J. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot. Cell 2011, 10, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-D.; Chai, D.; Huang, X.-W.; Guan, S.-X.; Du, J.; Zhang, H.-Y.; Sun, Y.; Jiang, Y.-Y. Potent in vitro synergism of fluconazole and osthole against fluconazole-resistant Candida albicans. Antimicrob. Agents Chemother. 2017, 61, e00436-17. [Google Scholar] [CrossRef]
- Lu, H.; Shrivastava, M.; Whiteway, M.; Jiang, Y. Candida albicans targets that potentially synergize with fluconazole. Crit. Rev. Microbiol. 2021, 47, 323–337. [Google Scholar] [CrossRef]
- Tortorano, A.M.; Prigitano, A.; Morroni, G.; Brescini, L.; Barchiesi, F. Barchiesi, Francesco Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infect. Drug Resist. 2021, 14, 5543–5553. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, X.; Ren, B.; Cheng, L. The regulation of hyphae growth in Candida albicans. Virulence 2020, 11, 337–348. [Google Scholar] [CrossRef]
- Nett, J.E.; Andes, D.R. Contributions of the biofilm matrix to Candida pathogenesis. J. Fungi 2020, 6, 21. [Google Scholar] [CrossRef]
- Kaur, J.; Nobile, C.J. Antifungal drug-resistance mechanisms in Candida biofilms. Curr. Opin. Microbiol. 2023, 71, 102237. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.; Wu, W.; Lyu, L.; Li, W.; Zhang, C. Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity. Int. J. Mol. Sci. 2023, 24, 15228. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, D.; Fu, Q. Inhibition of cervical cancer by promoting IGFBP7 expression using ellagic acid from pomegranate peel. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 4881. [Google Scholar] [CrossRef] [PubMed]
- Pani, S.; Sahoo, A.; Patra, A.; Debata, P.R. Phytocompounds curcumin, quercetin, indole-3-carbinol, and resveratrol modulate lactate-pyruvate level along with cytotoxic activity in HeLa cervical cancer cells. Biotechnol. Appl. Biochem. 2021, 68, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Scorneaux, B.; Angulo, D.; Borroto-Esoda, K.; Ghannoum, M.; Peel, M.; Wring, S. SCY-078 is fungicidal against Candida species in time-kill studies. Antimicrob. Agents Chemother. 2017, 61, 10-1128. [Google Scholar] [CrossRef]
- Ernst, E.J.; Roling, E.E.; Petzold, C.R.; Keele, D.J.; Klepser, M.E. In vitro activity of micafungin (FK-463) against Candida spp.: Microdilution, time-kill, and postantifungal-effect studies. Antimicrob. Agents Chemother. 2002, 46, 3846–3853. [Google Scholar] [CrossRef]
- Silva, B.L.; Simão, G.; Campos, C.D.; Monteiro, C.R.; Bueno, L.R.; Ortis, G.B.; Mendes, S.J.; Moreira, I.V.; Maria-Ferreira, D.; Sousa, E.M. In silico and in vitro analysis of sulforaphane anti-Candida activity. Antibiotics 2022, 11, 1842. [Google Scholar] [CrossRef]
- Seneviratne, C.J.; Rajan, S.; Wong, S.S.; Tsang, D.N.; Lai, C.K.; Samaranayake, L.P.; Jin, L. Antifungal susceptibility in serum and virulence determinants of Candida bloodstream isolates from Hong Kong. Front. Microbiol. 2016, 7, 216. [Google Scholar] [CrossRef]
- Gulati, M.; Ennis, C.L.; Rodriguez, D.L.; Nobile, C.J. Visualization of biofilm formation in Candida albicans using an automated microfluidic device. J. Vis. Exp. JoVE 2017. [Google Scholar] [CrossRef]
- Greco, I.; Emborg, A.P.; Jana, B.; Molchanova, N.; Oddo, A.; Damborg, P.; Guardabassi, L.; Hansen, P.R. Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Sci. Rep. 2019, 9, 3679. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef]
- Zafar, I.; Safder, A.; Imran Afridi, H.; Riaz, S.; -ur-Rehman, R.; Unar, A.; Un Nisa, F.; Gaafar, A.-R.Z.; Bourhia, M.; Wondmie, G.F. In silico and in vitro study of bioactive compounds of Nigella sativa for targeting neuropilins in breast cancer. Front. Chem. 2023, 11, 1273149. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
Microorganisms | MIC (μg/mL) | FIC (μg/mL) | FICI | Interaction | ||
---|---|---|---|---|---|---|
EA | FLZ | EA | FLZ | |||
Reference strains | ||||||
C. albicans (ATCC 90028) | 500 | 2 | 125 | 1 | 0.75 | Additive |
C. albicans SC5314 (ATCC MYA-2876) | 250 | 8 | 250 | 0.5 | 1.06 | Indifferent |
Clinical isolates | ||||||
C. albicans CA 02 | 500 | 8 | 250 | 0.5 | 0.56 | Additive |
C. albicans CA 04 | 500 | 16 | 250 | 2 | 0.62 | Additive |
C. albicans CA 05 | 1000 | 32 | 250 | 1 | 0.28 | Synergistic |
C. albicans CA 08 | 1000 | 64 | 62.5 | 2 | 0.09 | Synergistic |
C. albicans CA 010 | 1000 | 64 | 125 | 2 | 0.15 | Synergistic |
C. albicans CA 013 | 1000 | 64 | 125 | 2 | 0.15 | Synergistic |
C. albicans CA 014 | 250 | 32 | 250 | 2 | 1.06 | Indifferent |
C. albicans CA 015 | 500 | 64 | 62.5 | 2 | 0.15 | Synergistic |
C. albicans CA 016 | 500 | 64 | 62.5 | 4 | 0.18 | Synergistic |
Strains | Fractional Inhibitory Combination Index (FICI) | |
---|---|---|
Synergistic | Additive | |
CA 02 | - | 0.56, 0.62, 0.75, 1.0 |
CA 04 | - | 0.62, 0.75, 1.0 |
CA 05 | 0.28, 0.31, 0.37, 0.5 | 0.53, 0.56, 0.62, 0.75, 1.0 |
CA 08 | 0.09, 0.12, 0.15, 0.18, 0.25, 0.28, 0.31, 0.37, 0.5 | 0.53, 0.56, 0.62, 0.75, 1.0 |
CA 010 | 0.15, 0.18, 0.25, 0.28, 0.31, 0.37, 0.50 | 0.53, 0.56, 0.62, 0.75, 1.0 |
CA 013 | 0.15, 0.18, 0.25, 0.28, 0.31, 0.37, 0.50 | 0.53, 0.56, 0.62, 0.75, 1.0 |
CA 015 | 0.15, 0.18, 0.25, 0.28, 0.31, 0.37 | 0.53, 0.56, 0.62, 0.75, 1.0 |
CA 016 | 0.15, 0.18, 0.25,0.28, 0.31, 0.37, 0.5 | 0.53, 0.56, 0.62, 0.75, 1.0 |
Microorganisms | Origin |
---|---|
Strains ATCC 90028 and SC5314 ATCC MYA-2876 | ATCC |
Clinical isolates CA 01, CA 03, CA 04, CA 05, CA 06, CA 09, CA 010, CA 011, CA 013, CA 014, CA 016, and CA 017 | Urine |
CA 02, CA 07, CA 012, CA 015, CA 019, CA 020, and CA 021 | Tracheal secretion |
CA 08 | Sputum |
CA 018 | Blood culture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, A.G.G.; Campos, C.D.L.; Pereira-Filho, J.L.; Pereira, A.P.A.; Reis, G.S.A.; Araújo, Á.W.d.M.S.; Monteiro, P.d.M.; Vidal, F.C.B.; Monteiro, S.G.; da Silva Figueiredo, I.F.; et al. Ellagic Acid Potentiates the Inhibitory Effects of Fluconazole Against Candida albicans. Antibiotics 2024, 13, 1174. https://doi.org/10.3390/antibiotics13121174
Mendes AGG, Campos CDL, Pereira-Filho JL, Pereira APA, Reis GSA, Araújo ÁWdMS, Monteiro PdM, Vidal FCB, Monteiro SG, da Silva Figueiredo IF, et al. Ellagic Acid Potentiates the Inhibitory Effects of Fluconazole Against Candida albicans. Antibiotics. 2024; 13(12):1174. https://doi.org/10.3390/antibiotics13121174
Chicago/Turabian StyleMendes, Amanda Graziela Gonçalves, Carmem Duarte Lima Campos, José Lima Pereira-Filho, Aleania Polassa Almeida Pereira, Gabriel Silva Abrantes Reis, Árlon Wendel de Marinho Silva Araújo, Pablo de Matos Monteiro, Flávia Castello Branco Vidal, Silvio Gomes Monteiro, Isabella Fernandes da Silva Figueiredo, and et al. 2024. "Ellagic Acid Potentiates the Inhibitory Effects of Fluconazole Against Candida albicans" Antibiotics 13, no. 12: 1174. https://doi.org/10.3390/antibiotics13121174
APA StyleMendes, A. G. G., Campos, C. D. L., Pereira-Filho, J. L., Pereira, A. P. A., Reis, G. S. A., Araújo, Á. W. d. M. S., Monteiro, P. d. M., Vidal, F. C. B., Monteiro, S. G., da Silva Figueiredo, I. F., Fernandes, E. S., Monteiro, C. d. A., & Monteiro-Neto, V. (2024). Ellagic Acid Potentiates the Inhibitory Effects of Fluconazole Against Candida albicans. Antibiotics, 13(12), 1174. https://doi.org/10.3390/antibiotics13121174