Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Samples and Cultivation
2.1.2. Sample Preparation
2.2. Chemical Analysis
2.2.1. Liquid Chromatography−Mass Spectrometry (LC−MS) Analysis
2.2.2. Gas Chromatography Coupled to Mass Spectrometry (GC−MS) Analysis
2.2.3. Proton Nuclear Magnetic Resonance (1H-NMR) Analysis
2.3. Antioxidant Activity
2.3.1. Radical Scavenging Assay Using 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
2.3.2. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.4. COX-2 Anti-Inflammatory Activity Assay
2.5. Cell-Based Assays
2.5.1. Cellular Antioxidant Activity (CAA) Assay
2.5.2. Detection of the Activation of NF-κB/AP-1
2.6. Determination of the Content of Glucans
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of Mushroom Extracts
3.2. LC−MS Analysis of Mushroom Extracts
3.3. GC−MS Analysis of Mushroom Extracts
3.4. NMR Analysis of Mushroom Extracts
3.5. Content of Glucans
3.6. Antioxidant Activity
3.7. Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Roncero-Ramos, I.; Delgado-Andrade, C. The Beneficial Role of Edible Mushrooms in Human Health. Curr. Opin. Food Sci. 2017, 14, 122–128. [Google Scholar] [CrossRef]
- Guillamón, E.; García-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef]
- Jo, W.-S.; Hossain, M.A.; Park, S.-C. Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms. Mycobiology 2014, 42, 215–220. [Google Scholar] [CrossRef]
- Wasser, S.P. Current Findings, Future Trends, and Unsolved Problems in Studies of Medicinal Mushrooms. Appl. Microbiol. Biotechnol. 2011, 89, 1323–1332. [Google Scholar] [CrossRef]
- Patel, Y.; Narian, R.; Singh, V.K. Medicinal Properties of Pleurotus Species (Oyster Mushroom): A Review. World J. Fungal Plant Biol. 2012, 3, 1–12. [Google Scholar] [CrossRef]
- Hobbs, C. Medicinal Mushrooms: An Exploration of Tradition, Healing, and Culture; Herbs and Health Series; Botanica Press: Williams, OR, USA, 2003; ISBN 9781570671432. [Google Scholar]
- Rama Shankar, G.S.; Lavekar, S.D.; Sharma, B.K. Traditional healing practice and folk medicines used by Mishing community of North East India. J. Ayurveda Integr. Med. 2012, 3, 124–129. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/col/browse/tree/id/857ebe7fdb1404352630eb1d4da99cf1 (accessed on 29 August 2021).
- Deepalakshmi, K.; Mirunalini, S. Pleurotus Ostreatus: An Oyster Mushroom with Nutritional and Medicinal Properties. J. Biochem. Technol. 2014, 5, 718–726. [Google Scholar]
- Enshasy, H.; Maftoun, P.; Johari, H.J.; Soltani, M.; Malik, R.; Othman, N. The Edible Mushroom Pleurotus Spp.: I. Biodiversity and Nutritional Values. Int. J. Biotechnol. Wellness Ind. 2015, 4, 67–83. [Google Scholar] [CrossRef]
- Jedinak, A.; Dudhgaonkar, S.; Wu, Q.; Simon, J.; Sliva, D. Anti-Inflammatory Activity of Edible Oyster Mushroom Is Mediated through the Inhibition of NF-ΚB and AP-1 Signaling. Nutr. J. 2011, 10, 52. [Google Scholar] [CrossRef]
- Golak-Siwulska, I.; Kałużewicz, A.; Spiżewski, T.; Siwulski, M.; Sobieralski, K. Bioactive Compounds and Medicinal Properties of Oyster Mushrooms ( Pleurotus sp.). Folia Hortic. 2018, 30, 191–201. [Google Scholar] [CrossRef]
- Klaus, A.; Wan-Mohtar, W.A.A.Q.I.; Nikolić, B.; Cvetković, S.; Vunduk, J. Pink Oyster Mushroom Pleurotus Flabellatus Mycelium Produced by an Airlift Bioreactor—the Evidence of Potent in Vitro Biological Activities. World J. Microbiol. Biotechnol. 2021, 37, 17. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, A.K.; Gunasagaran, K.S. Purification and Characterization of a Synergistic Bioactive Lectin from Pleurotus Flabellatus (PFL-L) with Potent Antibacterial and in-Vitro Radical Scavenging Activity. Anal. Biochem. 2021, 635, 114450. [Google Scholar] [CrossRef] [PubMed]
- Radzi, M.P.M.F.; Azizah, M.; Maininah, T.; Sumaiyah, A. Growth, Yield And Antioxidant Activity of Grey Oyster Mushroom (Pleurotus Pulmonarius) Grown in Sawdust Substrate With The Supplementation Of Alkaline Materials. JAPS J. Anim. Plant Sci. 2021, 31, 1699–1711. [Google Scholar]
- Oyetayo, V.O.; Ogidi, C.O.; Bayode, S.O.; Enikanselu, F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus Pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021, 74, 901–910. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Im, K.H.; Choi, J.; Shin, P.G.; Lee, T.S. Evaluation of Antioxidant, Anti-Cholinesterase, and Anti-Inflammatory Effects of Culinary Mushroom Pleurotus Pulmonarius. Mycobiology 2016, 44, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.W.; Li, B.; Lai, E.T.C.; Chen, L.; Huang, J.J.H.; Cheung, A.L.M.; Cheung, P.C.K. Water Extract from Pleurotus Pulmonarius with Antioxidant Activity Exerts In Vivo Chemoprophylaxis and Chemosensitization for Liver Cancer. Nutr. Cancer 2014, 66, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Pumtes, P.; Rojsuntornkitti, K.; Kongbangkerd, T.; Jittrepotch, N. Effects of Different Extracting Conditions on Antioxidant Activities of Pleurotus flabellatus. Int. Food Res. J. 2016, 23, 173–179. [Google Scholar]
- Smiderle, F.R.; Olsen, L.M.; Carbonero, E.R.; Baggio, C.H.; Freitas, C.S.; Marcon, R.; Santos, A.R.S.; Gorin, P.A.J.; Iacomini, M. Anti-Inflammatory and Analgesic Properties in a Rodent Model of a (1→3),(1→6)-Linked β-Glucan Isolated from Pleurotus Pulmonarius. Eur. J. Pharmacol. 2008, 597, 86–91. [Google Scholar] [CrossRef]
- Adebayo, E.; Oloke, J.; Olusola, M.; Ajani, R.; Bora, T. Antimicrobial and Anti-Inflammatory Potential of Polysaccharide from Pleurotus Pulmonarius LAU 09. Afr. J. Microbiol. Res. 2012, 6, 3315–3323. [Google Scholar] [CrossRef]
- Pandey, A.T.; Pandey, I.; Kerkar, P.; Singh, M.P. Antimicrobial Activity and Mycochemical Profile of Methanol Extract from Pleurotus Flabellatus. Vegetos 2021, 34, 619–629. [Google Scholar] [CrossRef]
- Damaris Chinwendu, O. Antioxidant and Antimicrobial Activities of Oyster Mushroom. Am. J. Food Sci. Ant Technol. 2017, 5, 64–69. [Google Scholar] [CrossRef]
- Díaz-Godínez, G.; Téllez-Téllez, M.; Rodríguez, A.; Obregón-Barbosa, V.; Acosta-Urdapilleta, M.D.L.; Villegas, E. Enzymatic, Antioxidant, Antimicrobial, and Insecticidal Activities of Pleurotus Pulmonarius and Pycnoporus Cinnabarinus Grown Separately in an Airlift Reactor. BioResources 2016, 11, 4186–4200. [Google Scholar] [CrossRef]
- Kumar, K. Role of Edible Mushrooms as Functional Foods—A Review. South Asian J. Food Technol. Environ. 2015, 1, 5454–6445. [Google Scholar] [CrossRef]
- Sarangi, I.; Ghosh, D.; Bhutia, S.K.; Mallick, S.K.; Maiti, T.K. Anti-Tumor and Immunomodulating Effects of Pleurotus Ostreatus Mycelia-Derived Proteoglycans. Int. Immunopharmacol. 2006, 6, 1287–1297. [Google Scholar] [CrossRef]
- Xia, F.; Fan, J.; Zhu, M.; Tong, H. Antioxidant Effects of a Water-Soluble Proteoglycan Isolated from the Fruiting Bodies of Pleurotus Ostreatus. J. Taiwan Inst. Chem. Eng. 2011, 42, 402–407. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between in Vivo and in Vitro Samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Ho, K.-J.; Hsieh, Y.-J.; Wang, L.-T.; Mau, J.-L. Contents of Lovastatin, γ-Aminobutyric Acid and Ergothioneine in Mushroom Fruiting Bodies and Mycelia. LWT 2012, 47, 274–278. [Google Scholar] [CrossRef]
- Calabretti, A.; Mang, S.M.; Becce, A.; Castronuovo, D.; Cardone, L.; Candido, V.; Camele, I. Comparison of Bioactive Substances Content between Commercial and Wild-Type Isolates of Pleurotus Eryngii. Sustainability 2021, 13, 3777. [Google Scholar] [CrossRef]
- Baek, J.; Roh, H.-S.; Baek, K.-H.; Lee, S.; Lee, S.; Song, S.-S.; Kim, K.H. Bioactivity-Based Analysis and Chemical Characterization of Cytotoxic Constituents from Chaga Mushroom (Inonotus Obliquus) That Induce Apoptosis in Human Lung Adenocarcinoma Cells. J. Ethnopharmacol. 2018, 224, 63–75. [Google Scholar] [CrossRef]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef]
- Pedneault, K.; Angers, P.; Avis, T.J.; Gosselin, A.; Tweddell, R.J. Fatty Acid Profiles of Polar and Non-Polar Lipids of Pleurotus Ostreatus and P. Cornucopiae Var. ‘Citrino-Pileatus’ Grown at Different Temperatures. Mycol. Res. 2007, 111, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Mascellani, A.; Natali, L.; Cavallini, A.; Mascagni, F.; Caruso, G.; Gucci, R.; Havlik, J.; Bernardi, R. Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits (Ficus Carica L. Cv. Dottato). Plants 2021, 10, 1861. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Bhat, T.K. DPPH Antioxidant Assay Revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Held, P. Performing Oxygen Radical Absorbance Capacity Assays with Synergy HT: ORAC Antioxidant Tests. Appl. Note. Available online: https://www.biotek.com/resources/docs/ORAC_Assay_Application_Note.pdf (accessed on 12 August 2022).
- Hošek, J.; Bartos, M.; Chudík, S.; Dall’Acqua, S.; Innocenti, G.; Kartal, M.; Kokoška, L.; Kollár, P.; Kutil, Z.; Landa, P.; et al. Natural Compound Cudraflavone B Shows Promising Anti-Inflammatory Properties in Vitro. J. Nat. Prod. 2011, 74, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Malanik, M.; Treml, J.; Lelaková, V.; Nykodymová, D.; Oravec, M.; Marek, J.; Šmejkal, K. Anti-Inflammatory and Antioxidant Properties of Chemical Constituents of Broussonetia Papyrifera. Bioorganic Chem. 2020, 104, 104298. [Google Scholar] [CrossRef]
- McCleary, B.V.; Draga, A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. Aoac Int. 2016, 99, 364–373. [Google Scholar] [CrossRef]
- Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.J.; Lee, M.W.; Lee, T.S. Nutritional Analysis of Cultivated Mushrooms in Bangladesh—Pleurotus Ostreatus, Pleurotus Sajor-Caju, Pleurotus Florida and Calocybe Indica. Mycobiology 2008, 36, 228. [Google Scholar] [CrossRef]
- Chaiharn, M.; Phutdhawong, W.S.; Amornlerdpison, D.; Phutdhawong, W. Antibacterial, Antioxidant Properties and Bioactive Compounds of Thai Cultivated Mushroom Extracts against Food-Borne Bacterial Strains. Chiang Mai J. Sci. 2018, 45, 1713–1727. [Google Scholar]
- Muan, C.; Chonju, H. Volatile components of oyster mushrooms (Pleurotus sp.) cultivated in Korea. Korean J. Mycol. (Korea Repub.) 1992, 19, 299–305. [Google Scholar]
- Lin, P.; Yan, Z.-F.; Kook, M.; Li, C.-T.; Yi, T.-H. Genetic and Chemical Diversity of Edible Mushroom Pleurotus Species. BioMed Res. Int. 2022, 2022, 6068185. [Google Scholar] [CrossRef]
- Avni, S.; Ezove, N.; Hanani, H.; Yadid, I.; Karpovsky, M.; Hayby, H.; Gover, O.; Hadar, Y.; Schwartz, B.; Danay, O. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus Eryngii. Int. J. Mol. Sci. 2017, 18, 1564. [Google Scholar] [CrossRef]
- Lam, Y.S.; Okello, E.J. Determination of Lovastatin, β-Glucan, Total Polyphenols, and Antioxidant Activity in Raw and Processed Oyster Culinary-Medicinal Mushroom, Pleurotus Ostreatus (Higher Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Večeřová, P.; Herczogová, P.; Šmejkal, K. Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays. Molecules 2021, 26, 2534. [Google Scholar] [CrossRef]
- Bakir, T.; Karadeniz, M.; Unal, S. Investigation of Antioxidant Activities of Pleurotus Ostreatus Stored at Different Temperatures. Food Sci. Nutr. 2018, 6, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine—A Diet-derived Antioxidant with Therapeutic Potential. FEBS Lett. 2018, 592, 3357–3366. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-H.; Ho, K.-J.; Huang, L.-Y.; Tsai, C.-H.; Lin, S.-Y.; Mau, J.-L. Antioxidant Properties of Fruiting Bodies, Mycelia, and Fermented Products of the Culinary-Medicinal King Oyster Mushroom, Pleurotus Eryngii (Higher Basidiomycetes), with High Ergothioneine Content. Int. J. Med. Mushrooms 2013, 15, 267–275. [Google Scholar] [CrossRef]
- Kalaras, M.D.; Richie, J.P.; Calcagnotto, A.; Beelman, R.B. Mushrooms: A Rich Source of the Antioxidants Ergothioneine and Glutathione. Food Chem. 2017, 233, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Permatasari, W.; Dayanti, D.; Khaerunnisa, I.; Winarni, S. Literatur Review The New Super Antioxidant, Ergothioneine In Pleurotus Ostreatus. Int. J. Health Educ. &Amp; Soc. (IJHES) 2020, 3, 23–33. [Google Scholar] [CrossRef]
- Dubost, N.J.; Beelman, R.B.; Peterson, D.; Royse, D.J. Identification and Quantification of Ergothioneine in Cultivated Mushrooms by Liquid Chromatography-Mass Spectroscopy. Int. J. Med. Mushrooms 2006, 8, 215–222. [Google Scholar] [CrossRef]
- Tsiapali, E.; Whaley, S.; Kalbfleisch, J.; Ensley, H.E.; Browder, I.W.; Williams, D.L. Glucans Exhibit Weak Antioxidant Activity, but Stimulate Macrophage Free Radical Activity. Free. Radic. Biol. Med. 2001, 30, 393–402. [Google Scholar] [CrossRef]
- Mizunoe, Y.; Kobayashi, M.; Sudo, Y.; Watanabe, S.; Yasukawa, H.; Natori, D.; Hoshino, A.; Negishi, A.; Okita, N.; Komatsu, M.; et al. Trehalose Protects against Oxidative Stress by Regulating the Keap1–Nrf2 and Autophagy Pathways. Redox Biol. 2018, 15, 115–124. [Google Scholar] [CrossRef]
- Radbakhsh, S.; Ganjali, S.; Moallem, S.A.; Guest, P.C.; Sahebkar, A. Antioxidant Effects of Trehalose in an Experimental Model of Type 2 Diabetes. In Natural Products and Human Diseases; Springer: Berlin, Germany, 2021; pp. 473–480. [Google Scholar]
- Liu, J.-H.; Chen, M.-M.; Huang, J.-W.; Wann, H.; Ho, L.-K.; Pan, W.H.T.; Chen, Y.-C.; Liu, C.-M.; Yeh, M.-Y.; Tsai, S.-K.; et al. Therapeutic Effects and Mechanisms of Action of Mannitol During H2O2-Induced Oxidative Stress in Human Retinal Pigment Epithelium Cells. J. Ocul. Pharmacol. Ther. 2010, 26, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Pelle, E.; Mammone, T.; Marenus, K.; Maes, D.; Huang, X.; Frenkel, K. Ultraviolet-B-Induced Oxidative DNA Base Damage in Primary Normal Human Epidermal Keratinocytes and Inhibition by a Hydroxyl Radical Scavenger. J. Investig. Dermatol. 2003, 121, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Meza-Menchaca, T.; Poblete-Naredo, I.; Albores-Medina, A.; Pedraza-Chaverri, J.; Quiroz-Figueroa, F.R.; Cruz-Gregorio, A.; Zepeda, R.C.; Melgar-Lalanne, G.; Lagunes, I.; Trigos, Á. Ergosterol Peroxide Isolated from Oyster Medicinal Mushroom, Pleurotus Ostreatus (Agaricomycetes), Potentially Induces Radiosensitivity in Cervical Cancer. Int. J. Med. Mushrooms 2020, 22, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Sinthupoom, N.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Nicotinic Acid and Derivatives as Multifunctional Pharmacophores for Medical Applications. Eur. Food Res. Technol. 2015, 240, 1–17. [Google Scholar] [CrossRef]
- Tupe, R.S.; Tupe, S.G.; Agte, V.V. Dietary Nicotinic Acid Supplementation Improves Hepatic Zinc Uptake and Offers Hepatoprotection against Oxidative Damage. Br. J. Nutr. 2011, 105, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Arauz, J.; Rivera-Espinoza, Y.; Shibayama, M.; Favari, L.; Flores-Beltrán, R.E.; Muriel, P. Nicotinic Acid Prevents Experimental Liver Fibrosis by Attenuating the Prooxidant Process. Int. Immunopharmacol. 2015, 28, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, S.; Zhu, C.; Gao, Q.; Bai, J.; Si, J.; Chen, Y. Ergosterol Ameliorates Renal Inflammatory Responses in Mice Model of Diabetic Nephropathy. Biomed. Pharmacother. 2020, 128, 110252. [Google Scholar] [CrossRef]
- Xiong, M.; Huang, Y.; Liu, Y.; Huang, M.; Song, G.; Ming, Q.; Ma, X.; Yang, J.; Deng, S.; Wen, Y.; et al. Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-Ay Mice with Spontaneous Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 2018, 62, 1700444. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; Silva, A.R.; Costa, C.; Ferreira, I.; Nunes, J.; Prieto, M.A.; Simal-Gandara, J.; Barros, L.; Ferreira, I.C.F.R. Optimization of Ergosterol Extraction from Pleurotus Mushrooms Using Response Surface Methodology. Food Funct. 2020, 11, 5887–5897. [Google Scholar] [CrossRef] [PubMed]
- Bekiaris, G.; Tagkouli, D.; Koutrotsios, G.; Kalogeropoulos, N.; Zervakis, G.I. Pleurotus Mushrooms Content in Glucans and Ergosterol Assessed by ATR-FTIR Spectroscopy and Multivariate Analysis. Foods 2020, 9, 535. [Google Scholar] [CrossRef]
- Alexandre, T.R.; Lima, M.L.; Galuppo, M.K.; Mesquita, J.T.; do Nascimento, M.A.; dos Santos, A.L.; Sartorelli, P.; Pimenta, D.C.; Tempone, A.G. Ergosterol Isolated from the Basidiomycete Pleurotus Salmoneostramineus Affects Trypanosoma Cruzi Plasma Membrane and Mitochondria. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 30. [Google Scholar] [CrossRef]
- Agrawal, D.; Yin, K. Vitamin D and Inflammatory Diseases. J. Inflamm. Res. 2014, 69–87. [Google Scholar] [CrossRef]
- Du, B.; Lin, C.; Bian, Z.; Xu, B. An Insight into Anti-Inflammatory Effects of Fungal Beta-Glucans. Trends Food Sci. Technol. 2015, 41, 49–59. [Google Scholar] [CrossRef]
- Deo, G.S.; Khatra, J.; Buttar, S.; Li, W.M.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Lee, C.H. Antiproliferative, Immunostimulatory, and Anti-Inflammatory Activities of Extracts Derived from Mushrooms Collected in Haida Gwaii, British Columbia (Canada). Int. J. Med. Mushrooms 2019, 21, 629–643. [Google Scholar] [CrossRef]
- Echigo, R.; Shimohata, N.; Karatsu, K.; Yano, F.; Kayasuga-Kariya, Y.; Fujisawa, A.; Ohto, T.; Kita, Y.; Nakamura, M.; Suzuki, S.; et al. Trehalose Treatment Suppresses Inflammation, Oxidative Stress, and Vasospasm Induced by Experimental Subarachnoid Hemorrhage. J. Transl. Med. 2012, 10, 80. [Google Scholar] [CrossRef]
- Collins, J.; Robinson, C.; Danhof, H.; Knetsch, C.W.; van Leeuwen, H.C.; Lawley, T.D.; Auchtung, J.M.; Britton, R.A. Dietary Trehalose Enhances Virulence of Epidemic Clostridium Difficile. Nature 2018, 553, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Jayasuriya, W.J.A.B.N.; Handunnetti, S.M.; Wanigatunge, C.A.; Fernando, G.H.; Abeytunga, D.T.U.; Suresh, T.S. Anti-Inflammatory Activity of Pleurotus Ostreatus, a Culinary Medicinal Mushroom, in Wistar Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 6845383. [Google Scholar] [CrossRef]
Sample Name | Extraction Yield by Solvent (% w/w d.w.) | |
---|---|---|
80% MeOH | CHL | |
P. flabellatus 5013 | 30.8 ± 2.4 a | 2.7 ± 0.2 b |
P. pulmonarius KZ50 | 30.4 ± 0.9 a | 2.5 ± 0.2 b |
P. opuntiae 5012 | 28.4 ± 0.6 a | 3.5 ± 0.3 c |
P. ostreatus Sylvan Ivory | 30.2 ± 2.7 a | 4.5 ± 0.2 a |
P. ostreatus 5175 Florida | 32.9 ± 2.5 a | 4.0 ± 0.4 a,c |
Sample | Ergosterol Content | |
---|---|---|
mg/kg of d.w. Powder | µg/g of Dry Extract | |
P. flabellatus 5013 | 214.5 ± 8.1 b | 805.3 ± 30.2 b |
P. pulmonarius KZ50 | 166.3 ± 2.2 a | 629.7 ± 8.2 a |
P. opuntiae 5012 | 163.4 ± 13.1 a | 604.3 ± 48.3 a |
P. ostreatus Sylvan Ivory | 163.7 ± 8.2 a | 538.5 ± 27.0 a |
P. ostreatus 5175 Florida | 178.7 ± 3.1 a | 547.7 ± 9.3 a |
Compound | Sample | ||||
---|---|---|---|---|---|
P. flabellatus 5013 | P. pulmonarius KZ50 | P. opuntiae 5012 | P. ostreatus Sylvan Ivory | P. ostreatus 5175 Florida | |
Content (µg/g of Dry Extract) | |||||
2-Aminobutyrate | 398.8 ± 12.7 a | 512.3 ± 53.9 c | 257.6 ± 7.2 b | 323.4 ± 13.5 a | 214.5 ± 14.9 b |
Acetate | 439.6 ± 14.5 a | 956.3 ± 125.8 b | 452.4 ± 21.1 a | 612.1 ± 30.7 a,b | 661.1 ± 29.2 b |
Nicotinate | 900.7 ± 72.3 b | 580 ± 70.1 a,c | 757.8 ± 53 a,b | 672.4 ± 53.1 a,b | 377.5 ± 29.5 c |
Tryptophan | 1080.6 ± 111.1 b | 569.3 ± 70.4 c | 275.5 ± 31.4 a | 397.7 ± 29.9 a,c | 354.9 ± 19.1 a,c |
Valine | 879.8 ± 10.3 a | 1264.4 ± 108.8 b | 761.4 ± 38.1 a | 785.9 ± 17.6 a | 584.6 ± 21.8 a |
Content (mg/g of dry extract) | |||||
Alanine | 8.35 ± 0.89 a | 8.43 ± 0.45 a | 8.15 ± 0.30 a | 6.76 ± 0.12 a | 6.14 ± 0.25 a |
Aspartate | 3.714 ± 0.055 a,b | 6.02 ± 0.44 b | 10.76 ± 0.35 c | 4.20 ± 0.13 a | 8.45 ± 0.33 c |
Choline | 4.40 ± 0.17 b | 5.39 ± 0.23 a | 3.915 ± 0.089 b | 4.58 ± 0.17 a | 4.25 ± 0.12 a |
Ergothioneine | 6.22 ± 0.47 b | 3.13 ± 0.21 a | 4.16 ± 0.13 c | 2.65 ± 0.14 a | 2.72 ± 0.15 a |
Fumarate | 1.70 ± 0.27 b | 3.40 ± 0.24 d | 4.30 ± 0.12 c | 4.99 ± 0.22 a | 3.14 ± 0.12 c,d |
Glutamate | 14.8 ± 1.3 a,b | 8.87 ± 0.81 c | 13.40 ± 1.3 a,b,c | 15.5 ± 1.9 a | 8.82 ± 0.44 b,c |
Glutamine | 25.92 ± 0.95 b | 9.75 ± 0.16 c | 8.26 ± 0.38 c | 11.358 ± 0.085 a | 8.72 ± 0.36 a,c |
Mannitol | 144.3 ± 4.6 b | 31.5 ± 3.1 a | 24.09 ± 0.88 a | 18.14 ± 0.53 a | 13.81 ± 0.61 a |
Phenylalanine | 2.38 ± 0.26 b | 2.36 ± 0.17 b | 1.587 ± 0.054 a | 1.33 ± 0.11 a | 1.734 ± 0.094 a,b |
Succinate | 1.763 ± 0.088 b | 6.00 ± 0.38 d | 26.769 ± 0.044 c | 3.10 ± 0.13 a | 2.451 ± 0.087 a,c |
Trehalose | 105.0 ± 2.1 b | 318.7 ± 20.2 a | 281.6 ± 3.9 a | 270.7 ± 9.2 a | 347.7 ± 11.5 c |
Tyrosine | 2.275 ± 0.052 b,c | 2.15 ± 0.14 b | 2.531 ± 0.088 c | 2.967 ± 0.079 a | 1.700 ± 0.044 b |
Sample Name | Content (% w/w of d.w.) | ||
---|---|---|---|
Total Glucans | α-Glucans | β-Glucans | |
P. flabellatus 5013 | 35.8 ± 0.3 a | 4.5 ± 0.4 a | 31.5 ± 0.6 a |
P. pulmonarius KZ50 | 41.4 ± 0.1 b | 6.5 ± 0.8 ab | 34.9 ± 0.9 a |
P. opuntiae 5012 | 44.4 ± 0.3 c | 9.8 ± 0.1 b | 34.5 ± 0.5 a |
P. ostreatus Sylvan Ivory | 36.5 ± 0.1 a | 3.8 ± 1.2 a | 32.6 ± 1.2 a |
P. ostreatus 5175 Florida | 49.0 ± 0.3 d | 5.6 ± 0.8 ab | 43.3 ± 0.6 b |
Sample Name | DPPH | ORAC | CAA Value | |
---|---|---|---|---|
IC50 (μg/mL) | mg of TE/(g Extract) | mg of TE/(g Extract) | % of NC | |
P. flabellatus 5013 | 204.5 ± 45.8 a | 24.9 ± 5.4 a | 63.9 ± 4.0 d | −1.7 ± 11.3 a |
P. pulmonarius KZ50 | 570.9 ± 97.4 b | 8.5 ± 1.3 b | 35.4 ± 2.2 a | 5.9 ± 11.8 a |
P. opuntiae 5012 | 390.6 ± 142.7 a,b | 13.5 ± 4.6 a,b | 36.2 ± 2.4 a | 6.6 ± 7.5 a |
P. ostreatus Sylvan Ivory | 552.3 ± 119.0 a,b | 9.0 ± 1.8 a,b | 44.5 ± 4.5 c | n.d. |
P. ostreatus 5175 Florida | 1134.0 ± 65.8 c | 4.3 ± 0.3 c | 21.7 ± 4.2 b | 6.6 ± 10.29 a |
Quercetin (PC) | - | - | - | 93.1 ± 4.4 |
80% MeOH (NC) | −1.7 ± 14.2 |
Sample Name | * COX-2 Average Inhibition ± SD (%) | ** NF-κB/AP-1 Activity ± SD (% of NC) | |
---|---|---|---|
80% MeOH | CHL | 80% MeOH | |
P. flabellatus 5013 | 28.4 ± 9.4 | 85.0 ± 0.8 a | 83.4 ± 18.4 a |
P. pulmonarius KZ50 | not active | 55.6 ± 2.7 a,b | 76.6 ± 6.7 a |
P. opuntiae 5012 | 2.4 ± 3.7 | 43.6 ± 12.9 b | 80.5 ± 18.6 a |
P. ostreatus Sylvan Ivory | 24.0 ± 6.7 | 52.8 ± 8.7 a,b | n.d. |
P. ostreatus 5175 Florida | not active | 82.2 ± 2.7 a | 72.2 ± 7.7 a |
20 μM ibuprofen (PC) | 79.0 ± 10.9 | - | |
Prednisone (PC) | - | 79.2 ± 8.0 a | |
80% MeOH (NC) | 100.0 ± 12.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stastny, J.; Marsik, P.; Tauchen, J.; Bozik, M.; Mascellani, A.; Havlik, J.; Landa, P.; Jablonsky, I.; Treml, J.; Herczogova, P.; et al. Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus. Antioxidants 2022, 11, 1569. https://doi.org/10.3390/antiox11081569
Stastny J, Marsik P, Tauchen J, Bozik M, Mascellani A, Havlik J, Landa P, Jablonsky I, Treml J, Herczogova P, et al. Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus. Antioxidants. 2022; 11(8):1569. https://doi.org/10.3390/antiox11081569
Chicago/Turabian StyleStastny, Jan, Petr Marsik, Jan Tauchen, Matej Bozik, Anna Mascellani, Jaroslav Havlik, Premysl Landa, Ivan Jablonsky, Jakub Treml, Petra Herczogova, and et al. 2022. "Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus" Antioxidants 11, no. 8: 1569. https://doi.org/10.3390/antiox11081569
APA StyleStastny, J., Marsik, P., Tauchen, J., Bozik, M., Mascellani, A., Havlik, J., Landa, P., Jablonsky, I., Treml, J., Herczogova, P., Bleha, R., Synytsya, A., & Kloucek, P. (2022). Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus. Antioxidants, 11(8), 1569. https://doi.org/10.3390/antiox11081569