Abstract
Clostridium difficile disease has recently increased to become a dominant nosocomial pathogen in North America and Europe, although little is known about what has driven this emergence. Here we show that two epidemic ribotypes (RT027 and RT078) have acquired unique mechanisms to metabolize low concentrations of the disaccharide trehalose. RT027 strains contain a single point mutation in the trehalose repressor that increases the sensitivity of this ribotype to trehalose by more than 500-fold. Furthermore, dietary trehalose increases the virulence of a RT027 strain in a mouse model of infection. RT078 strains acquired a cluster of four genes involved in trehalose metabolism, including a PTS permease that is both necessary and sufficient for growth on low concentrations of trehalose. We propose that the implementation of trehalose as a food additive into the human diet, shortly before the emergence of these two epidemic lineages, helped select for their emergence and contributed to hypervirulence.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113 (2013)
Spigaglia, P. et al. Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J. Med. Microbiol. 57, 784–789 (2008)
Spigaglia, P., Barbanti, F., Dionisi, A. M. & Mastrantonio, P. Clostridium difficile isolates resistant to fluoroquinolones in Italy: emergence of PCR ribotype 018. J. Clin. Microbiol. 48, 2892–2896 (2010)
Jhung, M. A. et al. Toxinotype V Clostridium difficile in humans and food animals. Emerg. Infect. Dis. 14, 1039–1045 (2008)
Goorhuis, A. et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin. Infect. Dis. 47, 1162–1170 (2008)
Gupta, A. & Khanna, S. Community-acquired Clostridium difficile infection: an increasing public health threat. Infect. Drug Resist. 7, 63–72 (2014)
Limbago, B. M. et al. Clostridium difficile strains from community-associated infections. J. Clin. Microbiol. 47, 3004–3007 (2009)
Walker, A. S. et al. Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin. Infect. Dis. 56, 1589–1600 (2013)
He, M. et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl Acad. Sci. USA 107, 7527–7532 (2010)
Robinson, C. D., Auchtung, J. M., Collins, J. & Britton, R. A. Epidemic Clostridium difficile strains demonstrate increased competitive fitness compared to nonepidemic isolates. Infect. Immun. 82, 2815–2825 (2014)
Lim, S. K. et al. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin. Infect. Dis. 58, 1723–1730 (2014)
Eyre, D. W. et al. Emergence and spread of predominantly community- onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012. Euro Surveill. 20, 21059 (2015)
Polivkova, S., Krutova, M., Petrlova, K., Benes, J. & Nyc, O. Clostridium difficile ribotype 176 – a predictor for high mortality and risk of nosocomial spread? Anaerobe 40, 35–40 (2016)
Rupnik, M. et al. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe 42, 142–144 (2016)
Bergoz, R. Trehalose malabsorption causing intolerance to mushrooms. Report of a probable case. Gastroenterology 60, 909–912 (1971)
Bergoz, R., Bolte, J. P. & Meyer zum Bueschenfelde, K.-H. Trehalose tolerance test. Its value as a test for malabsorption. Scand. J. Gastroenterol. 8, 657–663 (1973)
Oku, T. & Nakamura, S. Estimation of intestinal trehalase activity from a laxative threshold of trehalose and lactulose on healthy female subjects. Eur. J. Clin. Nutr. 54, 783–788 (2000)
Higashiyama, T. Novel functions and applications of trehalose. Pure Appl. Chem. 74, 1263–1269 (2002)
Stabler, R. A. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10, R102 (2009)
Leffler, D. A. & Lamont, J. T. Clostridium difficile infection. N. Engl. J. Med. 372, 1539–1548 (2015)
Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014)
Knetsch, C. W. et al. Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology 157, 3113–3123 (2011)
Bouillaut, L., Self, W. T. & Sonenshein, A. L. Proline-dependent regulation of Clostridium difficile Stickland metabolism. J. Bacteriol. 195, 844–854 (2013)
Ng, Y. K. et al. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS ONE 8, e56051 (2013)
Fagan, R. P. & Fairweather, N. F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem. 286, 27483–27493 (2011)
de Kok, S. De et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 3, 97–106 (2014)
Pfaffl, M. W. in Real-time PCR (ed. Dorak, T. ) 63–82 (Taylor & Francis, 2006)
Collins, J., Auchtung, J. M., Schaefer, L., Eaton, K. A. & Britton, R. A. Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome 3, 35 (2015)
Auchtung, J. M., Robinson, C. D., Farrell, K. & Britton, R. A. in Clostridium difficile: Methods and Protocols (eds Roberts, A. P. & Mullany, P. ) 235–258 (Springer, 2016)
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)
Griffiths, D. et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 48, 770–778 (2010)
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016)
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)
Roca, A. I., Abajian, A. C. & Vigerust, D. J. ProfileGrids solve the large alignment visualization problem: influenza hemagglutinin example. F1000 Res. 2, 2 (2013)
Dingle, T. C., Mulvey, G. L. & Armstrong, G. D. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect. Immun. 79, 4061–4067 (2011)
Popoff, M. R., Rubin, E. J., Gill, D. M. & Boquet, P. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect. Immun. 56, 2299–2306 (1988)
Smith, C. J., Markowitz, S. M. & Macrina, F. L. Transferable tetracycline resistance in Clostridium difficile. Antimicrob. Agents Chemother. 19, 997–1003 (1981)
Acknowledgements
This work was supported by the National Institutes of Health (U01AI124290-01 and 5U19AI09087202). We thank the members of the Ostomy Association of Greater Lansing for anonymously donating samples, and D. Lyras for the RT244 strains. We thank V. Young, D. Mills, J. Walter and M. Costa-Mattioli for comments on the manuscript.
Author information
Authors and Affiliations
Contributions
Concept and design of study: R.A.B., J.M.A., J.C. and C.R. Experiments: C. difficile growth, J.C. and C.R.; identification of L172I SNP and comparative analysis, C.R. and J.C.; treA RT–qPCR, H.D.; mouse infection model, J.C.; genetic manipulation of C. difficile strains, J.C. and C.R.; identification of RT078 trehalose insertion, C.W.K., H.C.L. and T.D.L.; faecal minibioreactor competitions, J.M.A.; spontaneous C. difficile mutant identification, H.D.; analysis, J.C., C.R., H.D., J.M.A. and R.B. The manuscript was drafted by J.C., J.M.A., and R.A.B., and revised by all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information Nature thanks J. Ballard, E. Pamer and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Figure 1 Phylogenetic organization of C. difficile MLST profiles.
Maximum likelihood tree based upon concatenated multi locus sequence typing genes of the 399 current profiles available at https://pubmlst.org/cdifficile/31. Stars indicate position of strains used in this study, with red stars indicating sequence types possessing either the TreR L172I amino acid substitution (ST1, ST41) or four-gene insertion (ST11). Tree constructed using MEGA7 (ref. 32).
Extended Data Figure 2 Growth of C. difficle strains.
a, The majority of strains can grow on 50 mM trehalose. Dashed grey line and band indicate mean growth and s.d. in DMM without a carbon source. Solid lines indicate mean growth yield (A600 nm) for groups: non-RT027/078 (n = 10), RT027 (n = 8), and RT078 (n = 3). b, Deletion of treA ablates the ability of both CD630 (RT12) and R20291 (RT027) to grow on trehalose. This phenotype can be restored by supplying treA on an inducible plasmid (n = 3 for each strain/group). c, RT244 strains (DL3110 and DL3111) possessing the TreR L172I mutation are capable of growth on 10 mM trehalose (n = 3 for each strain/group). d, CD1015∆ptsT can metabolize 50 mM trehalose (n = 4 for each strain/group). For a–d, points represent biologically independent samples, solid bars are means.
Extended Data Figure 3 RT027 strains express treA at a significantly higher level than non-RT027 strains in the presence of 25 mM trehalose.
Each data point (n = 4 ribotypes per group) represents gene expression from a different, biologically independent, strain and is an average from two to five independent experiments. P = 0.029, Mann–Whitney–Wilcoxon test (two-sided). Bar indicates mean expression.
Extended Data Figure 4 RT027 strains have an L172I mutation at a highly conserved site.
a, The treR genes from available C. difficile whole-genome sequencing files on the NCBI database (accessed 11 May 2017) were identified by tblastn and translated to protein sequences. Sequence fragments shorter than 240 amino acids were discarded and the remaining 1,010 sequences aligned with Clustal Omega33. All 191 sequences containing the L172I SNP also contained the thyA gene, a marker for the RT027 lineage; thyA was not found in any other genomes. Numbers indicate the number of sequences with a corresponding amino acid in that position. Multiple sequence alignment visualization generated with ProfileGrid34. b, The TreR protein sequence from RT027 strain R20291 was blasted against non-C. difficile sequences in the NCBI database and the top 99 matches (along with R20291treR) aligned with Clustal Omega. The leucine at position 172 was found to be conserved in 93 of 99 non-C. difficile sequences. To confirm the importance of this residue, TreR was blasted against all non-clostridial sequences in the NCBI database and the top 500 hits saved. After removal of duplicate species, 191 sequences were aligned with Clustal Omega. The leucine at residue 172 was conserved in 83% of sequences (data not shown).
Extended Data Figure 5 A treA knockout strain decreased toxin production 48 h after infection.
Mice were gavaged with 104 spores of either R20291 or R20291∆treA and provided with 5 mM trehalose in drinking water. Points represent toxin levels from individual mice (R20291 n = 10, R20291∆treA n = 11) euthanized 48 h after infection. Bars are means. Mice gavaged with R20291∆treA had significantly lower toxin levels (P = 0.0268; Wilcoxon–Mann–Whitney test (two-sided), median 40,960, IQR 23,040–46,080 versus 92,160, IQR 51,200–102,400).
Extended Data Figure 6 The four-gene trehalose insertion is only present in the RT078 lineage.
Artemis comparison tool displaying pairwise comparisons between C. difficile RT078 genome (M120) sequence and genome sequences from other C. difficile ribotypes (ribotypes indicated on the left). Numbers between grey bars indicate the genomic region where the trehalose four-gene insert is located (3231169–3237057). Regions of sequence homology are displayed in red. The trehalose four-gene insert of RT078 (indicated by the arrow on the top) was observed in RT078, but was absent in other ribotypes.
Supplementary information
Rights and permissions
About this article
Cite this article
Collins, J., Robinson, C., Danhof, H. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018). https://doi.org/10.1038/nature25178
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature25178