Development of Model Representations of Materials with Ordered Distribution of Vacancies
<p>Triangulation of the ternary system Ag-In-S, (In<sub>2</sub>S-Ag<sub>2</sub>S<sub>3</sub> is the “four” line, In<sub>2</sub>S<sub>3</sub>-Ag<sub>2</sub>S is the “eight” line).</p> "> Figure 2
<p>Triangulation of the pseudo-triple system [V]-In-S, (In<sub>2</sub>S-[V]S<sub>2</sub> is the “four” line, In<sub>2</sub>S<sub>3</sub>-[V] is the “eight” line).</p> "> Figure 3
<p>Tetrahedration of the pseudo-quaternary system [V]-Ag-In-S. The arrow points to a known chemical compound that we have marked in <a href="#crystals-14-01095-f001" class="html-fig">Figure 1</a>.</p> "> Figure 4
<p>State diagram of the PbTe-Ga<sub>2</sub>Te<sub>3</sub> system.</p> "> Figure 5
<p>The main compounds of three-component systems of lead-cesium halides on the Gibbs triangle (underlined binary compounds do not exist for all halogens X from the series Cl, Br, I) and partial triangulation of the system using the example of CsPbCl<sub>3</sub>) [<a href="#B17-crystals-14-01095" class="html-bibr">17</a>].</p> "> Figure 6
<p>High-resolution transmission electron microscopy images of CsPbBr<sub>3</sub> nanocrystal [<a href="#B17-crystals-14-01095" class="html-bibr">17</a>]. (<b>a</b>) TEM images with 100 nm resolution; (<b>b</b>) TEM images with 5 nm resolution.</p> "> Figure 7
<p>Dynamics of changes in photoluminescence spectra during the anionic substitution of Br–I: triangles represent the time dependence of the energy corresponding to the maximum PL intensity, and dots represent the time dependence of the half-width of the PL line [<a href="#B17-crystals-14-01095" class="html-bibr">17</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials with an Ordered Distribution of Vacancies
- i
- = 0 − stoichiometric AgInS2;
- i
- = 1 − [V]1/2Ag1/2In3/2S5/2 − [V]AgIn3S5;
- i
- = 2 − [V]2/3Ag1/3In5/3S8/3 − [V]2AgIn5S8 etc.;
2.2. Quasi-Crystalline Representations for Perovskite Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kroeger, F. Chemistry of Imperfect Crystals; Mir: Moscow, Russia, 1969; 654p. [Google Scholar]
- Zlomanov, V.P.; Novoselova, A.V. P-T-X—State Diagrams of Metal-Chalcogen Systems; Nauka: Moscow, Russia, 1987; 207p. [Google Scholar]
- Goryunova, N.A. Complex Diamond-like Semiconductors; Sovetskoye Radio Publishing House: Moscow, Russia, 1968; 208p. [Google Scholar]
- Zhang, S.B.; Wei, S.H.; Zunger, A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett. 1997, 78, 4059. [Google Scholar] [CrossRef]
- Ormont, B.F. Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors; Vysshaya Shkola Publishing House: Moscow, Russia, 1968; 488p. [Google Scholar]
- Ormont, B.F. Einfuhrung in Die Physikalische Chemie und Kristallchemie der Halbeiter; Dresden, M.L., Dresden, D.T., Eds.; Akademie: Berlin, Germany, 1979; 202p. [Google Scholar]
- Atroshchenko, L.V.; Zhuze, V.P.; Koshkin, V.M.; Ovechkina, E.E.; Palatnik, L.S.; Romanov, V.P.; Sergeeva, V.M.; Shelykh, A.I. Chemical Inertness Property of Metal Impurities in Semiconductors with Stoichiometric Vacancies, Scientific Discoveries of Russia. State register of discoveries of the USSR, 1960, Priority: No. 245, Registration: 1982.
- Fuhr, A.S.; Alexandrova, A.N.; Sautet, P. Stoichiometry-controllable optical defects in CuxIn2−x Sy quantum dots for energy harvesting. J. Mater. Chem. A. 2020, 8, 12556–12565. [Google Scholar] [CrossRef]
- Mazing, D.S. Model of structural ordering of vacancies and formation of a family of ternary compounds in AI–BIII–CVI systems. Surface. X-Ray Synchrotron Neutron Stud. 2023, 12, 70–75. [Google Scholar]
- Cichy, B.; Wawrzynczyk, D.; Samoc, M.; Stręk, W. Electronic properties and third-order optical nonlinearities in tetragonal chalcopyrite AgInS2, AgInS2/ZnS and cubic spinel AgIn5S8, AgIn5S8/ZnS quantum dots. J. Mater. Chem. C. 2017, 5, 149–158. [Google Scholar] [CrossRef]
- Houck, D.W.; Assaf, E.I.; Shin, H.; Greene, R.M.; Pernik, D.R.; Korgel, B.A. Pervasive Cation Vacancies and Antisite Defects in Copper Indium Diselenide (CuInSe2) Nanocrystals. J. Phys. Chem. C. 2019, 123, 9544–9551. [Google Scholar] [CrossRef]
- Duguzhev, S.M.; Makhin, A.V.; Moshnikov, V.A.; Shelykh, A.I. Doping of PbTe and Pb1-XSnTe with gallium and indium. Cryst. Res. Tech. 1990, 25, 145–149. [Google Scholar] [CrossRef]
- Kityk, I.V.; Parasyuk, O.; Fedorchuk, A.O.; El-Naggar, A.M.; Albassam, A.A.; Piasecki, M.; Khyzhun, O.Y.; Veremchuk, I. PbGa6Te10 crystals for IR laser operated piezoelectricity. Mater. Res. Bull. 2018, 100, 131–137. [Google Scholar] [CrossRef]
- Cherniushok, O.; Cardoso-Gil, R.; Parashchuk, T.; Grin, Y.; Wojciechowski, K.T. Phase equilibria and thermoelectric properties in the Pb-Ga-Te system in the vicinity of the PbGa6Te10 phase. Inorg. Chem. 2021, 60, 2771–2782. [Google Scholar] [CrossRef]
- Carnio, B.; Zawilski, K.; Schunemann, P.; Moutanabbir, O.; Elezzabi, A. The coming age of pnictide and chalcogenide ternary crystals in the terahertz frequency regime. IEEE Trans. Terahertz Sci. Tech. 2022, 12, 433–445. [Google Scholar] [CrossRef]
- Moshnikov, V.A. Local Energy Effects in the Study and Production of Semiconductor Solid Solutions. Ph.D. Thesis, Dissertation of Physical and Mathematical Sciences. Saint Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia, 1996. [Google Scholar]
- Matyushkin, L.B. Technology and Equipment for Obtaining Colloidal Quantum Dots CsPbX3 (X = Cl, Br, I), CdSe/ZnS, Plasmonic Nanoparticles Ag/SiO2 and Hybrid Structures Based on Them. Ph.D. Thesis, Dissertation of Engineering. Saint Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia, 2018. [Google Scholar]
- Pan, J.; Shang, Y.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A.M.; Hedhili, M.N.; Emwas, A.H.; et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable nearunity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Somma, F.; Nikl, M.; Nitsch, K.; Giampaolo, C.; Phani, A.R.; Santucci, S. The growth, structure and optical properties of CsI-PbI2 co-evaporated thin films. Thin Solid Film. 2000, 9, 62–64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muratova, E.N.; Moshnikov, V.A.; Zhilenkov, A.A. Development of Model Representations of Materials with Ordered Distribution of Vacancies. Crystals 2024, 14, 1095. https://doi.org/10.3390/cryst14121095
Muratova EN, Moshnikov VA, Zhilenkov AA. Development of Model Representations of Materials with Ordered Distribution of Vacancies. Crystals. 2024; 14(12):1095. https://doi.org/10.3390/cryst14121095
Chicago/Turabian StyleMuratova, Ekaterina N., Vyacheslav A. Moshnikov, and Anton A. Zhilenkov. 2024. "Development of Model Representations of Materials with Ordered Distribution of Vacancies" Crystals 14, no. 12: 1095. https://doi.org/10.3390/cryst14121095
APA StyleMuratova, E. N., Moshnikov, V. A., & Zhilenkov, A. A. (2024). Development of Model Representations of Materials with Ordered Distribution of Vacancies. Crystals, 14(12), 1095. https://doi.org/10.3390/cryst14121095