A Design of Vanadium Dioxide for Dynamic Color Gamut Modulation Based on Fano Resonance
<p>Refractive index of VO<sub>2</sub>, (<b>a</b>) in the insulating state, (<b>b</b>) in the metallic state.</p> "> Figure 2
<p>Structure of the designed FROC; (<b>a</b>) top view, (<b>b</b>) front view. (<b>c</b>) Schematic of the FROC array.</p> "> Figure 3
<p>Reflection spectrum of (<b>a</b>) broadband filter, (<b>b</b>) narrowband filter.</p> "> Figure 4
<p>(<b>a</b>) Reflection spectrum when incident light vertically irradiates. (<b>b</b>) Chromaticity coordinates marked in the CIE1931 chromaticity diagram according to the spectrum shown in (<b>a</b>).</p> "> Figure 5
<p>Reflection spectra (<b>a</b>) of the broadband filter (upper part of the FROC), (<b>b</b>) of the FROC, when <span class="html-italic">h</span><sub>2</sub> is varied from 20 nm to 60 nm at a step of 10 nm. (<b>c</b>) Chromaticity coordinates marked in the CIE1931 chromaticity diagram according to the spectrum shown in (<b>b</b>). The black solid lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its insulating state, and the white dashed lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its metallic state.</p> "> Figure 6
<p>(<b>a</b>) Reflection spectrum of the FROC when <span class="html-italic">h</span><sub>3</sub> is varied from 10 nm to 40 nm at a step of 10 nm. (<b>b</b>) Chromaticity coordinates marked in the CIE1931 chromaticity diagram according to the spectrum shown in (<b>a</b>). The black solid lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its insulating state, and the white dashed lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its metallic state.</p> "> Figure 7
<p>Reflection spectra (<b>a</b>) of the upper broadband filter, (<b>b</b>) of the FROC, when <span class="html-italic">L</span> is varied from 190 nm to 130 nm at a step of 10 nm. (<b>c</b>) Chromaticity coordinates marked in the CIE1931 chromaticity diagram according to the spectrum shown in (<b>b</b>). The black solid lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its insulating state, and the white dashed lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its metallic state.</p> "> Figure 8
<p>Reflection spectra (<b>a</b>) of the upper broadband filter, (<b>b</b>) of the FROC, when <span class="html-italic">h</span><sub>4</sub> is varied from 30 nm to 70 nm at a step of 10 nm. (<b>c</b>) Chromaticity coordinates marked in the CIE1931 chromaticity diagram according to the spectrum shown in (<b>b</b>). The black solid lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its insulating state, and the white dashed lines show the movement trajectory of the chromaticity coordinates when VO<sub>2</sub> is in its metallic state.</p> "> Figure 9
<p>Electric field distributions of the broadband filter in the x-z plane; (<b>a</b>) wavelength of 695 nm light normally illustrated on VO<sub>2</sub> (insulating state); (<b>b</b>) wavelength of 688 nm light vertically irradiates on VO<sub>2</sub> (metallic state). Electric field distributions of the FROC in the x-z plane; (<b>c</b>) wavelength of 695 nm light vertically irradiates on VO<sub>2</sub> (insulating state); (<b>d</b>) wavelength of 688 nm light vertically irradiates on VO<sub>2</sub> (metallic state). The structures of the broadband filter and FROC depicted by the solid black lines are shown in the figure.</p> "> Figure 10
<p>(<b>a</b>) “USST” pattern arranged by the array of the designed FROCs, which can be reversibly switched between visible and invisible by changing the temperature. The yellowish area is reflected by the structures without the top square grids (<span class="html-italic">L</span> is set as 0). (<b>b</b>) Butterfly patterns when VO<sub>2</sub> is in the insulating or metallic state and the length <span class="html-italic">L</span> is set as 190 nm or 160 nm, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fano Resonance
2.2. Optical Properties of VO2
3. Structure and Design
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Zhou, Q.; Ai, R.; Li, X.; Li, L.; Han, Q. Luminescence enhancement of Y2O3 thin films based on LSPR effect of Ag nanolayers. J. Alloys Compd. 2024, 988, 174257. [Google Scholar] [CrossRef]
- Kristensen, A.; Yang, J.; Bozhevolnyi, S.I.; Link, S.; Nordlander, P.; Halas, N.J.; Mortensen, N.A. Plasmonic colour generation. Nat. Rev. Mater. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Chen, S.; Rossi, S.; Shanker, R.; Cincotti, G.; Gamage, S.; Kühne, P.; Stanishev, V.; Engquist, I.; Berggren, M.; Edberg, J.; et al. Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces. Adv. Mater. 2021, 33, 2102451. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yu, E.S.; Kim, T.; Kim, I.S.; Chung, S.; Kwak, S.J.; Lee, W.B.; Pak, Y.; Ryu, Y.S. Naked-eye observation of water-forming reaction on palladium etalon: Transduction of gas-matter reaction into light-matter interaction. PhotoniX 2023, 4, 20. [Google Scholar] [CrossRef]
- Moradinezhad, F.; Aliabadi, M.; Ansarifar, E. Zein Multilayer Electrospun Nanofibers Contain Essential Oil: Release Kinetic, Functional Effectiveness, and Application to Fruit Preservation. Foods 2024, 13, 700. [Google Scholar] [CrossRef]
- Wen, J.; Chen, X.; Zhu, Z.; Zhu, Y.; Luo, H.; Wang, Y.; Liu, Y.; Wang, H.; Yuan, W.; Zhang, Y.; et al. Thin film-based colorful radiative cooler using diffuse reflection for color display. PhotoniX 2023, 4, 25. [Google Scholar] [CrossRef]
- Lee, Y.; Yun, J.; Seo, M.; Kim, S.J.; Oh, J.; Kang, C.M.; Sun, H.J.; Chung, T.D.; Lee, B. Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film. Nano Lett. 2020, 20, 6084–6090. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Fang, X.; Zhang, L.; Yao, G.; Xu, L.; Liu, F.; Qiu, M. Controllable generation of large-scale highly regular gratings on Si films. Light Adv. Manuf. 2021, 2, 274–282. [Google Scholar] [CrossRef]
- Soudi, M.; Cencillo-Abad, P.; Chanda, D. Plasmonic structural color-based sensors. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVII; SPIE: San Francisco, CA, USA, 2024. [Google Scholar]
- Geng, J.; Shi, L.; Ni, J.; Jia, Q.; Yan, W.; Qiu, M. Wear-resistant surface coloring by ultrathin optical coatings. PhotoniX 2022, 3, 14. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Lin, Z.; Song, J.; Wang, D.; Li, M.; Koksal, O.; Wang, Z.; Spektor, G.; Carlson, D.; et al. Tantalum pentoxide: A new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. Light Sci. Appl. 2024, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xiao, S.; Song, Q.; Liu, Y.; Wu, Y.; Wang, S.; Tsai, D.P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Y.; Song, Q.; Xiao, S. Dynamic Structural Colors Based on All-Dielectric Mie Resonators. Adv. Opt. Mater. 2021, 9, 2002126. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Wang, X.; Xiang, H.; Lu, C.; Liu, X. Stretchable, stable, and structural color reversible enabled by mesoscopic regulation and design for flexible photonic crystal mechanical sensors. Colloids Surf. A Physicochem. Eng. Asp. 2024, 689, 133672. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhu, L.; Wu, Y.; Si, P.; Zhang, D. Harmless photonic crystal tattoo with angle-independent structural color based on SiO2 nanoparticles and silk fibroin. J. Appl. Polym. Sci. 2024, 141, e55482. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Z.; Zang, J. All-dielectric silicon nanoring metasurface for full-color printing. Nano Lett. 2020, 20, 8739–8744. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, T.; Zhang, T.; Li, H.; Li, A.; Li, Z.; Lai, X.; Hou, X.; Wang, Y.; Shi, L.; et al. Facile full-color printing with a single transparent ink. Sci. Adv. 2021, 7, eabh1992. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Chen, Y.; Wang, Y.; Dai, P.; Zhang, Z.; Duan, H. Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 2016, 4, 1196–1202. [Google Scholar] [CrossRef]
- Xie, Y.; Song, Y.; Sun, G.; Hu, P.; Bednarkiewicz, A.; Sun, L. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. Light Sci. Appl. 2022, 11, 150. [Google Scholar] [CrossRef]
- Song, H.; Zhang, R.; Zhao, Z.; Wu, X.; Zhang, Y.; Wang, J.; Li, B. RGB tricolor and multimodal dynamic optical information encryption and decoding for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 2022, 14, 45562–45572. [Google Scholar] [CrossRef]
- Eoh, H.; Jung, Y.; Park, C.; Lee, C.E.; Park, T.H.; Kang, H.S.; Jeon, S.; Ryu, D.Y.; Huh, J.; Park, C. Photonic crystal palette of binary block copolymer blends for full visible structural color encryption. Adv. Funct. Mater. 2022, 32, 2103697. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Yan, R.; Yue, X.; Wang, H.; Wang, Y.; Zhang, J.; Yuan, X.; Zeng, J.; Wang, J. Color printing and encryption with polarization-switchable structural colors on all-dielectric metasurfaces. Nano Lett. 2023, 23, 5581–5587. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Yang, Y.; Yang, S.; Li, L.; Xiang, R.; Liu, J. Stretchable structural colors with polarization dependence using lithium niobate metasurfaces. Opt. Express 2024, 32, 6776–6790. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, Z.; Yang, S.; Jia, H.; Wei, J. Dual-Mode Multicolor Display Based on Structural and Fluorescent Color CdS Photonic Crystal Hydrogel. Langmuir 2024, 40, 4764072. [Google Scholar] [CrossRef]
- Iwata, M.; Teshima, M.; Seki, T.; Yoshioka, S.; Takeoka, Y. Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. Adv. Mater. 2017, 29, 1605050. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Bio-inspired intelligent structural color materials. Mater. Horiz. 2019, 6, 945–958. [Google Scholar] [CrossRef]
- Anusuyadevi, P.R.; Shanker, R.; Cui, Y.; Riazanova, A.V.; Järn, M.; Jonsson, M.P.; Svagan, A.J. Photoresponsive and polarization-sensitive structural colors from cellulose/liquid crystal nanophotonic structures. Adv. Mater. 2021, 33, 2101519. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zeng, J.; Gan, Q.; Ji, D.; Song, H.; Liu, W.; Shi, L.; Wu, L. Iridescence-controlled and flexibly tunable retroreflective structural color film for smart displays. Sci. Adv. 2019, 5, eaaw8755. [Google Scholar] [CrossRef]
- Yao, Y.; He, J.; Ma, L.; Wang, J.; Peng, L.; Zhu, X.; Li, K.; Qu, M. Self-supported Co9S8-Ni3S2-CNTs/NF electrode with superwetting multistage micro-nano structure for efficient bifunctional overall water splitting. J. Colloid Interface Sci. 2022, 616, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Duan, X.; Liu, N. Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 2020, 6, eabc2709. [Google Scholar] [CrossRef] [PubMed]
- ElKabbash, M.; Hoffman, N.; Lininger, A.R.; Jalil, S.A.; Letsou, T.; Hinczewski, M.; Strangi, G.; Guo, C. Fano resonant optical coatings platform for full gamut and high purity structural colors. Nat. Commun. 2023, 14, 3960. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, Y.; Yang, W.; Wang, B.; Xiao, S. WS2 Monolayer in Fabry–Perot Cavity Support for Plasmonic Fano Resonance. Plasmonics 2023, 18, 1371–1380. [Google Scholar] [CrossRef]
- Huang, Y.S.; Lee, C.Y.; Rath, M.; Ferrari, V.; Yu, H.; Woehl, T.J.; Ni, J.H.; Takeuchi, I.; Ríos, C. Tunable structural transmissive color in fano-resonant optical coatings employing phase-change materials. Mater. Today Adv. 2023, 18, 100364. [Google Scholar] [CrossRef]
- Prabhathan, P.; Sreekanth, K.V.; Teng, J.; Singh, R. Electrically tunable steganographic nano-optical coatings. Nano Lett. 2023, 23, 5236–5241. [Google Scholar] [CrossRef]
- Guan, X.; Liu, Q.; Li, C.; Yin, Z.; Wu, J.; Yu, P.; Lu, W.; Wang, S. Generalized Fano resonance theory based on Fabry-Perot cavity. J. Phys. D Appl. Phys. 2024, 57, 135102. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Jana, S.; ElKabbash, M.; Singh, R.; Teng, J. Phase change material-based tunable Fano resonant optical coatings and their applications. Nanophotonics 2024, 13, 2075–2088. [Google Scholar] [CrossRef] [PubMed]
- Morin, F.J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866. [Google Scholar] [CrossRef]
- Currie, M.; Mastro, M.A.; Wheeler, V.D. Characterizing the tunable refractive index of vanadium dioxide. Opt. Mater. Express 2017, 7, 1697–1707. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Elsevier Science: Amsterdam, The Netherlands, 1998; Volume 3, pp. 155–185. [Google Scholar]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zeng, R.; Yang, Y.; Zhou, Y.; Gao, Z.; Wang, Q.; Hong, R.; Zhang, D. A Design of Vanadium Dioxide for Dynamic Color Gamut Modulation Based on Fano Resonance. Crystals 2024, 14, 1096. https://doi.org/10.3390/cryst14121096
Zhu J, Zeng R, Yang Y, Zhou Y, Gao Z, Wang Q, Hong R, Zhang D. A Design of Vanadium Dioxide for Dynamic Color Gamut Modulation Based on Fano Resonance. Crystals. 2024; 14(12):1096. https://doi.org/10.3390/cryst14121096
Chicago/Turabian StyleZhu, Junyang, Ruimei Zeng, Yiwen Yang, Yiqun Zhou, Zhen Gao, Qi Wang, Ruijin Hong, and Dawei Zhang. 2024. "A Design of Vanadium Dioxide for Dynamic Color Gamut Modulation Based on Fano Resonance" Crystals 14, no. 12: 1096. https://doi.org/10.3390/cryst14121096
APA StyleZhu, J., Zeng, R., Yang, Y., Zhou, Y., Gao, Z., Wang, Q., Hong, R., & Zhang, D. (2024). A Design of Vanadium Dioxide for Dynamic Color Gamut Modulation Based on Fano Resonance. Crystals, 14(12), 1096. https://doi.org/10.3390/cryst14121096